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Abstract—Cross-Site Request Forgery (CSRF) is one of the
oldest and simplest attacks on the Web, yet it is still effective
on many websites and it can lead to severe consequences, such
as economic losses and account takeovers. Unfortunately, tools
and techniques proposed so far to identify CSRF vulnerabilities
either need manual reviewing by human experts or assume the
availability of the source code of the web application.

In this paper we present Mitch, the first machine learning
solution for the black-box detection of CSRF vulnerabilities. At
the core of Mitch there is an automated detector of sensitive
HTTP requests, i.e., requests which require protection against
CSRF for security reasons. We trained the detector using super-
vised learning techniques on a dataset of 5,828 HTTP requests
collected on popular websites, which we make available to other
security researchers. Our solution outperforms existing detection
heuristics proposed in the literature, allowing us to identify 35
new CSRF vulnerabilities on 20 major websites and 3 previously
undetected CSRF vulnerabilities on production software already
analyzed using a state-of-the-art tool.

I. INTRODUCTION

Cross-Site Request Forgery (CSRF) is one of the simplest

web attacks to understand, yet it has consistently been one

of the top web security threats since its discovery in the

early 2000s. In a CSRF attack, a malicious website forces

the web browser to perform authenticated, security-sensitive

operations at a target web application by means of cross-site

requests, without any involvement of the browser’s user. This

can be done by using just standard HTML tags and JavaScript,

making CSRF attempts trivial to perform and forcing security-

sensitive web developers to implement solutions to filter out

malicious cross-site requests abusing authentication.

Robust defenses against CSRF are well-known [2], but still

a significant number of modern web applications was shown

to be vulnerable to this class of attacks [28], [34]. The main

challenge to face when implementing protection against CSRF

is that one has to strike a delicate balance between security

and usability. As a matter of fact, the Web is built on top of

cross-site requests, most of which are not malicious. Hence,

web developers have to choose carefully which operations can

only be made available to same-site requests without breaking

the website functionality, and implement appropriate security

checks on cross-site requests. It is thus easy to accidentally

leave room for CSRF attacks, which motivated recent research

on automated CSRF detection [28].

Deemon is the first research tool that automatically detects

CSRF vulnerabilities [28]. Technically, Deemon is a model-

based security testing framework based on a runtime monitor

implemented in the PHP interpreter. Although Deemon proved

to be very effective on existing open-source web applications,

it is a language-dependent analyzer, which only works on

PHP applications whose source code is available for dynamic

analysis. Overcoming this limitation is of paramount impor-

tance to advance the practical impact of the research on the

automated detection of CSRF vulnerabilities, because existing

web applications are often developed using several different

technology stacks, and their source code might not be fully

available for analysis in many real-world cases.

Black-box security testing is thus an appealing approach to

detect CSRF vulnerabilities, but previous research highlighted

that existing web application scanners are not effective in this

task. For instance, [3] notes that an existing commercial tool

does not report CSRF vulnerabilities “due to the difficulty of

determining which forms in the application require protection

from CSRF”. In fact, correctly detecting sensitive HTTP

requests is the first major challenge to solve in order to propose

an automated black-box detection tool for CSRF vulnerabili-

ties. Unfortunately, previous heuristics from the literature [26],

[30] give an unacceptably high number of false positives, as

we show in Section IV-E. Thus, security practitioners are often

forced to use manual penetration testing tools like Burp1 and

ZAP2 to detect and test for CSRF vulnerabilities. These tools

require users to first manually identify the sensitive HTTP

requests using their understanding of the web application, and

then rely on techniques like those discussed in the OWASP

Testing Guide3 to confirm the attack by running the generated

CSRF proof of concept in a web browser to visually check its

outcome. This is a complex and time-consuming manual task,

which we aim to significantly automate and improve.

To achieve this goal, we present Mitch, the first machine

learning solution for the black-box detection of CSRF vulner-

abilities. At the core of Mitch there is an automated detector

of sensitive HTTP requests that outperforms existing detection

heuristics proposed in the literature [26], [30].

A. Contributions

More specifically, we contribute to the field of the detection

of CSRF vulnerabilities as follows:

1https://portswigger.net/vulnerability-scanner
2https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project
3https://www.owasp.org/index.php/Testing for CSRF (OTG-SESS-005)
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1) We develop a methodology to manually identify sensi-

tive HTTP requests on existing web applications with

limited effort. We use this approach to build a dataset

of 5,828 HTTP requests from 60 popular websites of

the Alexa ranking, including 939 sensitive requests. We

make the dataset available online, so as to provide a

ground truth for future research on the automated detec-

tion of sensitive HTTP requests. This manual process

is performed only once to train the classifier and is not

part of Mitch (Section III).

2) Starting from our dataset, we investigate which features

are useful to discriminate between sensitive and insen-

sitive HTTP requests. We then use our dataset to train

and test a range of machine-learned classifiers, showing

that sensitive HTTP requests can be identified with high

accuracy. We experimentally show that our classifiers

outperform existing detection heuristics proposed in the

literature [26], [30]. These classifiers could be integrated

in tools like Burp and ZAP to simplify the task of

penetration testers (Section IV).

3) We use our best-performing classifier as a building block

for Mitch, the first machine learning solution for the

black-box detection of CSRF vulnerabilities. Mitch is a

language-agnostic tool, based on a new CSRF detection

heuristic, which operates without having access to the

source code of the web application to test. This makes

it suited to analyze both open- and closed-source web

applications, potentially developed using different pro-

gramming languages (Section V).

4) We experimentally show the effectiveness of Mitch by

exposing 35 new CSRF vulnerabilities on 20 major

websites and 3 new CSRF vulnerabilities on production

software which was already analyzed with Deemon [28].

We also assess that the number of false positives and

false negatives returned by Mitch is limited, with just

12 false positives among 47 detected CSRFs and only 7

false negatives overall (Section VI).

To further clarify the scope of our contribution, we antici-

pate and stress that our classifier is intended to be integrated in

penetration testing tools for finding CSRF vulnerabilities, not
to be used for CSRF attack detection. For this reason, it is not

designed to be resilient to adversarial manipulations [1]. The

study of techniques to deal with this intriguing yet orthogonal

aspect is left to future work.

II. BACKGROUND

In this section, we provide an overview of the basics of

cross-site request forgery and supervised learning.

A. Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF) is a well-known web

attack that forces a user into submitting unwanted, attacker-

controlled requests towards a vulnerable web application in

which she is currently authenticated. The key concept of

CSRF is that the malicious requests are routed to the web

application through the user’s browser, hence they might be

indistinguishable from intended benign requests which were

actually authorized by the user.

1) Attack Description: A typical CSRF attack works as

follows:

1) Alice logs into an honest yet vulnerable web application.

Session authentication is implemented through a session

cookie that is automatically attached by the browser to

any subsequent request towards the web application.

2) Using the same browser, Alice visits Eve’s malicious

website, which sends a cross-site request to the vulner-

able web application using HTML or JavaScript.

3) Since the request includes Alice’s cookies, it is pro-

cessed by the vulnerable web application in the au-

thentication context of Alice. This way, Eve can trigger

security-sensitive actions on Alice’s behalf.

It is worth noticing that CSRF is purely a web attack,

since it does not require the attacker to intercept or modify

user’s requests and responses: it is enough that the user visits

the attacker’s malicious website, from which the attack is

launched. Thus, web applications which suffer from CSRF

vulnerabilities are potentially exploitable by any malicious

website on the Web.

2) Current Fixes and Mitigations: To prevent CSRF at-

tacks, web developers have to implement explicit protection

mechanisms [2]. If adding extra user interaction does not affect

usability too much, it is possible to force re-authentication or

use one-time passwords or CAPTCHAs [36] to prevent cross-

site requests going through unnoticed. In many cases, however,

automated prevention is preferred and cross-site requests are

filtered out by using any of the following techniques:

• checking the value of standard HTTP request headers

such as Referrer and Origin, indicating the page

originating the request;

• checking the presence of custom HTTP request headers

like X-Requested-With, which can only be set on

same-origin AJAX requests;

• checking the presence of unpredictable anti-CSRF tokens,

set by the server into sensitive forms.

Each of these mechanisms has a few subtleties that make it

unreliable in some cases, and OWASP recommends to always

implement anti-CSRF tokens together with appropriate header

checks, suggesting that a single mechanism might not suffice4.

Alternatively, web developers may use SameSite cookies, a

relatively new browser-based defense mechanism which allows

one to mark cookies which must not be attached to cross-site

requests, thus preventing CSRF attacks in the browser.

3) Login CSRF: There exists a variation of CSRF known

as login CSRF [2], where the attacker Eve forces her victim

Alice into logging into Eve’s account at a vulnerable web

application. This can be used for instance to steal confidential

information that will be sent to Eve’s account instead of

Alice’s account. We will not consider protection against login

4https://www.owasp.org/index.php/Cross-Site Request Forgery (CSRF)
Prevention Cheat Sheet
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CSRF in this paper; we refer the interested reader to [34] for

some recent results on the topic.

B. The Supervised Learning Problem

One of the most popular scenarios where machine learning

has proved useful is supervised learning. This is the task of

learning a function that maps an input to an output based on

a sample of observed input-output pairs (instances), which is

usually referred to as training set.
More formally, let D = {(xi, yi)}i=1...m be a training set.

Each xi ∈ X ⊆ R
n is an n-dimensional vector of features

representing the i-th input and yi ∈ Y is its corresponding

output value. In this paper, we focus on binary classification
problems where Y = {0, 1} and each yi is a bit known as

the class label. Supervised learning assumes the existence

of an unknown target function f : X �→ Y that maps any

feature vector to its corresponding output. The goal is therefore

learning the function f̂ that best approximates f on D from

a set of hypotheses H, using a loss function � to estimate the

cost of the prediction errors. Specifically, learning f̂ reduces

to the following optimization problem:

f̂ = argmin
f∗∈H

�(f∗,D).

Different estimates f̂ can be learned depending on the

choice of H and �. Covering these aspects more in detail is

outside the scope of this work; we however refer the interested

reader to [14] for an in-depth discussion.

III. DATASET CONSTRUCTION

In this section, we first give a practical definition of sensitive

request and we describe how we collect and label a real-world

dataset of sensitive and insensitve requests, taking also into

account possible ethical implications.

A. Sensitive Requests

Before building our dataset, we first need a rigorous defini-

tion of sensitive request which drives the labeling process. We

adapt this definition from existing work on CSRF detection,

which defined a notion of CSRF vulnerability [28].

Definition 1 (Sensitive Request). An HTTP request is sensitive

if and only if: (i) it causes a security-relevant state change in
the web application which processes it; and (ii) it is processed
within a valid authentication context of a registered user.

Identifying sensitive requests is a prerequisite to the detec-

tion of CSRF vulnerabilities, because the latter can only be

exploitable when the former can be crafted by the attacker,

i.e., when the attacker knows all the required parameters and

values of the requests.

Unfortunately, detecting sensitive requests is generally hard,

because it requires both to understand the semantics of the

web application and to observe the presence of server-side

state changes. While the first requirement can be reliably

fulfilled by human experts, the second one may be unfeasible

even for them, in particular when the web application code is

unavailable or too complex to be analyzed. For this reason, it

is worth introducing the class of the visibly sensitive requests.

Definition 2 (Visibly Sensitive Requests). A sensitive request
is visibly sensitive if and only if its security-relevant web
application state change is visible at the browser side upon
processing the corresponding response.

Visibly sensitive requests are routinely used to implement

a wide range of functionalities which need to be protected

against CSRF. Notable examples include:

• social media actions, e.g., liking and disliking contents,

social sharing between websites, posting on personal

profile pages and timelines;

• profile management, e.g., changing user preferences, set-

ting a birth date, uploading a profile picture;

• e-payments and (more generally) online transactions,

which most often implement visual indicators to keep

track of the transaction state, e.g., the number of items

currently stored in the shopping cart.

Examples of sensitive requests which are not visibly sen-

sitive include all the tracking and profiling operations often

implemented by modern websites, whose corresponding state

changes amount to the update of server-side logs, e.g., for

targeted advertising. Though these requests should certainly

be protected against CSRF to safeguard the user experience,

they cannot be detected as sensitive without having direct

access to the web application code. Moreover, they are way

less straightforward to exploit for an attacker, who has to infer

the inner workings of the tracking system to abuse it. From

now on, we only focus on visibly sensitive requests and we

just refer to them as sensitive for simplicity.

B. Request Collection and Labeling

We developed a browser extension (HTTP-Tracker) to man-

ually label HTTP requests sent from a web application as

sensitive or insensitive. The main challenge in the extension

development was the definition of heuristics which make

the manual labeling feasible in practice, given the size and

complexity of modern web applications and the overwhelming

amount of generated HTTP requests.

1) Collecting requests: HTTP-Tracker uses the webRequest

API of the extension system to monitor all the requests of

type main_frame, sub_frame and xmlhttprequest
sent by the browser. This restriction effectively filters out a

huge number of requests, e.g., for image and script inclusion,

which are very likely to be insensitive. All the monitored

requests whose URL matches a configurable pattern are then

logged for manual labeling. We use such pattern to focus on

a specific website in the labeling process: for instance, when

navigating www.example.com, we only log requests sent

to example.com and its sub-domains. This means that we

are only interested in state changes affecting the same web

application that we are navigating, which we assume to be

possibly hosted on multiple related domains.

For each logged request, the extension separately stores its

method, its URL, and its parameters, along with their corre-
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sponding values. Requests which are identical up to the values

of their parameters are only logged once to simplify the label-

ing process. To correctly process the parameters, the extension

distinguishes between GET and POST requests. GET parame-

ters are parsed based on the standard query string format, while

POST parameters are extracted from the body of the request

using a set of existing parsers for the most common content

types used in the wild, e.g., multipart/form-data and

application/json; the right parser is chosen by inspect-

ing the value of the Content-Type header of the request.

By clicking on the icon of HTTP-Tracker, a human expert

can access the list of the logged requests and proceed to mark

them as sensitive or insensitive.

2) Labeling methodology: To perform the labeling of the

requests to a web application w, we proceed as follows. We

first access the homepage of w from a fresh browser and

we mark all the outgoing requests as insensitive, because no

security-relevant website functionality was yet exercised. We

then authenticate at w and we use our understanding of the

web application semantics to visually identify how to exercise

the functionalities which are likely to trigger sensitive requests,

e.g., updating profile information or liking a content. After

each click, we let the browser complete page loading and we

proceed to manually label the logged HTTP requests.

Perhaps surprisingly, despite the complexity of modern web

applications, this is a trivial task in the large majority of cases.

Though browsers send a huge number of requests upon page

rendering, the filters implemented in HTTP-Tracker are often

strict enough to ensure that only one request per click needs

to be labeled, hence the right label is a direct consequence

of the clicked page element. In the few cases where multiple

requests need to be labeled after a single click, we rely on a

manual inspection of the logged requests to understand their

semantics, possibly using the developer tools available in the

web browser to deal with the subtlest cases. For instance, we

note that replaying requests is a convenient strategy to collect

more information about their sensitivity, e.g., the server might

answer that the requested operation was already performed,

which suggests that a server-side state change happened after

the original request.

C. A Dataset of Labeled Requests

To build our dataset, we accessed the Alexa ranking and we

selected a total of 60 websites featuring authenticated access

from the top sites of each of the available categories. This way,

we were able to cover web applications with fundamentally

different scopes, such as social networks, e-shops, and adult

websites. This diversification is pivotal in ensuring that the

dataset of HTTP requests collected is representative enough

to be unbiased. We then created personal accounts at the 60

websites and we performed the manual labeling of their HTTP

requests using HTTP-Tracker, as described in the previous

section. We do not claim nor target full coverage of all the

possible website functionalities, both for technical and ethical

reasons, but we tried to be as much comprehensive as possible

in our navigation experience. The labeling was performed

by two of the authors, who conducted a systematic mutual

verification of their results. In the few cases where there was

no agreement between the two experts, requests have not been

included in the dataset to avoid the introduction of inaccurate

information.

In the end, we were able to collect 6,312 HTTP labeled

requests. From this original dataset, we filtered out any HTTP

request whose method was different from GET and POST. The

rationale of this last choice is that PUT and DELETE requests

turned out to be all sensitive, while OPTIONS requests were

all insensitive, which suggests that the classification problem

for these cases is trivial and does not really require the use of

machine learning techniques. Overall, we reduced the size of

the dataset by around 7.7% to 5,828 HTTP requests, including

939 sensitive requests5.

D. Ethical Implications

Sensitive requests cause by definition security-relevant state

changes in the web application which processes them, hence

they should not be forged lightheartedly. We used our human

understanding of the analyzed web applications to guarantee

that the sensitive requests we sent to construct our dataset did

not have any negative impact on others, be they websites users,

web developers, server administrators, or website owners.

A few relevant ethical considerations follow. The first ob-

servation we make is that a significant fraction of the sensitive

requests we sent only affected the state of our own sessions: for

instance, this is the case for requests which updated our profile

information or personal preferences. When a sensitive request

could affect other people, e.g., a friend request was sent,

we always ensured that it was reversible, and we proceeded

to restore the web application state to its original form just

after labeling the request. At the end of our experiments, we

deleted the personal accounts we created on all the websites

which provided such functionality. Not only this ensured that

all the actions performed by the account were undone, but

also allowed us to include in the dataset additional sensitive

requests used for account deletion.

IV. HTTP REQUEST CLASSIFICATION

Having a dataset of HTTP requests labeled as sensitive

and insensitive allows us to frame the problem of identifying

requests that need to be protected against CSRF into a binary
classification problem, as defined in Section II-B.

A. Feature Engineering

The first effort when designing a machine learning pipeline

usually consists in finding the most appropriate features to

represent the objects of the domain of interest: this process is

called feature engineering. This task often requires a signifi-

cant amount of human effort, backed up by a strong domain

knowledge. In exchange for that, this approach is able to build

predictive models operating on human-understandable char-

acteristics of objects in the domain. Indeed, we are not only

interested in correctly identifying sensitive HTTP requests, but

5We make the dataset available at https://github.com/alviser/mitch.
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also in understanding which (interpretable) features have led

to such predictions. For this reason, more recent techniques

that are able to automatically extract representations from

data based on deep learning are not a viable option for us,

since those learned features are typically hard to attribute to

interpretable properties [23]. Although models resulting from

training (deep) neural networks have proven very effective in

specific perceptual tasks, such as computer vision and natural

language processing [22], [4], trading off a highly accurate

predictive model with a possibly lower performing one which

operates on human-understandable features is particularly ap-

preciated in some settings like ours [35].

In this work, we consider the feature space X being made of

49 dimensions, each one capturing a specific property of HTTP

requests. Those can be logically organized into 3 categories:

Structural, Textual, and Functional.
1) Structural: This category of features describes structural

properties of an HTTP request. More precisely, we define the

following set of numerical features:

• numOfParams: the total number of parameters of the

request;

• numOfBools: the number of request parameters bound

to a boolean value;

• numOfIds: the number of request parameters bound to

an identifier, i.e., a hexadecimal string, whose usage was

empirically observed to be common in our dataset;

• numOfBlobs: the number of request parameters bound

to a blob, i.e., any string which is not an identifier;

• reqLen: the total number of characters in the request,

including parameter names and values.

While one might devise more sophisticated techniques to type

request parameters, HTTP requests have a very weak structure

and it is hard to come up with general yet accurate typing

techniques which could be used without interacting with the

server multiple times [37]. Avoiding this, in turn, is important

for the online detection of sensitive requests.

2) Textual: This category of features captures textual char-

acteristics of HTTP requests and is based on a small manually-

curated vocabulary of keywords V that may occur in the re-

quest, resulting from a manual inspection of sensitive requests

from a sample of real-world websites considered in our dataset.

More specifically, we only consider binary features of the

following forms:

• wordInPath, where word ∈ V means the presence of

the string word in the request path;

• wordInParams, where word ∈ V means the presence

of the string word in any parameter name of the request.

The vocabulary V includes the following 21 keywords,

which have been selected as possible signals of sensitive

requests, according to common sense and a preliminary inspec-

tion of the part of our dataset which is reserved for training:

create, add, set, delete, update, remove, friend, setting, pass-
word, token, change, action, pay, login, logout, post, comment,
follow, subscribe, sign, and view.

3) Functional: This category of features indicates the

HTTP method associated to the request. We consider just the

following two binary features:

• isGET: the HTTP request method is GET;

• isPOST: the HTTP request method is POST.

There are no additional alternatives, because our dataset only

includes GET and POST requests.

B. Data Exploration

Before diving into the core stage of the machine learning

pipeline, in this section we describe an exploratory analysis of

our labeled dataset of HTTP requests, represented using the

set of features discussed above.

1) Structural: We start by investigating two representative

numerical features: numOfParams and reqLen. The former

counts the number of request parameters, while the latter

measures the request length, as specified above. Figure 1

depicts two box plots, one for each of the aforementioned

features, showing how those are distributed across the two

class labels. The average number of parameters of sensitive

requests is around 6.27, while for insensitive ones this is 3.43.

From Figure 1(a), it is evident that the median value (i.e., the

vertical bar inside the colored rectangle) of numOfParams
is significantly higher for sensitive than for insensitive HTTP

requests (i.e., 4 vs. 1). More generally, the inter-quartile range

of the values of this feature (i.e., the width of the rectangle)

is larger, therefore suggesting that sensitive HTTP requests

are characterized by a higher number of parameters. This is

still true even considering the presence of extreme values,

also called outliers, on both sensitive and insensitive requests,

which are represented as scattered dots outside the range

delimited by the two vertical bars in the plot.

Apparently, sensitive requests tend to be shorter than insen-

sitive requests on average (322 vs. 592 characters). However,

this is due to the presence of outliers, as shown in Figure 1(b),

which shift the average of insensitive requests towards higher

figures. In fact, the median request length – which is more

robust to the presence of outliers – is significantly larger for

sensitive requests (111 vs. 34 characters). This suggests that

the length of sensitive requests is somewhat more consistent

and bounded within a smaller range of generally higher values.

2) Textual: Figure 2 shows 20 out of the 42 features in

this category, and their ability in detecting sensitive HTTP

requests independently from the others. More specifically, each

individual plot refers to a textual (binary) feature; for each

of the two possible values this feature can take, a histogram

shows the ratio between sensitive and insensitive requests

having that specific value of the feature. For example, in the

top-left plot around 84.9% of the total number of requests

having no “create” keyword in their path are insensitive, and

the remaining 15.1% are sensitive. On the same plot, the

other histogram shows that about 38.6% of the total requests

having “create” keyword in their path are insensitive, and the

remaining 61.4% are sensitive.

It is worth noticing that features that do not seem highly

discriminant if examined alone may turn into good predic-
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(a) Distribution of numOfParams (b) Distribution of reqLen

Fig. 1: Distribution of two representative structural features across class labels

Fig. 2: Distribution of class labels across the top-20 most predictive textual features

tors when considered together with other features. Choosing

which features should be used for training a classifier –

also known as feature selection – is one of the core tasks

of machine learning [18], [25], and will be discussed later.

Still, a few preliminary observations can be made from the

plots in Figure 2. For example, most of the times a request

contains a term related to irreversible actions, such as “delete”

or “remove”, it is labeled as sensitive. Similarly, requests

containing authentication-related terms, such as “password”,

are also sensitive most of the times.

3) Functional: Finally, Figure 3 shows the distribution of

the two features isGET and isPOST across sensitive and

insensitive requests. We observe that about 30% of POST re-

quests are labeled as sensitive, while only 5% of GET requests

are sensitive. This is compliant to what one would expect,

because the GET method is intended to denote operations
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Fig. 3: Distribution of class labels across the two functional

features

which are both idempotent and safe. Note that the plots are

symmetric since our dataset contains only GET and POST

requests, i.e., if isGET = 0 then isPOST = 1, and vice versa.

C. Learning Binary Classifiers

We consider the following set of hypotheses to pick our

classifier f̂ from: Logistic Regression (LogReg) [38], Support

Vector Machines (SVM) [12], Decision Trees (DT) [6], Ran-

dom Forests (RF) [20], [5], and Gradient Boosted Decision

Trees (GBDT) [17].

Since no major data preprocessing is needed, we start by

splitting our original dataset D into two distinct portions: Dtrain

and Dtest. The former accounts for 90% of the total instances

in D, whereas the latter contains the remaining 10%. Due

to severe class imbalance between sensitive and insensitive

requests (16% vs. 84%, respectively), we use stratified random

sampling to perform the splitting [27]. This way, we guarantee

that instances in both Dtrain and Dtest follow the same class

distribution of the one observed on the whole dataset D, which

reduces the selection bias.

To choose between different hypotheses, as well as different

sets of features and hyperparameters6 within each individual

hypothesis, we rely on a standard technique known as nested
cross-validation [11] performed on Dtrain, in combination with

a common evaluation metric, which is robust against class

imbalance, i.e., ROC AUC [16]. Once the best-performing

model is chosen using the methodology above, we evaluate

it on the independent, held-out, test set Dtest. Eventually, the

final classifier f̂ is obtained by re-training the best model on

the whole original dataset D.

D. Offline Evaluation

We conducted our experiments using the implementations

of the hypotheses we focused on (i.e., LogReg, SVM, DT,

6A hyperparameter is a parameter whose value is set independently of the
learning process, e.g., the number of trees of Random Forest. By contrast,
the values of the parameters defining the hypothesis result directly from the
training step.

LogReg SVM DT RF GBDT
0.907

(± 0.03)
0.906

(± 0.03)
0.882

(± 0.02)
0.932

(± 0.02)
0.930

(± 0.02)

TABLE I: Avg. (± std. dev.) ROC AUC scores after nested

cross-validation on Dtrain

RF, and GBDT) as provided by the Python scikit-learn7

package for machine learning.

In Table I, we report the performance obtained by each

hypothesis in response to a 10-fold nested cross-validation run

on Dtrain. The best-performing model is RF, which reaches the

maximum value of ROC AUC at 0.932.

We choose RF and test three different values of the hy-

perparameter controlling the number of trees of the forest:

100, 500, and 1,000. From our experiments, the best value of

this hyperparameter is 500. At the same time, we select the

subset of most likely relevant features. To do so, we extract

the subset of features X (i) ⊆ X of size i with the highest chi-

squared test statistic against the class label. We test different

values i ∈ {5, 15, 25, 35, 45, 49}, where 49 corresponds to the

number of initial features, and the best classification perfor-

mance is obtained with X (45). The four discarded features are:

changeInParams, passwordInPath, payInPath, and

viewInParams. In Section IV-F, we elaborate more on this

and how to rank features according to their importance.

To further validate the quality of our learned RF classifier

trained on the entire Dtrain (using the set of features and

hyperparameters selected with the method above), we measure

its performance on Dtest, i.e., the portion of dataset initially

held-out for testing. Accounting for 10% of the whole dataset,

Dtest contains 583 instances. The ROC AUC score obtained

by our RF classifier on this test set is 0.924, a value which is

perfectly compliant with the estimate computed using nested

cross-validation (0.932).

In addition to the ROC AUC score, we also report three

other standard performance metrics: precision, recall and F1,

which are defined on top of the number of true positives (tp),

true negatives (tn), false positives (fp) and false negatives (fn)

produced by the classifier. Precision measures the fraction

of truly sensitive requests out of all the requests that are

labeled as sensitive by the classifier. Instead, recall measures

the fraction of truly sensitive requests that the classifier is

actually able to predict:

precision =
tp

tp + fp
·

recall =
tp

tp + fn
·

One way to aggregate the effect of both measures into a

single score is to compute F1, which is the harmonic mean of

precision and recall and is defined as follows:

F1 = 2 · precision · recall
precision + recall

·

7http://scikit-learn.org/
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Overall, our best-performing RF classifier achieves the

following results in terms of the three metrics discussed above:

precision = 0.78, recall = 0.67, and F1 = 0.72. We can thus

observe it slightly favors accurate predictions (i.e., almost 80%

of the requests it labels as sensitive are indeed sensitive),

although this comes at the cost of possibly missing a few

sensitive instances. Other classifiers might exhibit higher recall

scores, i.e., higher coverage of sensitive requests, but the

alternative models we tested had all lower values of F1.

E. Comparison with Baselines

We provide a comparison between the performances of

our machine-learned classifier and those obtained by two

baselines proposed in the literature [26], [30]. Both of them

use heuristics based on common sense arguments to detect

sensitive HTTP requests, but were not actually tested against

a ground truth.

The first baseline was proposed by Mao et al. for the tool

BEAP [26]. The authors propose the recipe summarized in

Table II(a) for identifying sensitive requests, which exploits

four features: the request method, the protocol, the presence

of cookies (session or permanent) and the presence of the

Authorization header. The second baseline was intro-

duced by De Ryck et al. for the tool CsFire [30]. The heuristic

is described in Table II(b) and is based on three features:

the request method, the presence of request parameters and

the fact was the request was user-initiated. For example, the

authors indicate a click on a link as an example of a user-

initiated request. However, notice that links can be clicked by

JavaScript as well, so it is unclear how user-initiated requests

can be reliably identified. We discuss below how we addressed

this issue in our comparison.

To provide a fair comparison between our machine-learned

classifier and the two heuristics above we proceed as follows.

First of all, we use Dtest as our testbed. Then, we re-implement

the proposed heuristics and we compute the same metrics used

to assess our classifier, i.e., precision, recall, and F1.

We start by discussing the comparison with BEAP. Though

its heuristic is straightforward to implement, there is a com-

plication due to the distinction between session cookies and

permanent cookies, which we did not track in our dataset. To

overcome this issue, we use a probabilistic approach: whenever

we find a GET request in Dtest, we simulate the presence

of session cookies with probability p and that of permanent

cookies with probability (1 − p). We test the performances

achieved by the heuristics for different values of p, i.e.,

p ∈ {0.0, 0.1, . . . , 0.9, 1.0}, and we pick the value which leads

to the highest F1 score. In our experiments, the heuristics

reaches its highest performances when p = 0.0, i.e., when all

the GET requests are marked as insensitive. As to CsFire, we

apply the very same approach to simulate whether an HTTP

GET request without parameters was user-initiated or not. The

heuristic reaches its highest performance when p = 1.0, i.e.,

when all the GET requests with no parameters are marked as

insensitive. Figure 4(a) and 4(b) show how the F1 scores of

BEAP and CsFire change when varying the value of p.

(a) BEAP (b) CsFire

Fig. 4: F1 scores when varying the probability p

Fig. 5: Top-10 most important features derived from our RF

classifier using Gini impurity

Table III reports the computed validity measures of the

approaches we tested. We observe that the heuristics im-

plemented in BEAP and CsFire reach a very high recall,

but their precision is extremely low: too many insensitive

requests are marked as sensitive by these solutions, which

produce an unacceptably high number of false positives for

practical use cases. Indeed, previous research identified major

usability issues in these defense mechanisms due their high

misclassification rate [13]. Our classifier, in turn, strikes a

much better balance between precision and recall, as testified

by its remarkably higher F1 score.

F. Feature Importance

As a by-product of our learned RF classifier, we can also

derive a ranking of feature “importance”, i.e., a list of the

most predictive features. There are several ways to compute

feature importance; in this work, we use the importance score

as provided by the scikit-learn package, which in turn

implements it using Gini impurity [6]. Figure 5 shows the top-

10 most important features derived from our RF classifier.

We can observe that the two most important features are

reqLen and numOfParams, followed by the two features

encoding the request method. This indicates that structural

and functional features alone are already good predictors of

sensitive requests. Still, few textual features are highly ranked

as well, somehow suggesting that natural language signals can

also be useful, although their effectiveness strongly depends

on the manually-chosen vocabulary of keywords. To overcome

this limitation, as future work we plan to investigate more
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GET POST
HTTP HTTPS

sensitivesess_cookies insensitive sensitive
perm_cookies insensitive
Authorization sensitive

(a) BEAP

GET POST
params no_params

sensitiveuser_init sensitive insensitive
not_user_init sensitive

(b) CsFire

TABLE II: Schemas of the heuristics used by BEAP [26] and CsFire [30] to identify sensitive requests

Classifier Precision Recall F1

BEAP 0.30 0.89 0.45
CsFire 0.20 0.97 0.33
RF 0.78 0.67 0.72

TABLE III: Validity measures for the tested classifiers

advanced NLP techniques to build our reference vocabulary

of terms from an independent dataset of HTTP requests.

V. MITCH: DESIGN AND IMPLEMENTATION

In the previous section, we showed that machine-learned

classifiers can be used to accurately identify sensitive HTTP

requests, hence they can be leveraged as a useful building

block for penetration testing tools like Burp and ZAP, in

particular to assist users in finding where CSRF proof of

concepts should be generated and manually tested.

We now make a further step forward by presenting Mitch,

the first tool for the automated black-box detection of CSRF

vulnerabilities. Mitch is a browser extension designed on top

of our best-performing classifier, trained on the full dataset we

collected. The key idea of Mitch is simple and reminiscent of

traditional manual techniques for CSRF detection like those

advocated in the OWASP Testing Guide8, but the details of

its design are tricky and important for the effectiveness of

its automated approach, which we experimentally assess on

existing web applications.9

A. Key Idea and Challenges

Mitch assumes the possession of two test accounts (say,

Alice and Bob) at the website where the security testing is

to be performed. This is used to simulate a scenario where

the attacker (Alice) inspects sensitive HTTP requests in her

session to force the forgery of such requests in the browser of

the victim (Bob). Having two test accounts is crucial for the

precision of the tool because if the forged requests contain

something which is bound to Alice’s session, then CSRF

against Bob may not be possible. For example, if a website

defends against CSRF through the use of an unpredictable

user identifier, then Alice’s requests will be rejected in Bob’s

session. The use of two test accounts for CSRF detection has

already been advocated in previous work [34] and is part of

traditional manual testing strategies.10

8https://www.owasp.org/index.php/Testing for CSRF (OTG-SESS-005)
9We make Mitch available online at https://github.com/alviser/mitch
10https://support.portswigger.net/customer/portal/articles/

1965674-using-burp-to-test-for-cross-site-request-forgery-csrf-

After installing Mitch in her browser, the security tester

first navigates the website as Alice: for every HTTP request

detected as sensitive, Mitch stores the content of the corre-

sponding HTTP response. After completing the navigation,

Mitch uses the collected sensitive HTTP requests to generate

new HTML elements in the extension origin which allow for

replaying them. The security tester then authenticates to the

website as Bob and Mitch exploits the generated HTML to

automatically replay the detected sensitive requests from a

cross-site position, which simulates a CSRF attack. Finally,

the responses collected for Alice and Bob are compared: if

a response received by Bob “matches” the one received by

Alice, it means that Alice was able to forge a valid request

for Bob’s session, hence the attack is considered successful

and Mitch reports a potential CSRF vulnerability.

This simple idea brings up a number of challenges for the

automation process:

(C1) Changes in HTTP responses: Defining a suitable notion

of matching HTTP responses for Alice’s and Bob’s

sessions is generally hard, because HTTP responses

may include dynamically generated elements, which

might realistically differ even when the same idempotent

operation is performed multiple times.

(C2) Changes in session state: Since the state of Alice and

Bob at the website might be different, matching the

response received by Bob against the response received

by Alice might be an improper way to detect a CSRF

vulnerability. For instance, Bob might not be able to

perform a sensitive operation because it does not have

access to the file foo, yet a CSRF attack would work

if it targeted the file bar.

(C3) Classification errors: Even a very accurate classifier

might incorrectly mark an insensitive request as sensi-

tive. In this case, there is no CSRF vulnerability and the

presence of matching responses for Alice’s and Bob’s

sessions should not raise an alarm.

Clearly, there is no completely accurate way to deal with

all these issues, yet one can find useful heuristics which

successfully work in many practical cases, as we show in our

experimental evaluation.

B. CSRF Detection Algorithm

We start by discussing how we tackled the three challenges

presented above to minimize the number of false positives and

false negatives in Mitch:

(C1) Changes in HTTP responses: Rather than relying on

complex techniques to detect matching HTTP responses,
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Mitch builds on a notion of dissimilar HTTP responses.

In general, the dissimilarity of HTTP responses is much

easier to check than their similarity, e.g., due to the

use of different status codes or content types to denote

failures (for example, status codes 401 and 403 are typ-

ical ways to denote unauthorized access). When Bob’s

response is dissimilar from Alice’s response, it is likely

that Alice’s request failed in Bob’s session, which might

indicate the use of a CSRF protection mechanism.

(C2) Changes in session state: When comparing the response

received by Bob against the one received by Alice, Mitch

does not immediately consider their dissimilarity as a

definite evidence that the request of Bob had a different

outcome than the one of Alice due to the use of a CSRF

protection mechanism. Rather, since different outcomes

might come from a difference in the state of Alice’s and

Bob’s sessions, Mitch also replays the original request

of Alice in a fresh Alice’s session: if the new response

received by Alice is dissimilar to the original one, it is

likely that session-dependent information is required to

process the request, which might indicate the adoption

of an anti-CSRF token.

(C3) Classification errors: To detect potential false positives

produced by the classifier, Mitch replays the original

request of Alice without first authenticating to the web-

site, i.e., outside any session: if the received response

is dissimilar from the original one, then there is addi-

tional evidence that the requested operation required an

authenticated context to be performed, which confirms

that there exists potential room for CSRF.

More formally, Mitch is based on the notion of traces. A

trace Ti is a set of pairs (r, s), where r is an HTTP request

and s is the corresponding HTTP response, with the constraint

that all the requests in Ti are sent in the same authentication

context i. We only consider three possible authentication

contexts: a for Alice, b for Bob and u for unauthenticated.

We also assume that all the requests occurring inside a trace

are pairwise distinct and we write Ti[r] = s when (r, s) ∈ Ti

to improve readability.

The vulnerability finding algorithm implemented in Mitch

is shown in Algorithm 1. Given a set of sensitive requests

Reqs, the algorithm returns a set of candidate vulnerabilities

Cand by processing the traces Ta, T ′
a, Tb and Tu as mentioned

in the previous informal overview. Specifically, the algorithm

works by first building a set of candidate vulnerabilities, based

on sensitive requests which produce dissimilar responses in

Alice’s session and in the unauthenticated context, which

confirms that an authenticated context is required (C3); can-

didates are then discarded if request replay attempts fail in

both Bob’s session (C1) and a fresh Alice’s session (C2),

i.e., the corresponding responses are dissimilar from the one

originally received by Alice, which suggests the adoption of

anti-CSRF defenses. The algorithm is parametric with respect

to the definition of response dissimilarity �, whose current

implementation is discussed in the next subsection.

Algorithm 1 CSRF Detection Algorithm

1: procedure FINDCSRF(Reqs, Ta, T
′
a, Tb, Tu,)

2: Cand← ∅
3: for r ∈ Reqs do
4: if Ta[r] � Tu[r] then � See point (C3)

5: Cand← Cand ∪ {r}
6: for r ∈ Cand do
7: if Ta[r] � Tb[r] then � See point (C1)

8: if Ta[r] � T ′
a[r] then � See point (C2)

9: Cand← Cand \ {r}
10: return Cand

C. Implementation

Figure 6 summarizes the architecture of Mitch, which is im-

plemented in JavaScript as a browser extension. We employed

sklearn-porter11 to export the trained RF classifier as a

JavaScript function. The current implementation of Mitch is

only compatible with Mozilla Firefox, because it is the only

browser whose extension system provides native facilities to

access the body of HTTP responses as of now.

Mitch currently builds on the following definition of re-

sponse dissimilarity �.

Definition 3 (Dissimilar Responses). Two HTTP responses s
and s′ are dissimilar, written s � s′, if and only if they satisfy
any of the following conditions:

1) their status code is different;
2) their content type is different;
3) their content type is text/html, but the length of their

payloads differs of more than 1%;
4) their content type is text/json, but their payloads

validate against different JSON schemas;
5) their content type is neither text/html nor

text/json, but their payloads are different.

We observed that this definition works well on existing web

applications, since we noticed that the first, the second, and

the fourth clauses are very popular patterns to discriminate

between success and failure in the wild. Yet, we do not exclude

that further improvements are possible: in particular, we notice

that the empirical threshold used in the third clause might need

to be adjusted after a more extensive experimental analysis.

The threshold we chose is motivated by the observation that

the difference between the HTML sent to authenticated users

and the HTML sent in unauthenticated contexts is typically

high, e.g., because a private area is shown in the former case,

while a login page is shown in the latter case. Instead, the

difference in the HTML sent to two different authenticated

user is much lower on average. By keeping a small threshold

in the third clause, it is likely that a request which requires

authentication is initially added to the set of candidates and

is only kept there if there is strong evidence that the replayed

requests succeeded. Hence, we started from this intuition and

11https://github.com/nok/sklearn-porter
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Fig. 6: Mitch architecture

performed preliminary tests on 5 websites to come up with the

1% threshold: we then empirically observed this generalized

well to other websites and applications, based on the number

of false positives and false negatives. We still acknowledge

that different approaches may be worth exploring in the future

after a more extensive experimental evaluation.

D. Discussion

Observe that, in principle, the human component of Figure 6

could be entirely replaced by an automated crawler for website

navigation. The current Mitch prototype does not include such

component for simplicity, but we plan to study its inclusion in

future releases to fully automate the CSRF detection process.

Moreover, Mitch is designed to be modular: its performance

can be further improved in different ways, e.g., by improving

the ML classifier or by revising the response dissimilarity

definition used in the CSRF detection algorithm.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of Mitch in

detecting CSRF vulnerabilities. In particular, we show that

the number of false positives and false negatives returned by

Mitch is remarkably low and amenable for a practical use.

A. Methodology

Mitch produces a false positive when it returns a candidate

CSRF that cannot be actually exploited. This is something

relatively easy to detect by manual testing, e.g., using Burp,

though this process is tedious and time-consuming. Unfortu-

nately, notice that it is not possible to reliably identify when

Mitch produces a false negative, because this would require

to know all the existing CSRF vulnerabilities. To estimate this

important aspect, we keep track of all the sensitive requests

returned by the machine learning classifier embedded into

Mitch and we focus our manual testing on those cases. We

think this is a very reasonable choice to make the analysis

tractable, because we showed in Section IV-D that the classifier

performs well using standard validity measures.
Our experimental evaluation does not try to ensure full

coverage of all the security-sensitive functionalities. Coverage

is clearly an important aspect of practical security, yet it is

orthogonal to the choice of the machine learning classifier

and the CSRF detection algorithm implemented in Mitch,

which are the two key components of our approach. Since our

current prototype does not include any crawler component, we

only performed a relatively short navigation session in all our

experiments without any ambition of targeting full coverage,

yet doing our best to test a number of significant features. We

applied in our experiments the same ethical guidelines reported

in Section III-D.

B. Assessment on Existing Websites
To test how effective is Mitch on existing websites, we

sampled 20 websites from the Alexa Top 10k ranking. We

only considered websites with single sign-on access via a

major social network website, so we could leverage just two

existing social accounts to perform our security testing. We

acknowledge that the use of social single sign-on might have

excluded some website categories from our analysis, e.g., e-

banking, yet there are clear ethical reasons why such tests have

not been performed. Still, in the next section we test Mitch on

security-sensitive web applications including e-shops, which

we could install and run locally, with positive results.
Overall, Mitch found 191 sensitive requests and reported 47

potential CSRF vulnerabilities: we were able to immediately

exploit 35 of them, exposing major security issues in a few
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Website Sensitive Requests Detected CSRFs fp fn
9gag.com 10 3 1 0
ask.fm 16 0 0 0
askubuntu.com 16 0 0 0
bombas.com 2 1 0 1
brilio.net 2 1 0 1
eprice.it 11 3 0 3
flixbus.com 4 1 1 0
funnyjunk.com 17 8 2 2
gsmarena.com 3 3 0 0
imdb.com 10 0 0 0
imgur.com 12 3 3 0
indeed.com 8 4 0 0
instructables.com 11 4 0 0
mocospace.com 7 5 2 0
pornhub.com 13 2 1 0
smokecartel.com 5 2 0 0
starnow.com.au 8 4 0 0
tomshardware.com 13 1 1 0
wish.com 11 0 0 0
yelp.com 12 2 1 0

TOTAL 191 47 12 7

TABLE IV: CSRF detection on existing websites

cases. We estimated only 7 false negatives in total, which

means that our heuristics are accurate enough to capture most

of the vulnerabilities. These numbers lead to the following

online validity measures: precision = 0.74, recall = 0.83 and

F1 = 0.78. The full breakdown on the individual websites is

shown in Table IV and commented in the rest of the section.

1) Description of the Attacks: Many of the attacks we found

targeted the social functionalities of the websites we tested,

like casting votes on public contents, adding or removing items

from favorite lists, and posting comments under the identity of

the victim. Most of these attacks may thus affect recommender

systems, lead to social embarrassment, and compromise user

reputation at scale. Even worse, we were also able to find

a number of nasty attacks which seriously compromised the

website functionality; we responsibly disclosed all the vulner-

abilities to the respective website owners. We discuss below

the most interesting cases.

a) Bombas: Bombas is an e-commerce website selling

socks. It provides a functionality to store a list of shipping

addresses to simplify purchases, so that shipping details do

not need to be entered for each transaction. The form used

to store a new shipping address is vulnerable to CSRF, so an

attacker can force any address into the victim’s account to

hijack deliveries. Notice that the latest added address is the

one which is used by default, which makes the attack even

worse in terms of practical impact.

Remarkably, Bombas is a customer of Shopify, which is

a major e-commerce platform, so this attack may also affect

many other websites. We reported the issue to Shopify, which

acknowledged the attack and is working on a fix, but marked

our report as duplicate due to the existence of a previous

independent disclosure.

b) Indeed: Indeed is one of the biggest websites hosting

job offers. Registered users can send their CVs and apply to

different open positions in the world. We found three CSRF

vulnerabilities which give an attacker the ability of fully man-

aging the job offers associated to the account, including the

possibility of storing new offers and archiving existing ones.

Indeed also suffers from a CSRF vulnerability on the form

used to set user preferences, which can be used to severely

affect the visibility of job offers. An attacker can exploit this

vulnerability to hide job offers, for instance by restricting the

search radius and changing the desired publication date for

displayed offers.

We find these vulnerabilities particularly interesting, be-

cause Indeed is making wide use of anti-CSRF tokens and

all the vulnerable forms have their own token. However, it

seems that not all the tokens are correctly checked by the

website, which may suggest a manual, error-prone placement

of the tokens. More generally, this shows that checking the

presence of anti-CSRF tokens is not sufficient to say that a

website is protected against CSRF, and that the actual website

behavior should be tested instead. The security team of Indeed

acknowledged the issue and rewarded us $100 for the finding.

c) Starnow: Starnow is an Australian website designed

to discover new talents, such as singers and actors. Users who

are interested into pursuing an artistic career can register to

the website to get access to a number of auditions and job

interviews. The first two CSRFs we found allow an attacker

to arbitrarily manipulate the watchlists of authenticated users,

thus compromising a functionality offered by the website.

There are however two much worse attacks. A CSRF

vulnerability affects the form used to store the phone number

associated to user profiles: this can be used for scams or to

disrupt the functionality of the website, e.g., by making im-

possible to contact the victim for an audition. It is interesting

that the request used to set the phone number contains an anti-

CSRF token, which however is not checked by the website:

this confirms that this kind of mistakes is not confined to

Indeed, but is apparently more widespread.

The last CSRF vulnerability is definitely the most severe

one, because it affects the form used to set the email address

of user profiles. By exploiting this vulnerability, the attacker

can set the victim’s email address to her own one and then

use the password reset functionality of Starnow to get a fresh

password for the victim in her inbox, thus taking possession

of the victim’s account.

d) Instructables: Instructables is a website where users

can upload instructions on how to carry out specific tasks.

We found four CSRF vulnerabilities on the website, which

grant a wide number of capabilities to the attacker: adding

a topic to follow, adding a user to follow, posting comments,

and changing the personal email address. The last vulnerability

is particularly concerning because the attacker can change the

victim’s address with her own and claim the victim’s password,

thus leading to account takeover. The owners of Instructables

acknowledged the problem and implemented a fix.

e) Brilio: Brilio is an Indonesian website where people

can get paid for the engaging content they post. We confirmed

a vulnerability in the user settings page. This page contains,

along with the usual personal details, the user payment details
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in the form of a bank account number. An attacker could thus

force the payment details of an unsuspecting victim to her own

bank account and redeem the victim’s earnings.

2) False Positives: Overall, Mitch reported only 12 false

positives in the 20 websites we tested. We think this is a

strong result and it was easy to identify these spurious cases by

manual testing. Still, it is interesting to investigate the presence

of patterns which lead to false positives.

The most troublesome pattern we found is the use of forms

to customize user preferences. In these cases, the HTML page

returned to Alice and Bob is typically the same even when

settings cannot be changed by cross-site requests, because set-

ting pages are often account-independent and failures are only

reported occasionally via JavaScript, which is unnoticeable in

the static HTML: this scenario led to the introduction of 4 false

positives. We then had 2 false positives due to the presence

of operations which could be replayed by Alice, but not by

Bob: we think these cases are difficult to avoid, because there

is no way to understand whether the failure is due to the state

of Bob, e.g., the resource accessed by Alice is unavailable to

Bob, or to the implementation of anti-CSRF protection. We

finally had 3 false positives due to a misclassification of the

RF classifier and 3 false positives due to site-specific behaviors

which escape our heuristics.

3) False Negatives: We manually investigated all the 144

sensitive requests which were not marked as attacks by Mitch,

and we only identified 7 exploitable CSRF vulnerabilities. We

only focused on attacks which were quite simple to carry

out, i.e., without performing any complicated manipulation of

the request parameters, so we do not exclude there might be

other vulnerabilities which might be exploited by particularly

clever attackers. What we did was just checking manually

the outcome of the response received in Bob’s session when

replaying Alice’s requests from a cross-site position, using the

HTML elements generated by Mitch to send such requests.

The most problematic pattern leading to false negatives

that we found is the use of HTTP requests producing empty

responses, irrespective of the outcome of the requested opera-

tion. We observed 4 such cases in our experiments, which are

bound to escape most forms of black-box detection techniques.

As to the other cases, we had 1 failure due to our treatment

of JSON responses, 1 failure due to the need of changing the

value of a parameter containing an email address to make the

attack work, and 1 failure due to the possibility of performing

a security-sensitive action in an unauthenticated context, i.e.,

adding items to the shopping cart.

C. Assessment on Production Software

As a second set of experiments, we decided to run Mitch on

the testbed of open-source web applications used to evaluate

Deemon [28], which is the only automated detection tool for

CSRF vulnerabilities available nowadays. Notice that, since

Deemon only works on PHP applications whose source code

is available for dynamic analysis, we could not test it on the

closed-source websites from our first set of experiments. Out

of the 10 applications considered in the original testbed, we

Web application Sensitive Requests Detected CSRFs fp fn
Oxid e-shop 4.9.8 21 4 1 0
Prestashop 1.6.1.2 12 1 1 0
SM Forums 2.0.12 9 0 0 0

TOTAL 42 5 2 0

TABLE V: CSRF detection on production software

were only able to find 3 applications at the same version: Oxid

e-shop, Prestashop and Simple Machine Forums. No CSRF

vulnerability was detected by Deemon on these applications,

according to the experimental evaluation in [28]. The results

of the analysis performed by Mitch on the applications in their

default configuration are shown in Table V.

Mitch was extremely effective on the tested applications,

because it reported only 2 false positives and it was able to

catch 3 CSRF vulnerabilities on Oxid e-shop which were not

reported by Deemon in [28]. These vulnerabilities allow an

attacker to corrupt the integrity of the shopping cart, force the

use of vouchers and change the preferred payment method.

Remarkably, all the corresponding functionalities are supposed

to be protected by an anti-CSRF token, which however is

apparently not checked by the Oxid back-end. We reported

the issues to the Oxid security team, who acknowledged the

problem and worked on a fix.

VII. COMPARISON WITH OTHER TOOLS

In this section, we compare Mitch against other tools which

can be used for CSRF detection. We discriminate between

academic software based on published research and open-

source software freely available on the Web.

A. Academic Software

Deemon [28] is the first research tool for the automated

detection of CSRF vulnerabilities and it represents the aca-

demic work most closely related to ours. Deemon is based

on a security monitor implemented in the PHP interpreter,

hence it only works on PHP applications whose source code

is available for dynamic analysis, which is a major limitation to

its widespread adoption. An important goal of the present work

was overcoming this limitation, and it is remarkable that Mitch

was able to find vulnerabilities in web applications which were

previously analyzed with Deemon without exposing security

issues. The main drawback of Mitch with respect to Deemon

is its focus on visibly sensitive requests, which misses server-

side changes with no immediate feedback at the browser side.

This limitation is inherent to black-box detection approaches.

CSRF-checker [34] is a black-box detection tool for a class

of CSRF vulnerabilities, called authentication CSRF, which

affect web authentication and identity management. This class

of CSRF vulnerabilities enables login CSRF attacks [2], which

authenticate the victim as the attacker, as well as attacks which

allow the attacker to take control of the victim’s account. There

are a few similarities between CSRF-checker and Mitch, most

notably the choice of hijacking HTTP requests sent under one

session to another session, but there are major differences as

well. CSRF-checker exclusively focuses on a specific class of

CSRFs affecting authentication, including login CSRFs, which
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are not covered by Mitch. Mitch, in turn, targets traditional

CSRFs which abuse existing authenticated sessions, hence the

overlap between the two classes of detected vulnerabilities is

fairly limited. Also, it is important to stress that CSRF-checker

is not based on machine learning or automated heuristics, but

it simply guides the human tester through the security testing

strategy. Human feedback is required both to detect sensitive

requests and to detect the success or failure of the performed

operations in the two sessions.

B. Freeware and Open-source Software

Penetration testers have been using a range of different

tools to detect CSRF vulnerabilities in web applications. Based

on an extensive research on blogs, forums and resources for

security practitioners, including the OWASP Testing Guide,

we classified existing tools in the following categories:

1) intercepting proxies: these tools allow penetration testers

to intercept and modify arbitrary HTTP traffic, which

can be used for an essentially manual detection of web

vulnerabilities, including CSRF. Popular tools in this

category are Burp, ZAP, and WebScarab;

2) exploit generators: these tools simplify the generation

of proof of concepts for attack finding, based on human

guidance on the set of HTTP requests which need to be

tested for CSRF. Examples tools in this category include

CSRFTester and pinata-csrf-tool;

3) web application scanners: these tools automatically de-

tect a range of web application vulnerabilities, including

CSRF, based on different heuristics. Scanners supporting

modules for CSRF are Arachni, Skipfish, and w3af.

Our work improves on 1) and 2) by providing effective

automated techniques for the detection and the exploitation of

sensitive HTTP requests, as opposed to manual investigation

and testing. The most important advances over 3) are instead

the use of machine learning for sensitive request detection, a

more sophisticated CSRF detection algorithm and a systematic

evaluation of the performance of our detection tool, based on

the analysis of false positives and false negatives produced

on real web applications. Remarkably, we noticed important

design limitations in the opensource tools we analyzed, which

significantly downgrade their accuracy.

For example, Arachni only detects CSRF vulnerabilities on

forms requiring an authenticated context, hence it does not

capture CSRF attempts via links or AJAX. The rationale be-

hind this choice is likely the complexity of detecting sensitive

HTTP requests, which forced the developers of Arachni to

limit their tool to HTML elements which are potentially dan-

gerous, yet easy to catch syntactically (forms). It is instructive

that w3af suffers from a somewhat opposite design choice:

since any request which includes cookies and parameters is

deemed as potentially sensitive by w3af, the tool is affected by

a very large number of false positives, which led to the opening

of an issue on GitHub where a major redesign of the tool is

advocated12. Other issues we found are related to the choice

12https://github.com/andresriancho/w3af/issues/120

of deeming secure any HTTP request which includes an anti-

CSRF token, while we observed several cases where tokens

are not checked at the web application back-end, and to the

use of just a single authenticated session, which loses precision

when user-dependent secrets happen to thwart CSRF attempts.

In the end, preliminary tests with existing web application

scanners on simple examples returned a high number of false

positives and false negatives, which is in line with the findings

of previous research work which showed the ineffectiveness

of such scanners for CSRF detection [3], [15].

VIII. RELATED WORK

In the previous section, we discussed existing approaches to

CSRF detection, i.e., tools designed to detect CSRF vulnerabil-

ities in web applications. Here we report on additional related

work on CSRF defenses and machine learning for security. As

to other serious threats to web session security, we refer to a

recent survey on the topic [8].

A. Cross-Site Request Forgery

Robust defenses against CSRF were first proposed by Barth,

Jackson and Mitchell in their seminal paper [2]. Their propos-

als still represent the state of the art to protect web applications

against CSRF, which typically resort to tokenization and re-

ferrer checking to prevent such attacks. However, the research

community proposed also a number of alternative solutions

against CSRF, which did not find wide practical adoption. In

particular, it is worth mentioning several browser-side defenses

like RequestRodeo [21], BEAP [26], and CsFire [30], [31],

which share the idea of stripping session cookies from cross-

site requests to prevent CSRF. Other similar solutions instead

involve the browser’s user in the loop when suspicious cross-

site requests are detected [32]. These browser-side defenses

are useful to protect the victims of a CSRF attempt, but they

cannot assist security-conscious web developers who want to

identify potential room for CSRF in their web applications.

It is worth noticing that existing browser-side defenses are

all based on heuristics to detect sensitive requests, though

different heuristics are used by different tools. In Section IV-E

we showed that previously proposed syntactic detection heuris-

tics [26], [30] behave poorly with respect to the classifiers

trained in the present work; similarly, heuristics based on

runtime checks [31] proved insufficient to support legitimate

functionality of normal browsing according to previous re-

search [13]. Indeed, the misclassification rate of the heuristics

represented a major obstacle to the usability of these browser-

side solutions, which encouraged the development of server-

guided protection techniques like Allowed Referrer Lists [13]

and micro-policies [7]. We believe that our supervised learning

approach to the detection of sensitive HTTP requests could be

integrated in existing browser-side defenses against CSRF to

reduce their misclassification rate and improve their usability.

However, we remark that adversarial machine learning tech-

niques would be needed to train a classifier which is resilient

to evasion attempts [1]. This was not required for Mitch, which

is a CSRF detection tool designed for security testers and not a
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defense mechanism against CSRF like those mentioned above.

This implies that the audience of the two tools is different: for

example, false positives can be accepted by security testers, but

they cannot be accepted by browser users, because they would

break legitimate website functionality. Also, security testers

may be willing to let Mitch replay the same HTTP request

multiple times to collect additional data for CSRF detection,

but this approach would not be appropriate for browser-side

protection, given its overhead on web traffic and performance.

Finally, it is worth noticing the existence of model-based

techniques to verify protection against CSRF attacks in web

applications, e.g., via model-checking [29]. These approaches

operate on abstract models of the analyzed web applications,

which require access to their source code or extensive manual

testing to come up with a faithful representation. They thus

work better on relatively small systems with a clear formal

specification, like web protocols.

B. Machine Learning for Security

Machine learning has found a wide number of applications

to computer security, for instance in intrusion detection sys-

tems [33], malware detectors [24], and spam filters [19]. In the

context of web security, supervised learning techniques have

been proposed to automatically detect cookies which are used

for authentication purposes [9], [10]. This is useful to instruct

the browser into applying stronger security policies on them,

e.g., to prevent their improper disclosure.

IX. CONCLUSIONS AND FUTURE WORK

Mitch is the first machine learning solution for the black-box

detection of CSRF vulnerabilities. It exploits supervised learn-

ing techniques to accurately identify HTTP requests which

require protection against CSRF (sensitive requests) and relies

on heuristics to find attacks abusing them. We experimentally

showed that Mitch produces a small number of false positives

in practice, and that it is effective enough to expose new CSRF

vulnerabilities in existing websites and production software,

some of which escaped previous approaches. By using Mitch,

we observed that web application developers are aware of the

dangers of CSRF and typically try to implement appropriate

protection mechanisms, yet they accidentally leave room for

attacks, e.g., because they forget to check anti-CSRF tokens

which are sent back to the web application.

There are a number of avenues for future work. Adversarial

learning is an active research area whose main goal is design-

ing classification algorithms which are robust to the presence

of attackers who actively try to fool them into mispredic-

tion [1]. Our set of features and classifiers are not intended

to be resilient to adversarial manipulations. Indeed, this is out

of scope for our present endeavors, because our classifiers

are intended to assist penetration testers in finding CSRF

vulnerabilities and are not designed for CSRF attack detection.

We therefore consider adversarial detection of CSRF attacks as

an interesting direction for future work, i.e., developing online

detection systems for CSRF attacks which are robust against

sophisticated attempts to mask sensitive requests as insensitive

(or vice versa). In addition, we plan to further improve our

classifiers and heuristics to reduce even more the number

of false positives and false negatives reported by Mitch. In

this respect, we count on extracting new features from HTTP

requests that turn into useful predictors (e.g., more advanced

textual signals). Finally, we would like to leverage Mitch to

carry out a large-scale detection of CSRF vulnerabilities in

the wild, so as to get a better understanding of the severity

of CSRF attacks on the current Web. This would require

the construction of an automated crawler component to fully

mechanize the security analysis.
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