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Abstract—Practitioners who seek to defend password-
protected resources from online guessing attacks will find a
shortage of tooling and techniques to help them. Little research
suggests anything beyond blocking or throttling traffic from IP
addresses sending suspicious traffic; counting failed authentica-
tion requests, or some variant, is often the sole feature used
to determine suspicion. In this paper we show that several
other features can greatly help distinguishing benign and attack
traffic. First, we increase the penalties for clients responsible for
fail events involving passwords frequently-guessed by attackers.
Second, we reduce the threshold (and thus protect better) for
accounts with weak passwords. Third, we detect, and are more
forgiving of, login failures caused by users mistyping their
passwords. Most importantly, we achieve all of these goals without
needing any marker that indicates weak accounts, changing the
format in which passwords are stored (i.e. we do not store
passwords plaintext or in any recoverable form), or storing
any information that might be harmful if leaked. We present
an open-source implementation of this system and demonstrate
its improvement over simpler blocking strategies in various
simulated scenarios.

I. INTRODUCTION

In online password guessing, attackers send login requests to

a service to test if a guessed password is correct. Limited to a

fixed number of guesses, attackers compromise the maximum

number of accounts by using the most popular password as a

guess against all accounts, then using the second most popular

password, and so on. While attackers may not know exactly

which passwords are most popular at a particular service, they

can estimate using data from past breaches of other services.

The problem is significant. GitHub [21], Twitter [6], and

Apple [44] have revealed that user passwords had been

compromised in online guessing attacks. Microsoft (in 2016)

reported [9] “more than 4 billion credentials we detected

being attacked last year.” Akamai reports that 43% of all

login attempts across the Akamai platform in November 2017

were online guessing attempts [8]. In March 2019 Citrix

informed its customers that it had been victim of a successful

password spray attack [46]. The information security arm

of the UK’s GCHQ recommends [20] “defending against

automated guessing attacks by either using account lockout,

throttling, or protective monitoring.” Yet, while large web-

sites presumably implement some techniques to block online

password guessing, none detail precisely how. While there

†Work performed at MSR.

is a rich literature on strengthening user-chosen passwords

(mostly to protect against offline attacks), there is a scarcity of

research on tools to detect and block online guessing attacks.

This leaves operators of password-protected online services to

develop their proprietary defenses on their own.

The techniques most often referenced are a “three strikes”

type policy for locking individual accounts, or some strategy to

block traffic from an IP address, e.g., if it exceeds a threshold

number of failed attempts. Contrary to the popular view, “three

strikes” policies appear very uncommon at large providers

[25]. This may be due to the Denial of Service (DoS) attack

that they open, or the fact that poorly-configured clients can

generate many repeat fails with a cached incorrect credential

(see Section VII). IP address blocking also potentially suffers

from this difficulty: repeated fails from a benign client can

easily block a legitimate users’s access. Fixed thresholds

will also imply very different false positive to false negative

tradeoffs as the ratio of attack to benign traffic rises or falls

[22].

A further reason for reluctance to enforce “three strikes”

may be that the obvious measure of penalizing only distinct
failed guesses (thus not locking out clients that resend cached

credentials) is not entirely trivial in a distributed environment.

That is, if authentication requests are assigned in a round-

robin fashion among several authentication servers we can

recognize whether fails are distinct or not only if we store

some information on failed requests. This information must

be accessible to all servers, and (since successive requests

for the same username will not in general be handled by the

same server) cannot simply reside in short-term memory. Web

services that have user populations that run to hundreds of

millions may have thousands of servers to handle the load.

Crude though it is, there appears little better than IP

blocking in the available literature. Wordfence, a company that

protects Wordpress sites, offers the ability to configure rules-

based protections against guessing, but offers no guidance on

how thresholds might be set. Unfortunately, the hope that we

might use a supervised learning approach is complicated by

the difficulty of obtaining labels. Chio and Freeman write [12]:

“there is no reasonable way to present an individual request

to a reviewer and have that person label the request as bot

or not.” Uber account security team concurs [30]: “we never

know the ground truth.” Thus, supervised learning approaches
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appear inapplicable.

Effectively IP address blocking is a rules-based binary

classifier making a benign/malicious decision. If the only input

feature is the number of failed attempts, then it represents a

very crude defensive weapon as it assumes a sharp boundary

between attack and legitimate traffic. Attack traffic that doesn’t

exceed the threshold will be false negatives and legitimate traf-

fic that does will be false positives. Not only is this approach

dependent on an arbitrary threshold, but it hinges critically on

an assumed scarcity of IP addresses for an attacker and limited

overlap between the attack and legitimate IP address pools. If

an attacker does not have a shortage of addresses, and/or her

pool overlaps that of the legitimate population significantly, it

is clear that accuracy of a simple blocking approach suffers

greatly.

We don’t wish to rely on potentially brittle assumptions

about attackers. In this paper we show how additional features

can greatly assist the task of deciding whether an authen-

tication request should be blocked. We exploit the fact that

optimal failed-guess traffic from an attacker necessarily looks

very different from failed attempts from legitimate users. We

sketch the insight behind these features next, and then tackle

some of the difficulties in a naive implementation.

II. OVERVIEW OF APPROACH

First, to maximize per-guess success probability an attacker

should concentrate on the most common passwords. This

means that fail events with common passwords are strong

indicators that an attacker is involved. Second, a user account

with a weak password is much more vulnerable than one

with a strong password; it would make sense to protect those

accounts more. Third, users mis-remember and mis-type their

passwords often; we expect user-generated typos to be close in

typing-distance to the actual password. It would make sense

to penalize fail events that are close to the actual password

much less than, e.g., fail events with common passwords.

These are all rather obvious examples of features that might

improve a binary block/no-block decision. Equally obvious,

however, is that there are reasons that they are not currently

used: each of them appears to require information, which

cannot be stored openly without great risk (in the event of

an attacker gaining access to the server). We cannot store all

failed guesses as we would reveal information (e.g. typos that

are close to the actual password). We certainly cannot store

any information which reveals which accounts have weaker

passwords (since this would give an attacker a guide as to

where to invest effort). Finally, since passwords are stored as

salted-hashes we cannot determine whether a failed attempt

was close (and thus likely to be a typo) since all we can tell

by comparing hashes is whether the guess matches the actual

password or not. Thus, we have a frustrating situation. We can

identify features which appear very valuable in distinguishing

malicious from benign fail-event traffic, yet we cannot use

those features since they appear to require information that

cannot be safely stored without introducing new risk.

Our contribution in this paper is to offer techniques to

overcome these difficulties. We show how each of the features

identified can be used without introducing new risk. First,

we need to be able to identify frequently-submitted incorrect

passwords without storing information that might compromise

the incorrect passwords submitted when users make benign

errors. We do this using a probabilistic data structure known

as a binomial ladder filter [43] that identifies “heavy hitters”

without revealing information on less-frequent failed guesses.

Second, we show how to enhance protection for accounts

with weak passwords without storing any information about

the password strength. We do this by observing that block

decisions only need to be made when the submitted pass-

word is correct. We calculate a strength-dependent threshold

speculatively assuming the submitted password is correct. This

yields a low threshold when the submitted password is correct

and weak, a high threshold when it is correct and strong, and

is irrelevant when the submitted password is incorrect (since

login fails anyway). Third, we introduce a scheme to identify

login attempts that fail due to typos of passwords. We do this

without storing users’ passwords in plaintext or storing any

other information that might put users’ passwords at greater

risk than they will already face should the account database

be compromised. This is accomplished by making the key

observation that all decisions on whether a given fail is a

typo can be deferred until the correct password is presented

in an authentication request (and thus is available without any

additional risk). Since block decisions only have to be made

when the correct password is submitted we lose nothing by

suspending judgement on whether fail events are typos.

We introduce each of these features of our enhanced block-

ing algorithm in Section III. Since our algorithm employs

many features (rather than, e.g., a single fails-per-IP) we

must address the question of how they should be weighted.

E.g., should failing with a very common password guess be

penalized higher or lower than trying to access a non-existent

account? Here we point out that there cannot be a general

answer to the question of weighting features that does not

make very strong (and potentially brittle) assumptions about

attack traffic (and how it differs from benign). It is not safe

to assume that the attack traffic seen by a global service

like Facebook will resemble that of a mid-sized university or

regional bank and vice versa. Indeed, while some strategies

doubtless persist, it may not be safe to assume that attack

patterns seen by any service remain stable over time: resources

that were once scarce for an attacker may become more

plentiful, for example.

Thus, there is no universal “best” configuration of weights

in our blocking algorithm: how well any feature discriminates

attack traffic from legitimate varies from service to service

and over time. This isn’t, of course, particular to our approach;

e.g., the efficacy of simple IP blocking also varies enormously.

Fortunately, an approach by Herley and Schechter [22] shows

how to estimate the odds, P (x | mal)/P (x | ben), that

an observation, x, in authentication traffic is malicious. The

main assumptions are that certain features are stationary in the
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legitimate traffic. This appears applicable to our setting (e.g.,

the percent of users who mis-type a password is likely to be

stable over time). This allows us to estimate the weights for

our blocking algorithm from the received traffic.

We have designed, implemented, and tested a system mo-

tivated by these observations to attempt to identify guesses

before attackers are granted access to accounts and in so doing

prevent them from learning when their guesses are correct.

Our approach which is open source and publicly available

at https://github.com/microsoft/stopguessing/, adheres to the

principle that the security of a system should not rely on

the secrecy of the underlying algorithms— unlike opaque IP

blocking schemes we assume that attackers know every detail

of our system’s design.

III. FEATURES FOR ENHANCED BLOCKING ALGORITHM

We begin with today’s state of the art, used by a num-

ber of tools for protecting remote terminals from guessing

attacks [19], [15], [48], which blocks attempts from those IP

addresses that have exceeded a threshold T of recent login

failures. This existing rule can be summarized with the simple

blocking criterion:

I > T,

where I is a count of login attempts with invalid credentials.

While each technique we will introduce is in itself relatively

simple, the result of combining them all to create a new

blocking criterion may appear complex. To assist the reader,

we start with the equation above and highlight the changes

needed to accommodate each new technique.

A. Penalize frequently-guessed passwords

Blocking IP addresses that issue too many incorrect guesses

will limit the number of guesses an attacker can issue. Facing a

fixed budget of guesses, an attacker can maximize the number

of accounts compromised by guessing only those passwords

they expect to be most popular—choosing a small set of

passwords to guess. On the other hand, when legitimate users

make mistakes they rarely submit passwords that are among

those frequently-guessed in the past.

We do this by examining each failure to estimate how

frequently the provided password g has occurred among prior

failures (how often it is being used to guess). We introduce a

penalty function, φ(gi), which increases when the password

submitted in the failed attempt is among the most frequently

occurring incorrect passwords submitted in the past. In place

of an aggregate failure counter, I , we use the summation of

penalties for each failed login attempt
∑

i φ(gi).∑
i

φ(gi) > T

Next we will explain how to identify frequently-occurring

incorrect passwords, which typically result from attacks,

while minimizing the risk of storing information about less-

frequently occurring incorrect passwords, which may result

from user errors.

-10
101

-1 -2 -3 -4 -5 -6 -7 -8 9
10 10 10 10 10 10 10 10 10

Detect Reject

(In)frequency

Indifferent

Fig. 1: A frequency filter is used to examine a sequence of

values to identify frequently-occurring values while filtering

out infrequent ones. The filter should detect values that arrive

at a rate that exceeds the detection threshold (one in a million,

or 10−6, in this illustration) and should reject values that arrive

at a rate below the rejection threshold (one in fifty million,

or 2 · 10−8). It may detect or reject values that arrive at rates

between the two thresholds—a segment of the frequency range

called the indifference region. [This Figure is copied with

permission from [43].]

Identifying frequently-guessed passwords: Storing even in-

correct password guesses has risk, as these include nearly-

correct mistyped passwords as well as correct passwords for

users who provided an incorrect account name. An attacker

who breached the server might easily guess the correct pass-

word by observing typos that are very close in edit distance,

for example. The risk is not uniformly distributed across all

fail events: the passwords guessed most often by attackers will

be the most common failures, and there is no risk in storing

these. Thus, we would like to store accurate information on

the “heavy hitters” while storing no information at all on

the very infrequent fail events. A number of data structures

allow calculation and storage of “heavy hitters” [35]. We use

a binomial ladder frequency filter [43], since it gives strong

privacy guarantees. This is a privacy-preserving structure that

allows us to reliably identify frequently-occurring elements

without storing information that would allow identification of

infrequent ones. An example of the idealized performance of

such a filter is shown in Figure 1. Frequent elements (e.g.

those more common than 1 in 106 in Figure 1) are detected,

while infrequent elements (e.g. those less common than 1 in

5·107 in Figure 1) are rejected with very high probability. One

can think of the filter as a function with elements as input and

frequencies as output; it returns an accurate estimate when

the frequency is higher than one threshold and no information

when it is lower than a second threshold.

The reason for using a binomial ladder, as opposed to

maintaining deterministic counts of each hash or using a more

sensitive probabilistic data structure (e.g., a count-min sketch)

is the privacy guarantees it provides [43]. Maintaining the filter

is simple. Like a Bloom filter, a binomial ladder filter pairs

an array of N bits with a family of H hash functions used to

index into the array. When an element is added to the filter,

one of the associated bits in the array is set to one, while a

bit from the array not associated with the element is cleared

to zero. Elements are treated as frequent if the number of one

bits they are associated with exceeds a threshold T .
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B. Defend weakest accounts more

Accounts that employ the most frequently-guessed pass-

words are the most likely to be compromised by guessing

attacks, and so the threshold at which an IP address should

be blocked should be significantly lower for these accounts.

Conversely, accounts with rarely-guessed passwords are the

least vulnerable, and so may allow higher (less stringent)

blocking thresholds to reduce false positives; there is no need

to be particularly aggressive when the account is protected by

a password strong enough to withstand online guessing.

For our algorithm, we denote the correct password for an

account by c. We replace the fixed threshold T with a threshold

function T (c) which takes as input this correct password. The

threshold it returns should decrease with the expected number

of attempts needed to guess the password:∑
i

φ(gi) > T (c).

Since our blocking algorithm will only influence the outcome

of a login attempt when the entered password is also the

correct password for the account (i.e., g = c), we can

substitute the former for the latter:∑
i≤n

φ(gi) > T (gn). (1)

To see this, note that for each login attempt the password

provided by the client is either (a) correct or (b) incorrect. We

don’t need to make any decision about blocking in case (b).

Thus the calculation above, speculatively assuming that g = c,
will be correct in case (a) and irrelevant in case (b) since

login fails anyway. This allows us to give stronger protection

(i.e., lower threshold) to user accounts with weaker passwords

without storing any information whatever that distinguishes

the weak accounts from the strong.

While one could implement a threshold function T (gi)
by tracking the frequency of users’ actual passwords, this

presumes an attacker who has perfect knowledge of the

frequency of all user passwords. The frequencies used to

compute T (gi) using real users’ passwords would be helpful

to attackers if compromised. Instead, we will compute T (gi)
using our estimate of the most frequently guessed incorrect
passwords observed in previous login attempts. This frequency

more closely reflects the actual likelihood that a password

is one attackers are likely to guess rather than what they

should be guessing if they already knew the distribution of

users’ passwords. Further, if the most frequently guessed

incorrect passwords are those being guessed by attackers, this

information reflects what attackers already know (what they’re

already guessing) and would be of little value if compromised.

C. Penalize typos less than other failures

Mistyping a password will often result in a submitted

password g that is a short edit distance away from the correct

password c. While a few popular passwords are a short

edit distance away from each other, the probability that an

attacker’s incorrect guess will be a short edit distance from

the correct password is still quite small.

We incorporate this observation by adjusting the penalty for

submitting an incorrect password by a function, β(gi, c), that

calculates the edit distance between the password given in the

login attempt (gi) and the correct password (c), and returns a

penalty that is lower if the edit distance is small:∑
i≤n

β(gi, c)·φ(gi) > T (gn)

Computing the edit distance requires the plaintext of both

the incorrect and the correct password. Storing a user’s pass-

word in a format that allows for plaintext recovery would put

the password at greater risk, as could storing an incorrect

password that closely resembled the correct password. We

describe how we can identify login attempts that failed as the

result of a typo without putting users’ passwords at greater

risk in Section IV.

D. Ignore repeat account/password pairs

Attackers do not benefit from attempting to login to an

account with a password they have already learned to be

incorrect. There is thus little need to penalize login attempts

that repeat the same user identifier and password reported

as incorrect in a previous attempt. Conversely, the legitimate

owner of an account may repeatedly mistype a password

she thinks is correct but is not. Further, she may run client

software (e.g., an IMAP mail client, or a password manager)

that repeatedly attempts to login with a password that has

expired or was entered incorrectly in the first place. Since

counting a failure with a previously-seen user identifier and

password will penalize benign users, but not thwart attackers,

we can simply ignore these failures.

Thus, we want to ignore failures with an account-password

pair when we have already counted a failure for that pair. To

achieve this, for each account we maintain a fixed-size LRU

cache of recent failed password hashes. To detect pairs that

include a non-existent account identifier, we also maintain a

sketch (essentially an aging Bloom filter) of user identifier and

password pairs.

E. Treat invalid accounts differently

Depending on the deployment environment, an incorrect

account name may be stronger or weaker evidence of a

guessing attack than an incorrect password. For systems with

account identifiers that are effectively public (e.g., systems

with account IDs drawn from a dense space) attackers will

rarely guess an incorrect account identifier, whereas legitimate

users may mistype them. For systems with very private account

identifiers (e.g., email addresses for sites with a small private

user base) attackers may be much more likely to provide an

invalid account identifier.

To support different penalties for these different types of

failures, we separate failures into two subsets: the invalid-

account failures A and the invalid-password failures P .
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Invalid-account failures can then be assigned a penalty, rep-

resented as α, to parallel the β penalty for invalid-passwords

(unlike the β function, α is a constant since we do not identify

typos in account names).

α
∑
i∈A

φ(gi) +
∑
i∈P

β(gi, c) · φ(gi) > T (gn)

F. Account for prior successful logins

While someone who shares or obtains a user’s device might

try to guess that one account’s password, such attacks do not

scale beyond that one user. Thus, we can assume that if a

client has previously logged into an account in the past, it is

not likely attempting to do so as part of a large-scale guessing

attack. To detect repeat logins by the same client, we can

configure web clients with unique random cookies drawn from

a large space that act as client-identification keys. We will

reduce the blocking penalty by κ if a login attempt contains a

cookie proving that this client has authenticated successfully

in the past. To do this, we set w is 1 when a client’s cookie

was used in a previous login and 0 otherwise.

α
∑
i∈A

φ(gi) +
∑
i∈P

β(gi, c) · φ(gi)−κ · w > T (gn)

G. Offset failures with successes

Proxies or NATs may aggregate under a single IP address

a cluster of users within an organizational network, users on

a home network, or users who otherwise share a common

network access infrastructure. The expected number of benign

failures originating from an IP address will grow linearly with

the number of users who share that address.

We accommodate high-traffic IPs by offsetting the accumu-

lated penalties with credit γ for a carefully-selected subset of

successful login attempts, s, yielding the final criteria used by

our blocking algorithm:

α
∑
i∈A

φ(gi) +
∑
i∈P

β(gi, c)φ(gi)− κ ·w−γ · s > T (gn). (2)

The set of successful login attempts must be selected to limit

attackers’ ability to offset the penalties accumulated against

their IP addresses. For example, attackers might interleave

successful login attempts to accounts they control between

login attempts used to guess other accounts’ passwords. We

allow each account to provide only one credit per IP and

only a fixed number of credits per time period (e.g., three

per day). Services for which account creation is expensive,

such as enterprise accounts for employees and (to a lesser

extent) subscription services, can be generous in how they

count successful login attempts and how much offset credit

(γ) they provide. Services that have no defenses against mass-

account-creation, and no other way to estimate which accounts

are likely legitimate and which are suspicious for the purpose

of determining which may provide offset credits, may end up

with γ close to 0.

We have put all of the features together in a weighted-sum

(2). This form is convenient for use with a logistic regression

learning algorithm [18] or a log likelihood ratio test [49].

H. Additional Details

To avoid revealing which accounts are valid, password-

based authentication systems typically provide the same re-

sponse message for every failure, regardless of whether a

failure was caused by an invalid account or an incorrect

password. We assume the same response is also used when

blocking a suspected guess, even if the password is correct,

to avoid similar information leaks. This includes the timing of

the response; a different response time, for example, when

the username is invalid or when the guess is close to the

actual password would convey valuable information to an

attacker. Bortz et al [11] show how in-use usernames can be

distinguished from non-existent ones at many web services.

The just-in-time typo detection that we describe in Section

IV involves generation of public-keys and decryption, which

are obviously slower than simple hash comparisons. However,

since best-practice is to use an iterated or slow hash (to

deliberately slow an offline attacker), this burden is easily

accommodated and a constant response time given for all

requests.

IV. JUST-IN-TIME TYPO DETECTION

To solve the challenge of identifying which incorrect pass-

words are typos without keeping correct passwords around for

comparison, we make two observations.

First, we don’t need to identify typos immediately. When

an incorrect password is submitted, we will reject the login

attempt regardless of whether the client submitted a typo or

a completely different password. Thus, the only time we will

actually need to make a decision about whether to block a

login attempt or not is when the client submits the correct

password for an account. In the common case, a user who

submits a number of typos followed by her correct password

will do so from the same IP address. Rather than identify typos

immediately, we can identify a user’s past typos when she next

submits her correct password, and evaluate whether her login

attempt should be blocked using an analysis of whether those

past failures were the result of typos. In other words, we can

perform just-in-time detection of typos if we can keep a record

of the incorrect passwords a user has submitted in previous

login attempts.

Our second observation is that storing the incorrect pass-

words submitted to a user’s account need not increase risk,

even if the user’s account records become compromised in a

breach. So long as decrypting the failed passwords is no easier

than cracking the stored hash of the user’s actual password,

the additional information does not increase risk.

We associate with each user account a public/secret key pair

(p, s) used to encrypt incorrect passwords submitted in failed

logins. These keys are for the server’s use only; users and

their clients have no need or ability to access them. Rather,

the public key p is stored in the user’s account record and

incorrect passwords are logged encrypted with this public

key. The private key is itself encrypted and given the same

protection as the user’s (correct) password.
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As is common practice to protect against offline dictionary

attacks, we protect users’ passwords in the authentication

database by not storing them directly, but instead storing the

result of an expensive (typically iterated) hash function with a

salt. We call this the expensive hash. We diverge from common

practice by not storing the raw expensive hash, but by hashing

it one more time with a fast, inexpensive one-way hash to

create the stored hash. The stored hash is the hash that goes

into the authentication database and can be used later to verify

that a provided password is correct. Because the expensive
hash is not stored in the authentication database, we can use

it to encrypt the secret key s and store it in the authentication

database along with the stored hash of the user’s password.

Whether testing whether a candidate password is the correct

password for a user account, or testing whether the candidate

password can decrypt the secret key s, both tests require the

same work to perform; both require a computation of the

expensive hash.

Cracking the secret key used to store incorrect passwords

is no easier than cracking the password: both require guessing

the correct password and each guess requires computation of

the expensive hash function.

When a client attempts to login, we use the submitted

password to calculate the expensive hash and use the fast

hash to test if the password was correct. If it was, we use the

already-computed expensive hash to decrypt the secret key, use

that key to decrypt the passwords used in recently-failed login

attempts, perform our edit distance comparisons, and adjust

penalties for failures that were due to typos. Once the edit

distances have been calculated, we can erase our records of

the failed password attempts from long-term storage and erase

the plaintext password submitted by the client from short-term

memory (DRAM).

If a user resets her password without providing the old

password, she is assigned a new key pair and the record of

her previous incorrect passwords is lost.

The additional cryptographic operations required to track

typos will have little impact on performance, so long as

passwords are being protected by a reasonably expensive

hash function. Each login attempt with an incorrect password

causes at most two cryptographic operations: one to record the

incorrect password and one future operation to decrypt it so

that it can be compared to the correct password. In comparison,

the expensive hash function will typically be configured to

iterate enough to consume between 1 and 100 milliseconds

of a CPU core—lest it be too easy for attackers who might

compromise the hashed passwords to crack them. Thus, the

cost of public key encryption for typo detection, as with all

of the costs of our algorithms, are dwarfed by the cost of

executing an expensive hash function once for every login

attempt.

In our implementation, the choice of hash function and

the number of iterations are both configurable, allowing such

options as PBKDF2 [26] and scrypt [38], and backwards

compatibility with any function that a caller might choose to

provide.

V. SYSTEM, CONFIGURATION AND SIMULATOR

We built an open-source reference implementation of our

system which is available at https://github.com/microsoft/

stopguessing/.

A. Configuration

At every login attempt, successful or not, we observe a

collection of features x = (x0, x1, · · · , xM−1). The likelihood

ratio test says that we decide a login attempt is malicious (mal)

rather than benign (ben) when:

P (mal | x)
P (ben | x) =

P (x | mal)

P (x | ben)
· P (mal)

P (ben)
> 1. (3)

Making the common assumption that the features are indepen-

dent, i.e.

P (x | ben) =

M−1∏
i=0

P (xi | ben)

(and similarly for P (x | mal)) and taking the log we can test

the log likelihood instead of (3). That is, decide the request is

malicious when

M−1∑
i=0

ln

{
P (xi | mal)

P (xi | ben)

}
+ ln

{
P (mal)

P (ben)

}
> 0. (4)

Observe that the log likelihood ratio test has the same form

as the blocking algorithm (2). That is by associating the xi

with the features introduced in Section III we have a way

of calculating the weights α, β and so on. For example, the

weight for the binary feature indicating whether a cookie is

present or not would be

κ = − ln

{
P (cookie present | mal)

P (cookie present | ben)

}
.

Thus, the weights for the blocking algorithm depend on the

ratio of how probable an observation is attack traffic to how

probable it is in benign traffic.

Clearly, no fixed set of weights will be appropriate in all

settings. The value P (x | ben) will vary from service to

service. How likely a legitimate login request at Facebook is to

have a previously set cookie might not be an accurate guide

to the same observation at a bank. The values P (x | mal)
will vary even more. Some attackers may send many requests

against invalid accounts and others none at all. Thus, the

rates at which any observation occurs among the benign and

malicious requests probably varies from service to service.

Usernames are more-or-less public at sites like Facebook,

Twitter etc, but not at banks: so malicious fails using non-

existent usernames are probably far more common at the latter.

The rate at which typos occur probably depends on the fraction

of users who access using an app that caches the password,

as opposed to typing it at a web-page. Thus, even if we

measured how common a certain observation is at one site, we

cannot assume this value would also apply to others. Mostly

obviously, the amount and nature of attack traffic that a site

receives likely depends on the nature of the site, and might

fluctuate with time. Sites with the largest populations probably

581



receive attack traffic that is the aggregation of traffic from

many different attackers; smaller sites might receive attack

traffic from a single (or even at times no) attackers.

The approach we use estimates the weights in (3) directly

from the received traffic. It relies on the fact that failures

heavily outnumber successful logins in guessing attack traffic

and that the features used are relatively stationary in the benign

traffic [22].

B. Simulator

We built a simulator to allow evaluation of features

introduced in Section III. Simulations can be configured

to match the profile of the sire. Like the rest of our

system, our simulator is open source and publicly ac-

cessible. Most of the parameters of interest are set in

Simulator.ExperimentalConfiguration. This al-

lows variation of parameters such as the fraction of traffic that

comes from attackers, the amount of overlap between attacker

and benign IP address pools, the rate at which users forget

and commit typos, etc.

C. Simulating legitimate users

The simulator begins by creating accounts for legitimate

users, and so the first parameter required for simulation is

the number of user accounts to provision. We assign each

account’s password by selecting at random from a weighted

distribution of passwords provided to the simulator. By default,

we provided the simulator with the large publicly-available

distribution of plaintext passwords that was made public as

the result of a breach of the RockYou website [23], weighted

by the frequency of each password in the data set. Since

RockYou was a low-value account website for which users

may have chosen unusually weak passwords, and since one of

the best ways to protect a website is to ban the most common

passwords, we remove the 100 most common passwords from

the distribution. This accords with recent advice that very

common choices should be blocked [20] and the practice of

some large sites, e.g. Twitter and Microsoft [13].

We associate one IP address with each account at the

start of the simulation. Users’ IP addresses are either chosen

randomly from the IPv4 space or from a proxy. During IP-

assignment, we assign users to the current proxy until it

reaches a limit of users and then create a new one. We also

associate each account with a device cookie (secret) that the

user has previously employed to login to the service.

Not all users login at the same frequency. We compute the

frequency with which a user logs in (the relative probability

that user will be randomly selected for the next login) as the

inverse of a log normal distribution.

When a user attempts to login, we either randomly choose a

client IP address from one of the prior IP addresses employed

by that user or we generate a new one using the approach

above (15%). Similarly, with each login we either randomly

associate the client with a cookie the user has used before

(90%) or assign the user a new client cookie. We set a

maximum limit on the number of cookies and IPs per user

account.

When generating user’s login attempts we randomly intro-

duce user errors. For a fraction (by default one in 50) we

introduce typos, by making small changes to the password.

Since the confusion or typing difficulty that causes a typo

makes another typo more likely, we assign a probability (by

default 67%) that each typo is followed by a subsequent typo

shortly after (by default 7 seconds). We follow the last typo

in the resulting chain by the a login attempt with correct

password shortly after. All of these parameters are of course

configurable in the simulator.

For another fraction of attempts (by default one in 50),

we simulate a user typing an entirely-incorrect password, as

might occur if the user accidentally types a password used

for another service. We replace the correct password with one

chosen at random using the same probability distribution used

to assign passwords. As with typos, each such error is followed

by a subsequent occurrence of the same error with a greater

probability and then the correct password is submitted.

For yet another fraction of attempts, we simulate users

who mistakenly enter the wrong account name, replacing their

account name with another user’s at random. As with typos,

users have an increased chance (20%) repeating this mistake

shortly after until eventually sending the correct credentials.

For a very small fraction of attempts, we simulate an

automated client that tries to login repeatedly with an old

password. We first change the user’s password, then create a

chain of login attempts with the old passwords (by default one

every five minutes for 24 hours, for a total of 288), followed

by a chain of correct logins (one every five minutes for 24

hours) once the client has been given the correct password.

D. Simulating attackers

The simulator begins by assuming attackers control a spec-

ified (configurable) number of IP addresses. We assign a

fraction of attackers’ IP addresses from the set of IP addresses

in use by legitimate users, as attackers may control machines

also in use by legitimate users or behind the same proxy. These

IP collisions can make it impossible to differentiate attackers

correct guesses and users’ valid logins coming from the same

IP address. If the IP pools used by attackers and legitimate

users are entirely disjoint the task becomes much easier.

We simulate three different types of attacks. The first is a

descending-popularity attack (often called a statistical guess-

ing attack), in which the attacker guesses the most-popular

password against all known user accounts, then the next

most-popular, and so on. To simulate the strongest attacker

possible, we provide the attacker the actual distribution of

passwords assigned to accounts. We also simulate a weighted
attack, in which for each login attempt the attacker chooses

a password at random, with candidates weighted by their

popularity among users. Finally, we simulate a detection-
avoidance attack, a variant of the descending-popularity attack

in which the attacker abandons using a password after a fixed
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number of attempts (25) so as to avoid it being detected as

frequently-guessed by the binomial ladder filter.

The simulator assigns a fraction of login attempts to be

performed during the simulation by attackers (e.g., 50%).

Since attackers may not know which account names are

legitimate, we simulate guesses targeting non-existent account

names by replacing valid account names with invalid ones

(e.g., 10%).

VI. EVALUATION & DISCUSSION

The efficacy of any defense against password-guessing

attacks will depend on the attacker’s strategy in choice and

ordering of password/account pairs for each IP address the

attacker controls. In Figure 2a we illustrate the efficacy of

the three attacks introduced in Section V-D: descending-

popularity, weighted, and detection-avoidance. The graph

shows the number of accounts compromised versus accounts

experiencing false positives for the baseline fixed-failure

threshold algorithm as T varies from 0 (block everything) to∞
(no blocking). The Y axis intercept represents the number of

accounts that will be compromised if no guesses are blocked

(i.e. T → ∞). The X axis intercept represents the number

of false positives if everything is blocked (in this case all 5

million accounts in the simulation). Decreasing the threshold

moves the line down, and to the right, as more guesses are

blocked and more users have their legitimate logins fail.

The nearly-horizontal lines on the left side of each curve

have two causes. First, we assume an attacker who limits the

rate of testing from each IP to one attempt roughly every ten

minutes (1,000 attempts over 7 days). The automated clients

we simulate, which sometimes cache users’ old passwords,

attempt to login once every five minutes. Thus, as we have

observed in our experience managing real-world systems,

blocking algorithms that count repeat username/password pairs

as distinct failures (rather than ignoring subsequent occur-

rences of these pairs) will lock out these clients first. So

false positives increase at first without any decrease in false

negatives. The second cause is the set of IP addresses used by

both legitimate users and attackers, which represent machines,

or proxied networks, that have been infiltrated by attackers.

When attackers guess the most common passwords first, most

of attackers’ correct guesses are distributed toward the start

of the simulation period. On the other hand, legitimate users’

correct logins are equally spaced over the entire simulation

period and we count false positives if a user is blocked at any

time during the period.

Figure 2a shows that, should attackers adopt the detection-

avoidance attack to confound those blocking techniques that

rely on identifying frequently-guessed password, the number

of passwords they can expect to guess correctly falls by

more than three orders of magnitude! In other words, forcing

attackers to adopt a detection-avoidance strategy would itself

be an effective blocking strategy. Even a shift to a weighted

attack would cause attackers more than an order of magnitude

drop as compared to the descending-popularity attack.

In Figure 2b, we examine the effectiveness of the

descending-popularity attack had the site not banned any

common passwords, or if it had banned the 10,000 most

popular passwords. Here we see that using a popular-password

prevention policy alone can reduce the efficacy of guessing

attacks by two orders of magnitude. While we focus on the

mid-point of 100 banned passwords for the rest of the anal-

ysis in this paper, those interested in how different blocking

techniques perform in these other scenarios will find answers

in Figure 6.

In Figure 3, we show the performance of blocking against

the descending-popularity (3a) and weighted (3b) attacks,

zooming into the critical regions. (Readers who prefer ROC

curves will find them as Figures 7a and 7b.) The thick

monochromatic lines show the baseline of a fixed-failure

threshold (gray) and of blocking using all the techniques in

Section III (black). To illustrate the marginal contribution of

each technique in Section III, we draw thin lines which show

the impact of removing that technique while leaving all other

techniques in place.

The most effective techniques appear to be to ignore repeat

account/password pairs (Section III-D), and to adjust the

blocking threshold if the account’s password is among those

frequently guessed (Section III-B). Indeed, practitioners who

are looking to get the greatest improvement in detection for

the least amount of effort would be well served to implement

these two approaches first.

Penalizing IP addresses that guess frequently-guessed pass-

words (Section III-A) can actually reduce efficacy in cer-

tain circumstances, but is typically helpful—especially in the

critical region for defending against descending-popularity

attacks (the zoomed in region of Figure 3a). The reason that

adjusting the blocking threshold is so much more effective than

penalizing IP addresses appears to be that many false positives

are caused when attackers and defenders share an IP (proxy or

host). In this case both attacker and defender will be punished

if we penalize the IP but the great majority of users (whose

accounts do not use frequently-guessed passwords) will be

unharmed if instead we adjust the threshold.

There is a significant benefit to allowing users to login if

they have a cookie proving that they have successfully logged

into that account before (Section III-F), though the benefit

– roughly a factor of two – may not appear significant on

a log graph. Adjusting scores for typos (Section III-C) has

a smaller impact but one that may still be significant in the

critical region. There is also a small impact for penalizing

invalid account names more than invalid passwords (Section

III-E), but far smaller than we would expect than if we had

simulated a system on which account names are hard to guess.

In Figure 4 we see that forbidding users from having

common passwords and using frequently-guessed passwords

for blocking are complementary techniques. Each line color

and style shows detection rates for the baseline algorithm and

for the algorithm of Section III. Combining the new algorithm

with a ban on the top 10,000 passwords can bring the number

of compromised accounts down to less than 20 while keeping
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(a) Different attacks (b) Different password policies (descending-popularity attack)

Fig. 2: The effectiveness of the baseline threshold-based IP blocking: we graph the number of accounts compromised vs. the

number of accounts that experience login failures due to false positives as the threshold is increased. The leftmost point of

each line illustrates the number of accounts that will be compromised if no blocking is performed. Subfigure (a) illustrates

that descending popularity attacks are the most powerful by an order of magnitude, even though the attacks are simulated for

a site that prevents users from choosing among the 100 most common passwords. For that attack, subfigure (b) illustrates the

differences in the effectiveness of the descending-popularity attack against sites that prevent users from choosing the top 0,

100, or 10,000 most common passwords.

the number of accounts experiencing false positives down to

double digits—even when a large number of IPs are shared

between users and attackers.

A. Limitations of our simulations

We offer example simulations only as a guide. The weights

in our algorithm are estimated from incoming data. If a certain

feature (e.g., presence of a cookie) is very common in the

received legitimate traffic and uncommon in the attack traffic

the approach of Section V-A will give it high weight in the

decision; if there is no difference it will have zero weight.

Similarly for all of the other features considered: those features

that discriminate best will be given most weight.

A limitation of our simulation is that we simulate both user

and attack traffic. This necessarily involves making certain

assumptions and choosing default settings for the simulator.

For example, in Section V-C we assumed the rates at which

users commit typos, mis-remembered passwords, have server-

issued cookies etc. The actual rates might be higher or lower,

and for some parameters may depend on the nature of the

service. For attack traffic we simulated three different types

of attack; we assumed a certain IP pool available to the

attacker, and an overlap rate between legitimate and attacker

IP addresses.

The simulations are a fair representation of how well our

approach does separating benign traffic with the chosen set-

tings from attack traffic with the chosen settings. Nonetheless

we emphasize that different simulated traffic settings will

give different results. We believe the settings chosen are

conservative in the sense of not assuming unrealistically large

difference between attack and benign traffic statistics. Thus,

there’s every reason to expect any particular site would see

improvement at least as good as we show. However, if the

statistics of the attack and benign traffic is closer than we have

simulated then the improvement would decrease. Naturally, if

attack and benign traffic are statistically indistinguishable no

method, including ours will tell them apart [14]. We hope that

in making the entire system and simulator available open-

source that others can explore scenarios of interest that we

might have neglected.

VII. RELATED WORK

Several large sites have seen compromises due to online

guessing attacks. In 2013, popular code-repository site GitHub

was hit by a large scale online guessing attack from over

40, 000 unique IP addresses [21]. As a result, GitHub was

forced to reset many accounts’ passwords and introduced a

ban on a list of weak passwords. Another example is iCloud,

Apple’s cloud storage service, which suffered an attack on

celebrity accounts with consequent leakage of many personal

photos. Since iCloud had no limit on failed login attempts

for the “find my iPhone” functionality [44], the attacker was

able to brute force the targeted celebrity accounts (which were

protected by weak passwords).

Online guessing attacks are by no means a problem only for

large sites. Seifert [45] documents online guessing against a

honeypot SSH server. He reports that common passwords such

as “123456” and “Password” dominated the guessing and a

small number of IP addresses sent many of the guesses. Owens

[36] reports attacks on three different SSH servers located on

a small business, a residential DSL and a university campus

networks. He finds great similarity between the attacks and

concludes that “many brute-force attacks are based on pre-
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(a) Descending-popularity attack (b) Weighted attack

Fig. 3: We measure the effectiveness of baseline fixed-failure threshold blocking algorithm (the thick gray dotted line) and our

algorithm (the thick black solid line) by comparing the number of accounts compromised (Y axis) with the number of accounts

that experience a false block (X axis). To illustrate the role of each technique we have introduced in this paper, the thin lines

illustrate the effect of removing one technique. We present two graphs in each Subfigure, with the top graph showing the full

error detection curve and the bottom graph zoomed into the region that balances the number of compromised accounts with

the number inconvenienced by false positives. All four graphs use the legend in the top left graph.

compiled lists of usernames and passwords, which are widely

shared.”

Whereas there is a dearth of research on online blocking,

there is a wealth of research on preventing offline attacks,

which require a compromised account database. Prior work

includes Manber’s introduction of iterated hashing [31], fol-

lowed by the proposal of Provos and Mazieres [40] to make the

number of iterations grow as advances in hardware decrease

computation time. Recognizing that attackers can build custom

hardware to speed computation, Percival [38], and others since,

have designed password hashing functions designed to require

both computation and large amounts of memory.

There has also been a wealth of recent research focused

on helping users choose passwords that are harder to guess.

Several large commercial [2] [4] [1] and government [5] sites

offer advice with rules to help users choose passwords. Myriad

papers have examined the usability and security of various

rules [33], [29], [27]. Notably, Weir et al.[32] examine various

password creation policies and conclude that most do a poor

job of ensuring that passwords will withstand a well-resourced

offline attack.

More promising are recently-proposed password guidance

based on data rather than composition rules. In 2009 Twitter

banned a list of 370 known common passwords [6] and in 2011

Microsoft followed suit by banning its own list of common

passwords for its online services [34]. Florêncio et al.[13]

suggest that website accounts should be able to withstand on

the order of one million guesses and suggest banning several

thousand of the most common choices.

In 2010, Schechter et al. [42] proposed using a count-

min sketch to identify and ban popular passwords while

minimizing the risk of revealing uncommon passwords should

the data structure be compromised. While asserting that a

count-min sketch can be configured to ensure privacy, they

do not provide such a configuration algorithm or any quan-

tifiable guarantees about the information revealed each time

a password is recorded. Further, their count-min sketch has

to be replaced periodically to prevent false positives from
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Fig. 4: An illustration of how blocking guesses and prohibiting

users from choosing common passwords complement each

other. Line styles represent three password policies: one al-

lowing any password, one blocking the 100 most common

passwords, and one blocking the 10,000 most common pass-

words. For each style we draw two lines: one for the baseline

scheme of blocking after a threshold of failed attempts (the

upper right of the two lines) and one integrating the techniques

described in Section III. The line at the bottom left shows the

benefits of combining a prohibition on popular passwords with

techniques to block guessing.

Fig. 5: Even when we don’t intentionally create overlap

between the IP addresses used by attackers and those used

by defenders, the overlap occurs naturally at the scale of our

tests due to the birthday paradox on IPv4 addresses.

growing too high. In contrast, with the binomial ladder that we

use [43], we provide quantifiable measurements of probability

reduction for each recorded password, a data structure that is

trivial to initialize, and one that does not require replacement

due to aging. Indeed, the binomial ladder would be a superior

mechanism for banning popular passwords while minimizing

the risk should attackers obtain a copy of the data structure.

Wheeler’s zxcvbn [50], introduced in 2014 and used by

DropBox, scores passwords poorly if they contain words on

a banned-password list. Komanduri et al. describe a password

meter that shows users predicted completions of the keys

they type, thereby communicating the guessability of common

choices [28]. Both approaches have been effective in user

studies [28]. As both rely on lists of common passwords, both

would benefit from a mechanism to identify passwords that

become popular even when previously-popular passwords are

banned—such as the binomial ladder filter.

Fixed per-account failure thresholds are a commonly-

recommended approach to limit guessing, despite the dis-

advantage when applied to online services (as opposed to

devices) which face descending-popularity attacks this policy

may lock all users out of a service. Florêncio et al.[16] observe

that a 6 digit random PIN can withstand an online attack if

the account is locked for 24 hours after three unsuccessful

attempts. Brostoff and Sasse studied the 10-week login his-

tories of 386 undergraduates users at a university where no

lockout or throttling policy was in place. They observed an

average of 34.5 attempts, 31 successes and 3.3 failures per user

(i.e. a 9.6% failure rate). They observe that a “three strikes”

policy would be unnecessarily restrictive and suggest a “ten

strikes” lockout policy would reduce the number of password

reset requests for negligible security impact [41]. Bonneau and

Preibusch studied lockout policies at large web-sites allowing

free sign-up [25]. Of 150 sites they found that 126 permitted a

login even after 100 failed attempts. Thus, contrary to popular

assumption, lockout policies appear quite rare.

Blocking IP addresses exceeding a threshold of failed lo-

gins has been used to protect low-utilization remote terminal

(e.g., ssh) servers [19], [24], [15], [48], but among its

problems is indiscriminate blocking of large proxies.

A number of organizations give guidance on protecting

authentication servers but often this is vague or dated. OWASP

[47] recommends to “lockout accounts for a period of time

(e.g., 20 minutes)” concluding that “this significantly slows

down attackers, while allowing the accounts to reopen auto-

matically for legitimate users.” While they list several ways

to block attacks, such as locking accounts, device cookies,

showing unpredictable behaviors for failed passwords, and

using CAPTCHAS, there is little implementation detail.

The authentication libraries for platforms such as PHP,

ASP.NET and Ruby on Rails often include some rudimentary

mitigations. In an examination of these libraries we observe

that the most common defense is to hard-code a default

number of fails after which an account will be locked, or an IP

address blocked. For example, an open source library called

Brute Force Detection (BFD) [19] blocks an IP address if

more than a certain number of failures is observed from an IP

address. The observation duration, number of failed account

logins or from an IP address are configurable, but there is no

guidance on how they might be chosen. Microsoft’s identity

framework (which is likely to be used by anyone creating a

site using Microsoft tools) supports account lockout [3] but

not IP blocking.

Pinkas and Sander [39] suggest differentiating between
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(a) No forbidden passwords (b) 10,000 forbidden passwords

Fig. 6: Descending popularity attack results for sites with 0 and 10,000 forbidden passwords. The legend in the top left graph

applies to all four graphs. We refer readers who prefer ROC curves to Figures 7c and 7d.

human user and automated guessing scripts by presenting

a CAPTCHA [7]. Van Oorschot and Stubblebine [37] and

Alsaleh et al.[10] enhance this approach and greatly reduce the

circumstances under which users will be forced to respond to a

challenge. CAPTCHAs can be used to complement blocking,

though since users know when a CAPTCHA appears, the

algorithm for determining when to use a CAPTCHA must not

use a threshold that could leak information about the strength

of a user’s password (as our approach uses for blocking

triggers). A shortcoming of approaches that rely on challenges

to distinguish humans from computers is that they are less well

suited for web services that may serve many automated clients

(e.g., email services). Herley and Schechter [22] describe a

scheme that allows estimation of the odds that any particular

login attempt is malicious; this gives a way to estimate the

weights in our blocking algorithm.

Freeman et al [17] give an interesting approach to identify-

ing hijack attempts among successful logins. Their approach

focuses on identifying features that look anomalous; e.g. a

user logging in from a very unlikely IP address, or with a

previously unseen useragent. Their method is complementary

to ours, in the sense that they do not explicitly attempt to

identify guessing. We suggest several features that they do

not use. On the other hand, their method has the potential to

detect account compromise that does not come from guessing,

while ours does not.

VIII. CONCLUSION

We have built a system that protects services from online

guessing attacks. Among our contributions are features to

make better benign/attack traffic classification decisions. These

include mechanisms to penalize fail events with commonly

guessed passwords more, to protect accounts with weak pass-

words better, and to distinguish user-generated typos from

other fails. We do all of these without storing any information

which exposes accounts to new risk in the event of a server

breach. These innovations allow much greater flexibility over

the previous state-of-the-art, which treats all failures equally.

The system is available to any password-based service exposed

to online guessing attack, and welcomes further contributions

from researchers and developers.

Based on simulations, we recommend that if practitioners

can only implement a subset of the techniques in this pa-

per, then they choose the following two. First, only count
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(a) Descending-popularity attack (EDC in Figure 3a) (b) Weighted Attack (EDC in Figure 3b)

(c) No forbidden passwords (EDC in Figure 6a) (d) 10,000 forbidden passwords (EDC in Figure 6b)

Fig. 7: ROC curves matching earlier error-detection curves. Whereas the error-detection curves count the number of users

experiencing false positives, these curves count every failed login as a separate false positive. The legend for the error-detection

curves also describes the colors for these curves.)

account/password pairs as failures once, and do not punish

IPs or clients that repeatedly submit the wrong password for

an account. Second, protect users who have chosen passwords

that are among those frequently guessed by attackers, either

by immediately forcing those users to reset their passwords or

by significantly reducing the IP blocking threshold for login

attempts on these accounts.
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