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Abstract—In an ongoing discussion comparing the security
properties of electronic and paper voting, decreased privacy is
often presented as an argument against remote Internet voting.
We contribute to this discussion by presenting a side-channel
attack against the physical environment of traditional paper-
based elections. More precisely, we build a device based on an
Arduino development board and cheap electret microphones,
capable of triangulating the locations of marks made on wooden
tables with high precision. In the best configuration, we are able
to determine the correct cell having dimensions 4 × 5 cm with
more than 90% accuracy. This will allow breaching privacy of
ballot sheet designs that rely on the voter marking her choice(s)
between a potentially high number of candidates printed on one
large sheet. We complement our attack with a study on various
aspects of deployment of facial recognition. This gives rise to
the setup where the attacker installs cameras in the polling
stations, aiming at automated detection of people leaving the
voting booths. Combining the two approaches, we will have a
completely automated (and hence relatively well scalable) attack
against the privacy of paper-based voting.

Index Terms—Voting, privacy, sonic testing, facial recognition.

I. INTRODUCTION

Voting is a form of public opinion polling that forms

the core of democratic society. Throughout the millennia of

experiences, a number of requirements have been established

that a voting system should satisfy in order to accurately

capture the societal preferences. The exact legal framework

varies from country to country, but the requirements typically

include

• eligibility (only the persons with a right to vote should

be allowed to do so),

• uniformity (everyone has the same number of allowed

votes),

• generality (eligible voters should have access to voting

capability),

• freedom (voters should be able to express their true

preferences without being coerced or otherwise illegally

influenced).

These requirements, in turn, are translated into the technical

properties of the voting system being utilised. For example,

checking eligibility assumes reliable voter lists and person

identification mechanisms. Uniformity and generality rely on

integrity measures like securing the ballot boxes and verifying

the final tally by recounts or post-election audits. Voting

freedom, on the other hand, is typically implemented via ballot

secrecy.

Different voting methods are able to meet these require-

ments to varying levels. Remote Internet voting, for instance,

has been criticised repeatedly for inability to provide a

coercion-free vote casting environment, since breaking the

vote secrecy is relatively easy in an uncontrolled remote

location like voter’s home [1]–[6]. Physical polling stations,

on the other hand, are designed to enforce privacy by means

of shielded booths.

Vote casting within the booth can happen in several ways.

The most established method is marking one’s choice(s) on a

sheet of paper and putting it into a ballot box. However, the

ballot sheets may sometimes be rather large and the logic of

filling them may be complicated [7]. Also, marking ballots by

hand can be rather error-prone [8].

To address these issues, many assisting technical tools have

been developed and tried throughout the years. Such assistants

include punch card devices and lever machines [9]; more

advanced apparatus can be used to prepare the ballot sheets to

be printed out [7] or record votes digitally (so-called direct-

recording electronic (DRE) machines).

The history of DRE equipment is rich with unintended

vulnerabilities, poor design choices and the resulting at-

tacks [10]–[16]. To a certain extent, such problems have

discredited the whole idea of using machinery in the process

of vote casting. As a result, there exist entire communities

devoted to promoting paper-based elections over electronic

alternatives (like https://www.verifiedvoting.org/ and http://

handcountedpaperballots.org/).

However, it is the belief of the authors of the current

paper that the members of such communities tend to under-

estimate the vulnerabilities of paper voting and the effect that

technological advancements have in terms of its security level.

There are many well-documented ways to attack integrity of

the results of paper voting, including ballot box stuffing [17],

disappearing ink [18], setting up fake ballot boxes or stealing

genuine ones [19], etc. Also, many generic election attacks

like gerrymandering or confusing the voters by setting up

similarly-named candidates apply to paper voting [18].

Alvarez and Hall show that the need to delegate operating

polling stations to numerous semi-reliable local agents may
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lead to problems with both integrity and availability (i.e.

generality) of paper-based elections [20].

However, in this paper we are going to concentrate on vote

privacy which is the key measure to achieve voting freedom

and coercion-resistance. We will present a new attack that can

be implemented against the ballot sheet designs where the

voter is asked to mark her preference(s) from a large number

candidates printed on one sheet. The attack works both in case

of simple markings and preferential voting.

The paper is organised as follows. First, Section II gives a

short overview of side channel attacks against paper voting,

followed by the description of the threat model in Section III

and the discussion of some ballot sheet designs leading to

the idea of our attack in Section IV. Section V describes

the experimental setup, followed by the description of our

experiments and experimental results in Sections VI and VII,

respectively.

Second part of the paper is devoted to complementing our

(this far anonymous) attack with a mechanism to identify

voters using facial recognition. Section VIII discusses the

general framework for such a mechanism, followed by the

descriptions of the options for deploying the actual hard- and

software in Section IX, and the methods of obtaining the

necessary facial image database in Section X.

Finally, Section XI discusses possible countermeasures, and

Section XII draws some conclusions and sets directions for

future work.

II. STATE OF THE ART

First evidence of secret ballot as a democratic mechanism

goes back to ancient civilisations. For example, the respective

legislation was passed in the late Roman Republic in 139

BC. In today’s understanding, this is seen as a measure for

lessening the control of the upper classes over the electorate,

and enhancing the voters’ effective freedom of choice [21].

Wider acceptance of secret vote in Western democracies

took place throughout the 19th century, and today this principle

is considered so fundamental that it is even stated in Article

21.3 of the Universal Declaration of Human Rights.

The choice for the actual technique of ballot filling is left to

the election organisers. As mentioned above, various methods

for that have been experimented with throughout the history of

elections. Unfortunately, not all of them are equally resistant

to privacy violations.

Of course, an attacker can always coerce the voter to take

a stemfie (selfie together with one’s filled ballot sheet) [22],

perform the so-called Italian attack where the voter is re-

quired to vote in a pre-determined pattern [23], or set up

chain voting [24]. However, these scenarios assume voter’s

knowledge and active participation in the attack. We argue that

stealthy privacy violations pose potentially even a greater risk

to democratic freedom. When the voter learns about breaking

the privacy of her true preference only after the voting, she

has no real options to prevent or fix the problem as she can

not take the vote back or decide not to go voting at all.

On the other hand, even in case of informed voter col-

laboration (e.g. for vote buying/selling), a stealthy attack has

noticeable benefits for the attacker. If he can just set the attack

up once and later observe the voting process without requiring

the voters do deviate from the standard actions in any way, he

will decrease the risk of being detected.

Perhaps one of the best documented stealthy privacy vul-

nerabilities from the recent years is the side channel attack

implemented by Gonggrijp and Wessling against the voting

machines used in the Netherlands [25]. In their attack, voter’s

party preference was in some cases leaked via electromagnetic

emanations from the machine. We refer to [26], [27] for a

thorough description of the problem along with the political

context and aftermath.

However, paper voting is not free from side channel leak-

ages either. Fingerprinting the ballot sheets using a high-

resolution scanner or photo camera was proposed by Calan-

drino et al. [28]. The basic technology needed for that was

recently improved by Toreini et al., making the resulting attack

more efficient and accessible for even a moderately-resourced

attacker [29]. We refer to the recent paper of Krips et al. [30]
for a comprehensive overview of side-channel attack against

paper voting.

In the same paper, Krips et al. propose a new audio side

channel of ballot marking where the voter is expected to fill

the ballot sheet by writing numbers (say, a candidate number

or preferential order). Even though their rate of detecting

the numbers from the sound of writing was rather good,

applicability of this attack is limited to rather specific types

of ballots. Such ballots form a relatively small portion of the

designs used around the world.

In this paper, we are going to develop a side channel against

a considerably larger selection of ballot sheets.

III. THREAT MODEL

As stated above, vote privacy breaches play a key role in

various coercion attacks. In this paper, we have two types of

coercive attacks in mind as use cases.

• Vote buying: In this scenario, the voter has had a prior

contact with the coercer and has knowledge about the

ongoing attack. However, the exact method of verifying

compliance to the coercer’s demands is not necessarily

known to the voter.

• Political persecution: In this scenario, the attacker gathers

vote information without the voter’s prior knowledge

and uses it later to harass her because of her political

preferences.

We see that in both of the cases it is important for the

attacker to keep the attack apparatus stealthy.

IV. BALLOT SHEET DESIGNS AND ATTACK IDEA

Design of ballot sheets is on one hand a well-studied, but

on the other hand also a very sensitive topic. For example,

it has been observed that the candidates listed on top of the

sheet are more likely to score higher results [31]–[33].
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In our research, however, we are more interested in the

way the voter expresses her preference. As the number of

candidates is typically large (easily reaching hundreds), the

voter must be able to select from them. Ballot design-wise,

the simplest option would be to have the ballot blank and

letting the voter to write in a name or number for the party or

candidate, but such designs are relatively rare, being found in

less than ten countries around the world [34].

A considerably more popular option is listing all the running

candidates on one sheet and asking the voter to select one (or

several) of them. Combined with the potentially large number

of candidates, we will obtain potentially large ballot sheets,

too.

For example, the sheet from Dutch elections of 2017 being

about 1.5 meters wide is shown in Figure 1.

Fig. 1. Dutch ballot sheet (image source: https://imgur.com/gallery/F8EmD)

A similar situation occurs in Australia where e.g. in 2013

Victorian Senate elections 39 parties (plus independents) were

running and the ballot paper extended to 102 cm in width.1

As a third example, some local elections in Germany feature

huge ballot sheets as well [7] (see Figure 2).

Fig. 2. German local election ballot sheet [7]

1https://www.smh.com.au/politics/federal/metre-long-ballot-paper-means-
voters-will-need-to-read-the-fine-print-20130817-2s3yw.html

These cases may be considered as quite extreme, but they

lead us naturally to the main idea of our attack. Namely, if

the whole table provided in the polling booth is covered by

the ballot sheet from edge to edge, then we could reveal the

voter’s preference if we would be able to detect the location

of the sound the pen makes when marking the ballot. As we

will see below, such a detection may be implemented very

cheaply, but at the same time with high accuracy making use

of the physical properties of the table plate. Also, all of the

attack apparatus can be hidden from the voter’s view under

the table.

Note that for the preference disclosure, it is not necessary

that the ballot sheet extends from edge to edge in both

dimensions. E.g. when the candidates are listed vertically and

the resulting ballot sheet spans from the top to the bottom of

the table, just getting the y-coordinate of the detected location

reveals the voter preference.

Of course, if the ballot sheet is smaller than the table, the

amount of the leakage will be reduced, but it will not become

zero. For example, if the sheet is longer than half of the height

of the table and the mark location was detected as being close

to the centre, the attacker knows that candidates close to the

top and the bottom of the sheet were not marked. In case

of even smaller ballot sheets the attacker may make some

probabilistic assumptions (e.g. that the ballot was placed close

to the centre of the table) and still obtain a non-zero leakage.

Note that a systematic attacker can make the ballot sheet

larger by putting forward a number of extra candidates, arguing

that it is a democratic right of every eligible citizen to run for

an elected position even if they have only a marginal chance

of success. As a result, the leakage from detecting the marking

location will be increased.

An informed voter may counter the attack by purposefully

placing the ballot sheet off the centre of the board (even partly

folding it if necessary). However, since our attack apparatus

can operate stealthily, the attacker does not need to reveal

the exact vote detection mechanism even in the vote buying

scenario. In the persecution scenario, the voter does not even

know that the attack is going on at the time of voting (see

Section III).

There are also specific ballot sheet design cases where the

placement of the sheet on the table does not play that big of

a role.

For example, a relatively large privacy leak will occur in

case of approval voting, where the voter is allowed to pick

several candidates from the list (or even as many as she

likes) [35]. Such ballots have e.g. been used in France [36]

and Germany [37]. The candidates/parties can be expected to

be quite well distinguishable by their political views, hence

some pairs of them are more likely to be marked together by

the voters than others. Thus, observing the pattern of relative

locations of the markings, the attacker may draw conclusions

based on where this pattern would fit the best on the ballot

sheet.

Another example of a design potentially vulnerable to our

attack is preferential voting [38]. For example, in case of
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ranked voting systems the voter is expected to write numbers

of preference next to the candidates. Such systems enjoy pop-

ularity in various English-speaking countries [30]. Assuming

that the voter writes numbers in increasing order (i.e. likely in

some other order than from top to the bottom on the sheet) and

that the order of candidates is the same on all ballot sheets,

the attacker obtains a pretty complete view of the voter’s

preference ranking.

In the next Section, we will describe the construction of our

mark detection device.

V. ATTACK EXPERIMENT SETUP

As stated above, we are not going to attack the paper ballot

directly, but rather the table that is used to lay the ballot onto

while filling it. Our core observation is that the sound the pen

makes during ballot marking travels through the table material

at a relatively well-predictable speed, making it in principle

possible to triangulate the location of the sound source (i.e.

the marking).

Even though the main idea of our attack is simple, there

are several challenges to address when implementing and

evaluating it.

First, different kinds of tables are being used in polling

stations. We have conducted no studies on the materials that

one can find in real-life polling station tables. However, we

chose two different kinds of materials for our experiments,

namely melamine-covered chipboard and glued timber. Plates

of size 80 × 60 cm from both of the materials were selected

to model the tables.

Even though we can not claim representativity of our results,

we argue that they still give a good understanding on how well

our approach works for some pretty common materials. Also,

the method we develop is general and can easily be adjusted

to other types of tables, too.

The second decision to make in our setup design was

the choice of the sound detection devices. We experimented

with a number of different microphones and piezoelectric

elements, and found that the most stable results were obtained

using MAX4466 adjustable gain electret microphones. They

can be bought as for 5-10$ as manufactured by the original

producer, or for about 1-1.5$ from online Chinese producers

and resellers. We tried both, and at least with the items we

got, the originals were working more reliably.

Third, we needed a device to capture and process the

signals. As we were targeting the raw signal data, we needed a

device with analog input capability. Development boards from

the Arduino family are perfect for this task, with the additional

bonus of being relatively cheap. We chose Arduino Due due to

its ATMEL SAM3X8E ARM Cortex-M3 CPU which runs at

84MHz, the highest currently available for the Arduino family.

It can be bought for about 15$ online.

Another benefit of Arduino Due is that its analog-digital

converter (ADC) can work in the so-called free-running mode

where the next conversion is started as soon as the previous

one is over (as opposed to the standard mode where there

is a predefined number of cycles ADC waits between two

conversions). The benefit of the free-running mode is its

high working frequency (about 600kHZ in our case), but

the shortcoming may be decreased reading precision due to

some residual charges on the chip. However, our experiments

showed that this shortcoming was greatly compensated by

higher speed.

Next, we determined the number and placement of the

microphones. After some discussion, we settled with four

microphones being placed in the corners of the table. However,

this is not the only possible choice. Increasing the number

of microphones could, in principle, increase triangulation

accuracy. On the other hand, since Arduino Due (as Arduinos

in general) only has one ADC, the reads need to be performed

sequentially. Thus, increasing the number of microphones

would also increase the time interval between two reads

of the same microphone, hence potentially decreasing the

triangulation precision.

Finding out the optimal setup is a separate research ques-

tion. As can be seen from experimental results (see Sec-

tion VII), our choice worked quite well already.

The microphones were connected to Arduino Due using

wires and a breadboard; the connection scheme can be seen

in Figure 3.

Fig. 3. Microphone connection scheme

Of course, we want the attack to work in a stealth mode,

hence we need to install the whole system under the table.

The overall experimental setup photographed from below is

given in Figure 4.

The next decision to take concerned microphone attachment.

There are several ways to do this, e.g. by taping them to the

board, or drilling in. Both of these methods have their pros and

cons. Drilling in would assume prior access to the tables, but

has the benefit of potentially better sound detections, and also

the option of hiding the microphones inside the table feet. The

electret element of the microphone has a diameter less than

1 cm, and the whole circuit board of MAX4466 microphones

has dimensions of about 1× 2 cm (see Figure 5).
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Fig. 4. Experimental setup from below (melamine-covered chipboard)

Fig. 5. MAX4466 electret microphone

If prior access to the tables is not possible, the attacker

can enter the booth during the voting period and tape the

microphones and Arduino under the table onsite. In this

scenario, the attacker’s task will be easier if curtains are used

as part of polling booth construction (which often are there to

assure voter’s privacy).

In our experiments, we measured detection accuracy for

both of the scenarios, by first taping the microphones under

our plates, and then drilling them in.

The final question to answer was what exactly should

be measured during our experiments. On the physical level,

analog input from the microphones is sampled as a voltage

the signal corresponds to at the moment of sampling. We can

compare this voltage to a reference level when there is no

signal, and draw several conclusions from it.

As the first approach, we can look at the difference of

voltages of the reference point and current measurement,

interpreting it as a difference in signal amplitude. Assuming

that the signal fades in the table, the microphone closest to

the marking spot should give the strongest signal, followed

by other microphones in the order of distance, allowing to

determine the location.

We attempted to implement this approach by measuring

the total energy of the signals received by each one of the

microphones. In general, energy of the signal x(t) is computed

as ∫ ∞

−∞
(x(t))2dt ,

and this quantity can be approximated by

N−1∑
i=0

(x(i))2

where x(i) denotes the sampled signal amplitude at reading i.

Another approach is simply to determine the moment when

the first microphone detects a signal exceeding the threshold

level, and measure the time differences until the moments the

other microphones detect it, too. Since the microphones are not

read simultaneously, such an approach will have an inherent

error, but hopefully not too much.

During our tests, we experimented with both of the ap-

proaches, and found the second one to produce considerably

more reliable results. We did not study the reasons behind the

poorer performance of the signal energy based triangulation.

However, one of the reasons may be secondary signals that

reach the microphone after bouncing back from the edge of the

table [39], hence causing the signal energies to be estimated

larger than they actually are. On the other hand, the timing

based approach is free from such problems – when the signal

first hits the microphone, it has rather likely come directly (or

has had a bounce-back very close to the microphone).

VI. EXPERIMENTS

As explained above, the target of our attack is determining

the location where the pen is scratching the table (through the

ballot sheet paper).

There are some physical limitations on the precision of this

detection. The signal travels through wood at the speed of

approximately 3 . . . 4km
s . As we were able to get the ADC of

Arduino Due working at approximately 600kHz, each one of

the four microphones is read with frequency of approximately

150kHz. For reliable triangulation, we need to use all the four

inputs, hence this 150kHz is also the approximate maximal

frequency of triangulation.

Thus, the distance the signal travels during the interval
1

150000 s of two consecutive position reads is approximately

3km
s

150000 1
s

=
3000m

150000
= 2cm .

Thus, we can not expect the precision better than 2 cm,

and probably even a bit worse, since we can not read all the

microphones at the same time and the time intervals between

two reads are not constant.

On the positive side, the precision of a few centimetres is

sufficient to mount interesting attacks against various kinds of

ballot sheet designs (see Section IV).
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For our experiments, we chose to divide the table plates into

4 × 5 cm cells, thus forming a 20 × 12 grid on the 80 × 60
cm plate.

For each of the cells, we produced marking sound around its

centre using a pencil. For each cell, about 10 . . . 15 marks were

made and the timings of the signal reaching the microphones

were recorded. An image of the glued timber table with cells

and markings can be seen in Figure 6.

Fig. 6. Cells and markings on a table (glued timber plate)

We tested the experimental setups with both having a sheet

of paper on the table and making the marks directly on the

board. The results from these setups did not differ significantly.

However, as the series of experiments were rather long (several

thousands of marks in each series) and the sheet did not cover

the whole plate, moving it from one position to another caused

too much disturbing noise. Thus, we decided to drop the paper

from the actual experiment and make the marks on the board

directly.

In a real situation, the attacker would need to make an extra

effort of distinguishing the sound of ballot marking from the

noise caused by putting the sheet onto and removing it from

the table. For this, the attacker may tweak the microphone

sensitivity level, or study the noise patterns that the paper

generates in the recording. For the latter, machine learning

methods working on the audio recording similar to the one

proposed by Krips et al. may be considered [30].

Also, in case of the vote buying scenario, the attacker can

instruct the voter to handle the paper gently, leave some time

between laying down the paper and marking her vote, etc.

For each scratch sound on the plate, we recorded the

moments t1, t2, t3, t4 the sound was first detected by every

one of the four microphones, and stored the time deltas with

respect to the earliest moment. I.e., the data tuple stored

for every sample was (t1 − t, t2 − t, t3 − t, t4 − t), where

t = min{t1, t2, t3, t4}.
For the classification task we evaluated five different al-

gorithms – k-Nearest-Neighbour (kNN), weighted version of

kNN, Gradient Boosting Classifier, Multi Layered Perception

Classifier and Random Forest Classifier [40].

Table I presents evaluation results of the five tested clas-

sification algorithms in case of the chipboard and drilled in

microphones (for exact choices of the best kNN parameters,

see below).

TABLE I
COMPARISON OF CLASSIFIERS

Method Accuracy

Weighted kNN 90.4%
kNN 89.2%
Random Forest Classifier 87.3%
Gradient Boosting Classifier 84.6%
MLP Classifier 16.3%

As kNN-type classifiers worked the best, we will describe

their application in our case in a bit more detail.

The basic idea behind the kNN classifier is simple. We first

select a distance metric to describe how similar two samples

are. Then we use some part of our dataset for learning/training,

and the rest for testing. In case of kNN, learning simply means

saving the first part of the dataset in a format (sample, class),
where sample refers to the time delta quadruple, and class is

the corresponding 4× 5 cm cell on the board.

To classify a testing sample, we select k closest (according

to our distance metric) samples from the training set and select

the class (i.e. the table cell) that is represented the most among

those k closest samples.

For the kNN classifier, we experimented with k values 3, 5
and 7, three distance metrics – Canberra, Euclidean and Bray

Curtis –, and six possible weights.

For two sample tuples u = (u1, u2, u3, u4) and v =
(v1, v2, v3, v4), their Bray Curtis distance is defined as

dBC(u, v) =

∑4
k=1 |uk − vk|∑4
k=1(uk + vk)

.

For the weighted version of the kNN, also the weights

need to be defined. We experimented with the weights of

the form 1/de, e ∈ {1, 2, 3, 4, 5, 6}, where d is the selected

distance metric (say, Bray Curtis). The resulting weighted

kNN classifier then works as follows.

We first have a set S of training data where each sample

tuple ui has a corresponding cell with coordinates (xi, yi).
When a new tuple v needs classification, we first select k clos-

est (according to our distance metric) samples u1, u2, . . . , uk

to it from our set S. We then group the selected k samples by

the corresponding cell and define the weight of the ith group

to be
ni∑
j=1

1

(d(ui,j , v))e
,

where {ui,1, ui,2, . . . , ui,ni} is the set of tuples in the ith group

and e is the selected weight exponent. The group with the

largest weight wins, and the corresponding cell is declared to

be the outcome of classification.

Testing classification accuracy across all our experimental

setups, we concluded that the choices of k = 5, Bray Curtis

distance and weight exponent e = 3 worked the best on aver-

age. However, there is room for some marginal improvement
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if the polling booth environment (most notably, table material)

can be well predicted and/or studied beforehand.

VII. EXPERIMENTAL RESULTS

For each of the four test configurations (melamine covered

chipboard or glued timber, combined with taping or drilling

the microphones), we measured three kinds of accuracies.

1) The accuracy of predicting the exact 4× 5 cm cell.

2) The accuracy of predicting the area of the cell with an

allowed mistake of 1 cell in each of the eight directions

(i.e. 3× 3 cells forming a 12× 15 cm rectangle).

3) The accuracy of predicting the correct 4 cm wide

column.

The last measurement corresponds to the attack scenario

where the attacker is interested not in the particular candidate,

but rather the party preference of the voter, since on the ballot

sheets the candidates of the same party are often gathered into

the same column (for some examples, see Figures 1 and 2).

For all the tests, we performed 10-fold cross-validation. I.e.,

we divided our experimental data into 10 random subsets and

used every one of them for validation against the training set

formed from the remaining 9 subsets.

The average results of running the experiments 500 times

are presented in Table II.

TABLE II
EXPERIMENTAL RESULTS

Test setup 1× 1 cell 3× 3 cell Column

Chipboard, drilled mics 90.44% 98.77% 93.71%
Chipboard, taped mics 81.07% 94.14% 85.23%
Glued timber, drilled mics 71.29% 87.89% 75.42%
Glued timber, taped mics 77.61% 89.62% 80.35%

From the Table we observe that the best results were

achieved on the melamine covered chipboard plate. The most

likely cause is the more uniform nature of the material com-

pared to the glued timber plate which comprises of multiple

(non-homogeneous) wooden planks glued together.

Thus we may say that better performance of our attack

on the chipboard plate was expected, but the overall average

precision of detecting the sound source location was a great

surprise to the authors. When the attacker manages to drill

the microphones into a chipboard table plate, he can achieve

accuracy of over 90% within the range of one 4× 5 cm cell,

and more than 98% within the range of one 12× 15 cm cell.

Even when only the taping option is available for the attacker,

his prediction accuracy (depending on the area he is interested

in) is about 80-90%.

Of course, the idea of using (ultra)sonic waves to study

properties of different materials is not new [41]–[43], but for

the achieved precision, the ease of building the final device, its

low price tag and small size were quite unexpected. Creating

such a device is definitely both affordable and accessible for

a moderate-level attacker.

Somewhat surprisingly, in case of the glued timber plate,

the results improved when attaching the microphones using

tape instead of drilling the holes into the board. We attribute

this effect to our inability to drill holes with flat bottom due

to the shape of the drill we used. As a result, the contact of

the microphones with the surface of the board was actually

better in case of taping.

We conjecture that this problem had a lesser effect in case of

the chipboard plate, since chipboard as a material is generally

softer, and thus firm contact with the surface may have been

less important.

Besides establishing the good average performance of the

weighted kNN method, we were also interested in determining

whether our set-up has a systematic bias in terms of maximal

error rate. I.e., we wanted to find out, whether there is some

part of the board that for some reason is detected considerably

worse than other parts.

We computed the ratio of wrongly detected samples for

all the cells across all our experiments, and the results are

presented as heatmaps in Figure 7. We concluded that although

sporadic cell error rates reached up to 40%, these seems to be

no systematic error bias.

VIII. BUILDING AUTOMATED PERSON IDENTIFICATION

When the attacker is using our attack to breach vote privacy,

he is only achieving part of the goal. Knowing just what the

values of some votes are is not too interesting on its own, the

attacker would typically also need to find out who submitted

those votes. Having access to both parts of the information, he

can mount a coercion attack (e.g. by attempting to buy votes,

persecute the voters for their political views, etc.).

When the attacker is targeting a particular group of voters,

he can first install our mark triangulation device(s) under

the booth table(s), and then pretend to be a public observer.

Observing the polling station, he can take notes of who exits

the voting booth(s) at what times, and later cross-reference his

notes with the votes recorded and time-stamped by the device.

However, the extent of such an attack would be limited

by the ability of the attacker to stay in one polling station

(and/or to hire collaborators who would cover several places).

Thus, the key to scaling the attack is automating the detection

of voters. The detection mechanism should be non-invasive,

working from a distance and having relatively high precision.

The choice of such a mechanism is quite straightforward

– facial recognition. The human face is highly characteristic

and usually not covered. This sub-field of biometry has been

well-studied, with many tools being readily available for the

attacker to build upon. These aspects make facial recognition

rather a well accessible tool for the attacker.

This tool is used a lot by law enforcement agencies around

the world (sometimes with objectionable goals and meth-

ods [44]–[46]). However, a regular attacker does probably not

have access to such resources. (Unless, of course, the govern-

ment itself is interested in massive vote privacy violations –

we will not consider such a scenario here further.)

Thus, a natural research question for us becomes: how easy

is it for a moderately-resourced attacker to build an automated
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(a) Chipboard, drilled mics (b) Chipboard, taped mics

(c) Glued timber, drilled mics (d) Glued timber, taped mics

Fig. 7. Heatmaps of error ratio distribution across the experiments

facial recognition system capable of operating in the polling

station environment, and how well would such a set-up scale.

This task can be divided into two subtasks:

1) Build and deploy a detection system, and

2) Obtain a comprehensive personalised facial image

database.

We will now discuss both of the subtasks in more detail.

IX. BUILDING A FACIAL DETECTION SYSTEM

When selecting the best option for building and deploying a

facial detection system, there are several optimisation targets

the attacker needs to consider.

• How much/little would it cost (in absolute terms or, say,

per 1000 faces to detect), determining the scalability of

the attack.

• What is the level of technical sophistication and compe-

tence required from the attacker.

• How easy is it to run stealthily, or with a good cover

story, determining the risk of getting caught.

• What detection speed and quality can be achieved, deter-

mining efficiency of the attack.

As we will see in this Section, it will be difficult for the

attacker to optimise all these parameters simultaneously (at

least given the technology available in the time of this writing,

i.e. late 2018). Thus, the attacker will need to make some

choices depending on his attack scenario, risk aversion, budget,

etc.
The task of building a facial detection system can in turn

be divided into two subtasks. First, the attacker needs to

install/access cameras for image capture, and second, he needs

a back-end for running the actual facial recognition software.
Depending on the local traditions, the first subtask may be

relatively easy to accomplish. Several countries have cameras

in polling stations pre-installed as a confidence building mea-

sure2. We have conducted no study on the cameras found in

such setups, but we consider it likely that for budgetary and

setup simplicity reasons, cheap IP cameras are often used.

However, IP cameras are notorious for having rather low

2http://aceproject.org/electoral-advice/archive/questions/replies/291099047

628



security standards, allowing a malicious attacker to access its

streams and images, replace firmware, etc. [47]–[50]

If cameras are not a part of standard set-up in polling

stations, the attacker would need to get and install them

himself. IP cameras can be bought starting from 20$ a piece

online, so the biggest practical problem is installing them to

the polling stations.

The most straightforward approach would be placing the

camera directly into the polling booth at the same time with

the table plate mark triangulation device. However, contrary

to the latter, the camera would need to be in the line of sight,

and this may be difficult to achieve without detection in a

minimalistic booth.

The next best thing is to place the camera somewhere in

the polling station so that it would record the faces of people

stepping out of the booth. Success of this strategy depends on

the dimensions and colour of the camera as well as a general

environment of the polling station, whether there is a good

place to hide the video equipment, etc.

One way to solve the problem of concealing the camera is

not to conceal it at all. Even if the local electoral traditions

do not include confidence-building cameras, the attacker can

still claim to be an election observer interested in making sure

that e.g. ballot box stuffing does not happen. Since the events

taking place outside of the polling booth are not really private,

the election officials will have hard time arguing against such a

surveillance. To support his cover story, the attacker may even

share the camera streams with other, completely legitimate

observers.

The subtask of running a facial recognition algorithm on

the images/streams produced by the cameras is actually more

demanding as these algorithms require a lot of computational

power. Depending on the attack scenario, the attacker may

save the camera streams during the elections and take all the

time he needs to process them later on, or he may be interested

in near-real-time facial recognition.

An example of the first scenario is the one of political

persecution where the attacker wants, at some point in time

(maybe weeks or even months later), have a list of voters who

did not act according to his preferences.

In the scenario of vote buying, on the other hand, the

attacker may find it easier to convince the sellers if he can offer

the reward relatively soon (in minutes or hours) after the vote

casting. The attacker can even automate paying out the reward

by triggering, say, a Bitcoin transfer right after a successful

facial recognition, making the attack to scale more easily. We

will discuss one possible strategy of obtaining voters’ Bitcoin

addresses in Section X.

When comparing this scenario to the stemfie attack, we can

see that taking a stemfie, on one hand, requires more voter

involvement. On the other hand, it has to be post-processed

by a human, making our attack to scale better.

For the computational face detection back-end, the attacker

also has several options. Perhaps the simplest (and cheapest) to

set up is using an existing cloud-based service. E.g. Microsoft

is offering Face API on its Azure cloud platform3. For 100$,

the attacker would get 100,000 detection transactions which

would be sufficient for a relatively large-scale privacy violation

(even considering that several transactions would probably be

spent on one voter). Additionally, he would need to pay 0.25$

for every 1000 stored faces, which is still very reasonable.

The main problem with using a hosted service (besides

leaving a significant digital footprint for law enforcement to

work on) is its unreliability for the attacker. A large-scale

vote-buying attempt will probably be detected at some point.

Commercial cloud providers like Microsoft are well aware

of privacy risks of such services and are likely willing to

cooperate with law enforcement agencies, blocking the service

on the first notice.

Note that taking all the cameras down would require more

time, especially if they are hidden. On the other hand, if the

cameras also have a public function of confidence building,

taking them down will need to involve investigation which

cameras are part of the privacy violation attack and which

ones are not. In order to complicate (and hence prolong) this

investigation, the attacker may install some cameras that only

serve legitimate purposes.

If the voting period is short (say, one day), the risk of

losing the whole computational back-end in one instant may

or may not be acceptable for the attacker. As an alternative, he

may attempt to build a computational face detection service

himself.

In order to assess the costs, ease of setting up and the

resulting detection quality of this approach, we decided to

build a complete facial recognition system from generally

accessible hardware and software components.

Our hardware platform included Intel i5-2310 CPU and

nVidia GTX 1070 with 8BG onboard RAM as the GPU. At

the time of this writing (fall 2018), GTX 1070 is a mid-high

level graphics card available for about 400 euros as new, or for

200-300 euros as used. As with most of the nVidia cards, it

also support CUDA framework, making it appealing for a wide

range of applications from cryptocurrency mining to machine

learning.

The desktop was equipped with a 720p Logitech webcam

and Ubuntu 18.10 OS. The facial landmark detection routine

of our choice was proposed by Kazemi and Sullivan [51], and

implemented as a part of the leading open source machine

learning library dlib4.

The setup was deployed in a generic office environment,

with the camera pointed towards the entrance hallway. To be

able to measure detection distance, we taped markings on

the floor at each full meter from the camera. We used 63

volunteers working in our office as the test subjects. One image

of each subject was used to train the recognition system.

We performed two experiments. First, we were interested in

the quality of live detection. Second, we also saved the video

3https://azure.microsoft.com/en-us/services/cognitive-services/face/
4http://dlib.net/
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stream to determine how good of a detection accuracy we can

achieve when we allow some extra time for post-processing.

The accuracy of the first experiment was measured manually

by an observing researcher who wrote down the result of

the detection for the listed volunteers who passed by in their

natural way. Also, the approximate distance of the subject from

the camera at the moment of detection was recorded.

The facial recognition script consisted of three main compo-

nents. First, it had to process a frame from the video feed and

find the locations of faces. Next, it had to create encodings

for the faces found. Finally, the found encodings had to be

matched with the encodings corresponding to the faces of the

volunteers. We used Python’s face_recognition toolkit5

for creating and comparing the encodings. Faces were encoded

by the underlying dlib library that returns a 128 element real-

valued feature vector representing the corresponding face.

Once the face is located and encoded, it is trivial to compare

the encodings, e.g. by their Euclidean distance to find the

closest match as done by the face_recognition toolkit.

However, the difficult step is to find the locations of the

faces on the images. There are several approaches to solve

this task, and they are all computationally expensive. The dlib

library allows one to use a GPU-based convolutional neural

network (CNN) to detect the locations of faces. The other

well-established option is to use Haar Cascades method from

OpenCV toolkit.6

Both approaches have their positive and negative sides.

CNN from dlib allows to detect faces even when they are

tilted. However, it is computationally demanding, and in our

case it allowed us to use only about half of the frame rate

compared to Haar Cascades. When using CNN in the real

time setting, we were able to detect faces from a distance of

at most 3-4 meters, while Haar Cascades identified locations

of faces from a distance about twice as far.

The downside of Haar Cascades is the false positive rate of

face locations, but in our case this was not so significant as we

were manually measuring the accuracy and we were interested

only in the face encodings that have a match. Thus, we selected

Haar Cascades as our method of face location detection. Note

that, as a result, this part of the experiment does not really

use GPU acceleration at all, making the corresponding attack

considerably cheaper.

When running the second experiment with post-processing,

performance limitations were not so strict. We were able to

utilise the full power of the GPU running a CNN implemen-

tation from dlib for facial detection. However, depending on

the exact resolution of the video, detection took about 5-10

times longer than the duration of the video itself. The attacker

can speed up the wall clock time by splitting the stream into

smaller chunks and processing them in parallel. On the other

hand, this requires a larger investment into the GPU hardware.

The output of facial detection post-processing script was

evaluated by a human operator for accuracy comparing the

5https://github.com/ageitgey/face_recognition
6https://docs.opencv.org/3.4.3/d7/d8b/tutorial_py_face_detection.html

script output to the video. Also, the approximate distance of

detection was recorded based on the meter markings visible

in the stream.

Accuracy evaluation was only performed when the method

identified a person from our facial database, and not when it

was just able to find a location of some face on the image. The

accuracy was defined to be the share of correct identifications

from all the person identifications. Overall, we were able to

obtain 101 identification samples when testing CPU-based live

detection, and 151 samples for GPU-based post-processing.

The results of our facial recognition experiments are shown

in Figure 8. The Figure displays the relationship between the

accuracy and the distance of detection.

The overall average accuracy in case of CPU-based live

detection was 67.33%, and the average distance of correct

detection was 3.51 meters. With GPU-based post-processing,

the average accuracy improved to 74.17%. The average dis-

tance of correct detection increased to (only) 3.76 meters,

but we see from Figure 8 that the detection quality is more

stable across the distance spectrum, with maximal distance

of detection improved to 8 meters (compared to 6 meters in

the live detection case). We emphasise again that these results

were obtained based on one image per test subject. Increasing

the number (and quality) of the images would likely improve

the detection accuracy as well.
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Fig. 8. Accuracy of facial recognition

If building and running a dedicated facial detection back-

end is not an option for the attacker, he may try to distribute

the task by attaching a computer locally to each camera. In

case he would prefer a stealthy setup, using a large desktop

or even a laptop may be undesirable.

As an alternative, the attacker may consider using small

single-board computers attached to every camera. We tried

such a scenario out on ODROID C2, featuring ARM Cortex-

A53 1.5Ghz quad core CPU, Mali-450 GPU and a price tag
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of 46$.7 Its main competitor Raspberry Pi 3 has a somewhat

better GPU, but weaker CPU, and as neither of the GPU-s

is supported by dlib and OpenCV libraries, the computations

would need to take place in CPU anyway. As we were able

to obtain reasonable live detection performance using a CPU-

based setup in our main experiments, there was some hope of

getting good results on a single-board platform as well.

Testing with volunteers showed that in order to get rea-

sonable processing time, the resolution and frame rate would

need to be so low that successful recognition would only

happen within 1-2 meters assuming that a person stays still

in front of a camera for at least a second. We did not study

this problem further, but it seems that dlib and OpenCV

implementations use some Intel-CPU-specific optimisations

currently not available on ARM platforms. It is an interesting

question for further development whether such optimisations

could in principle be implemented.

A promising combination of small size and good per-

formance for machine learning applications is provided by

nVidia Jetson TX product line.8 For example in terms of

CUDA performance, GTX 1070 and Jetson TX2 are almost

equivalent.9 Due to having higher-end chips, being relatively

new and lacking competition, Jetson development boards are

priced higher than regular single board computers (depending

on the configuration and deal around 300-500$). However,

as a result of moving to mainline production and hopefully

some healthy competition, the price will probably drop in the

future, making this attack more accessible for a mid-resourced

attacker.

GDPR compliance notice

All the participants in our facial recognition experiments

were volunteers who signed an explicit consent form comply-

ing with the EU General Data Protection Regulation (GDPR).

Information about the ongoing experiment was distributed

through the mailing list and also made visible on the office

wall.

X. OBTAINING PERSONALISED FACIAL IMAGE DATABASE

The exact characteristics of the required facial database

depend on the attack scenario.

If the attacker is interested in coercing a specific group of

voters (say, a factory director wanting to ensure the votes of

all the employees during local municipal elections), he may

directly gather the photographs. However, the extent of such

an attack would be quite limited.

In order to implement a large scale vote buying attack,

the attacker can set up an image submission service. The

voter interested in selling her vote can submit there her photo

together with, say, Bitcoin address for receiving the fee after

voting for the coercer has been confirmed.

7https://www.hardkernel.com/main/products/prdt_info.php?g_code=
G145457216438

8https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-
dev-kits-modules/

9https://developer.nvidia.com/cuda-gpus

Of course, the attacker would need to advertise the service

somehow (forums, social media, word-of-mouth), so he risks

being noticed by the law enforcement, and the image sub-

mission service ceased, potentially compromising all the vote

sellers. To counter this problem, the attacker does need to not

store the actual images in the database, but rather the facial

feature vectors extracted from them.

As facial recognition is not perfect and can give false

positives, law enforcement will have hard time suing anyone

based on his/her face giving a positive match to some feature

vector in the database. On the other hand, as long as the

percentage of false positives is sufficiently low, the attacker

can be sure that most of his payments still go to the voters

who voted the way he required them to.

Yet another attack scenario is a large scale political perse-

cution. In this case the attacker can not assume cooperation

from the coerced voters and needs to build a database without

their consent.

One way to do this is to make use of vast amount of

photographs available on Internet, say, social media sites. In

2011, a massive personalised facial database was created based

on Facebook social network [52]. Since then, Facebook has

improved its anti-scraping mechanisms, but the database of

2011 can still be found on Internet. There are a few private

torrent trackers, links to which can be obtained in online

forums. It took us about a day to locate a working link.

In 2016, a group of Russian developers set up a service

called FindFace allowing to identify people by their VKontakte

(large Russian social network) profile photo. However, the

service was discontinued as of September 1st, 2018. The

exact reasons for closing down have not been documented,

but FindFace was criticised for privacy violations10.

There exist stakeholders who may have relatively easy

access to citizens’ facial and name data. For example, large

stores maintain customer loyalty programmes where people

sign up to get discounts or other benefits. The stores also

have surveillance cameras all around their facilities, allowing

to collect facial data e.g. at the moment when the customer

swipes her loyalty card at a cashier.

As a part of our study, we originally also planned to try

out how good of a dataset we can scrape from the Internet

ourselves. However, after having contacted our local Data

Protection Authority, we decided to drop this experiment in

view of potential legal actions against the authors of the paper.

It is an open question how researchers working in the public

domain can study certain attacker capabilities without being

prosecuted.

XI. COUNTERMEASURES

Despite leading to rather high detection rates both in terms

of ballot mark locations and facial identification, our attack

relies on quite a number of assumptions, creating possibilities

for countermeasures.

10https://en.wikipedia.org/wiki/FindFace
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First and foremost, the attacker needs to install custom

hardware both in the voting booths and general areas of polling

stations. Even though the mark location device is designed to

work under the table, it can still be located when explicitly

looked for. Even if the microphones can be concealed using

table feet, our current set-up needs wires to connect the

microphones.11

On the other hand, the device can only be found if someone

is actively searching for it. We have conducted no study

on polling station rule books, but we consider it unlikely

that many of them include instructions to look for strange

electronic devices installed under the tables. Thus, the main

systematic countermeasure would be including such instruc-

tions into the rule books and training the polling station staff

to follow them.

Some parts of the attack (setting up cameras, running an

image collection server for vote buying) would need to happen

in public space. Monitoring this space for suspicious activity

is an important detection measure. This will be a part of

the ever-ongoing race between the attackers and defenders of

the voting environment. The main message of our research

is that in the light of new technological attack vectors, the

defence mechanisms of paper voting need constant review and

updating as well.

In our experiments, we did not make an effort to distinguish

the sound of ballot marking from other sounds, e.g. the noise

a paper would make when moved around on the table. While

the voter would not need to make any extra noises, she may

choose to do it to improve her privacy. However, such a level

of awareness can not be expected from masses of voters. Also,

in the vote buying scenario, the voter is actively interested in

correct recording of her vote, so she would make sure that the

amount of noise is reduced.

XII. CONCLUSIONS AND FURTHER WORK

In this paper, we have described a new side-channel attack,

applicable against a wide range of paper ballot sheet designs.

The average accuracy of detecting the correct 4 × 5 cm

cell on the board reached over 90% in the best setup. This

result greatly exceeded expectations of the authors, especially

considering the low price tag (around 20-30$) of the device.

When combining this device with an appropriate solution

for facial detection, the attacker can fully automate breaching

paper voting privacy. Attack automation, in turn, is a necessary

prerequisite for scalability.

Of course, it is not the only one. The attacker would still

need to install the mark detection devices and cameras, but

each setup will be able to reveal the preferences of hundreds,

maybe thousands of voters. Assuming that the attacker will be

able to deploy several installations of the devices, this gives

rise to a privacy breach of much larger extent than at homes in

case of remote Internet voting (at least for a mid-level attacker,

unable of creating and distributing custom malware).

11During our research, we also considered using radio microphones, but
due to the need to access the raw analog signal, this would require extra
development to deal with modulation, increasing the complexity of the attack.

In fact, the most significant bottleneck of our attack is not

the difficulty of installing apparatus in the polling stations,

but the infrastructure and computing power required for facial

recognition. Real-time on-site detection currently seems to as-

sume hard- and software available mainly for law enforcement.

Using a commercial facial recognition service in the back-

end is risky, so the primary option left for the attacker

is to build such a back-end himself. This requires a non-

trivial development effort together with a non-trivial monetary

investment into hardware. The overall success of our attack

will be determined by how well the attacker will be able to

address these challenges.

At the same time, availability of new technologies (like off-

the-shelf web frameworks and anonymous cryptocurrencies)

has made other parts of the attack (like collecting a facial

feature database and automatic anonymous transfer of vote

buying fee) considerably more accessible for a mid-level

attacker.

One may argue that integrity properties (e.g. correctness

of the tally) are more important than vote privacy that can

only be used indirectly in coercion scenarios. It will be an

interesting direction for future work to try to develop proof-

of-concept high-tech attacks against low-tech voting actions

like, say, ballot box management or hand counting the paper

ballots.

Our side channel attack works the best in case of extremely

large ballots sheets. However, the reason for occurrence of

such ballots is rather deep. In order for democracy to function

properly, there need to be multiple candidates. In principle,

every person eligible to vote should also be qualified to run

for an elected position. From this viewpoint, having many

candidates is good for the democratic political culture. On

the other hand, presenting all the candidates to the voter

is a challenge which may, as our research shows, introduce

new kinds of privacy issues. Resolving this conflict of goals

requires a larger discussion in the society, leading to an

agreement on the new security measures to be deployed in

the future.
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