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Abstract—The increased demand for machine learning ap-
plications made companies offer Machine-Learning-as-a-
Service (MLaaS). In MLaaS (a market estimated 8000M
USD by 2025), users pay for well-performing ML models
without dealing with the complicated training procedure.
Among MLaaS, text-based applications are the most popu-
lar ones (e.g., language translators). Given this popularity,
MLaaS must provide resiliency to adversarial manipulations.
For example, a wrong translation might lead to a misunder-
standing between two parties. In the text domain, state-of-
the-art attacks mainly focus on strategies that leverage ML
models’ weaknesses. Unfortunately, not much attention has
been given to the other pipeline’ stages, such as the indexing
stage (i.e., when a sentence is converted from a textual
to a numerical representation) that, if manipulated, can
significantly affect the final performance of the application.

In this paper, we propose a novel text evasion technique
called “Zero-Width attack” (ZeW) that leverages the injection
of human non-readable characters, affecting indexing stage
mechanisms. We demonstrate that our simple yet effective
attack deceives MLaaS of ‘“‘giants” such as Amazon, Google,
IBM, and Microsoft. Our case study, based on the manipula-
tion of hateful tweets, shows that out of 12 analyzed services,
only one is resistant to our injection strategy. We finally
introduce and test a simple input validation defense that can
prevent our proposed attack.

Index Terms—NLP, evasion attack, input validation

1. Introduction

Without any doubt, machine learning applications had
considerable success in the 2010s, finding space in differ-
ent areas, from the automotive industry with autonomous
vehicles [1] to the biomedical sector with brain tumor
segmentation [2]. The popularity of machine learning
(ML) had a boost-up thanks to the increase of machines’
computational power, making ML easily accessible to
researchers and industrial developers, one of the signif-
icant obstacles of previous decades. Even though ML
nowadays is accessible to developers, we can find three
main limitations in the deployment of ML solutions, due
to the lack of: i) amount of data required to train a robust
model, ii) amount of computational resources, and iii)

. This paper appears in the proceedings of the 6th IEEE European
Symposium on Security and Privacy (EuroS&P) 2021.

Mauro Conti
Department of Mathematics
University of Padua
Padua, Italy
conti@math.unipd.it

machine-learning engineers with suitable expertise. For
instance, we can consider the task of sentence language
translation: in 2016, Google presented a translator based
on Long Short-Term Memory (8 layers both encoder and
decoder), trained over a parallel corpus' of 26 million
sentences (English-French) [3]. Not only the difficulty of
the model’s architecture implementation (i.e., the choice
of hyperparameters), but it requires an enormous amount
of resources: the training procedure involved the use of
96 NVIDIA K80 GPU, with six days of computation.

The aftermath of such complexity is that real-world
tasks are unlikely modeled with ML by companies or
users without enough resources (i.e., computational power,
data, ML engineers). To overcome this issue, the principal
IT organizations (e.g., Amazon, IBM, Google, Microsoft)
started developing solutions for common complex tasks
(e.g., text analysis, optical character recognition) called
Machine-Learning-as-a-Service (MLaaS), where users pay
for a certain amount of queries. In this way, for example,
companies that require to analyze documents can use
advance and well-performing techniques at an affordable
price without caring for the complex training process.
MLaaS had a discrete success, and in 2019 this market
was valued 1.0 billion USD, with an estimation of 8.48
billion USD by 2025 [4].

The rapid growth of ML in real case applications also
attracted the security community. Researchers started ask-
ing whether users can maliciously affect ML-applications
decisions: this area is called Adversarial Machine Learn-
ing [5]. In particular, several proposed attacks show the
feasibility of affecting at test time ML algorithms by
adding small and unnoticeable perturbation to the input
data [6], [7], [8].

In this paper, we focus on the text-domain, where
the addition of malicious perturbation is translated with
the modification of text through various techniques (e.g.,
misspelling, typos, word addition). The primary constraint
of attacks in the text-domain is the “readability preserva-
tion”, i.e., a human being can understand the meaning
of modified sentences. The reasons behind the limitation
mentioned above are deducible: let us consider the senti-
ment classification of music reviews (i.e., positive/negative
reviews), where the adversary goal is to have positive

1. A parallel corpus is a dataset used for sequence-to-sequence tasks,
where each sample has a source and a target. The goal of the model is
to translate the source to the target.



classifications for negative sentences. The original sen-
tence could be “I hate this album”, and its malicious
counterpart “I hA. XYztXaeX this album”. While the orig-
inal sentence classification is expected to be negative, its
counterpart might not; however, from a human point-of-
view, the malicious sentence is not readable, and thus
the adversarial sample loses its semantic meaning. So
far, several works have proposed adversarial techniques
in the text-domain, combining complex algorithms to find
a trade-off between the effectiveness of the attack and the
readability of produced malicious sentences. For instance,
in [9], the authors identify the importance of the words of
a given sentence for the target model, and replace them
with sophisticated linguistic strategies. In [10], the authors
proposed DeepWordBug, a process that first uses a scoring
function to identify critical tokens for the target model
and then applies character transformations to minimize
the number of modifications. For an in-depth overview
of state-of-the-art adversarial machine learning in text-
domain, we suggest [11].

Contributions. Motivated by the common assump-
tion of “readability preservation”, we investigate a novel
evasion technique that guarantees full readability and
attack effectiveness. Our technique, called “Zero-Width”
(ZeW), injects malicious UNICODE characters often used
in text steganography strategies. These characters are
called zero-width space, and their effect is that, when
printed, they have zero-width, resulting invisible from a
human being’s perspective. In one of our attack scenarios,
we attack the popular web application Google Translate’
on the English-Italian task. Figure 1 shows an example of
wrong translation, where the original sentence “I wanna
kill you” is translated as “ti voglio bene”, which means
“I love you”. It is curious to notice that the input section
has 31 characters (Figure 1, left side), while the sentence
should contain only 16. In contrast to the state-of-the-art,
ZeW does not require any assumption of the target model,
and the readability constraint is relaxed. Moreover, so far,
most of the proposed attack strategies aim to leverage the
learning strategies’ weaknesses (e.g., model architectures);
however, a ML application is composed of several stages
(pipeline), where the ML model is only one of them. In
this work, we aim to attack and disrupt the “indexing-
stage” (see Section 2.1), which is the step that converts
a sentence from the textual representation to a numerical
one. To the best of our knowledge, not much attention
has been put to find possible weaknesses to the entire text
pipeline.

In this paper we aim to understand the following: i)
the effect of ZeW attack on different types of indexing
strategies, and ii) if commercial solutions are vulnerable to
ZeW attacks. We conduct our experiments through a case
study of a possible ZeW attack application: hate speech
manipulation. We designed a simple injection strategy
that, given a hateful sentence, identifies negative words
and injects malicious characters in two possible fashions:
1) Maskl1, where only one malicious character is inserted in
the middle of the word and ii) Mask2, where one malicious
character is inserted between each character of the word.
We tested this strategy over popular text MLaaS provided
by Amazon, Google, IBM, and Microsoft, without having

2. https://translate.google.com.

prior knowledge of the target models. The analysis aims
to understand which services can be affected by ZeW, and
the magnitude of the vulnerability. Our experiment shows
that 11 out of 12 MLaaS are vulnerable to the proposed
attack. We further introduce a simple countermeasure
approach that can prevent ZeW. The purpose of this work
is to emphasize the importance of studying the security of
machine learning pipelines in all of their stages. Due to
the gravity of ZeW, at the time of submission, all of the
companies (i.e., Amazon, Google, IBM, and Microsoft)
are informed.
Our contributions can be summarized as follows.

e« We propose a novel text evasion strategy called
Zero-Width (ZeW) that affects the indexing stage
of text pipelines.

e We show the effect of ZeW over Machine-
Learning-as-a-Service developed by Amazon,
Google, IBM, and Microsoft. Out of 12 tested
services, 11 show vulnerabilities (8 strongly af-
fected).

« We propose a countermeasure to ZeW that can be
easily integrated in every text ML-based pipeline.

Paper Organization. The manuscript is organized
as follows. In Section 2 we first briefly introduce the basic
concepts required to fully understand the rest of the paper.
Motivations, theoretical perspective, and countermeasure
of ZeW are described in Section 3. We then move in
Section 4 with the implementation of ZeW in a real case
scenario, the hate speech manipulation, followed by a
discussion of the attack results in a controlled environment
first (Section 5), followed by MLaaS (Section 6). In
Section 7 we summarize state-of-the-art attacks targeting
models of MLaaS. We conclude with the limitations of the
proposed attack in Section 8, followed by considerations
and discussions of the possible implications of our results
(Section 9).

2. Background and Preliminaries

This section presents the preliminary concepts re-
quired for the rest of the paper. Section 2.1 presents
an overview of the standard pipeline in Natural Lan-
guage Processing (NLP) applications, followed by an
introduction to the adversarial machine learning theory
in Section 2.2, and, finally, Section 2.3 describes keys
and challenges of adversarial machine learning in the text-
domain.

2.1. Text Pipeline

ML-based applications on text-domain follow a com-
mon pipeline, as described in [11], [12], and shown in
Figure 2. The pipeline consists of the following compo-
nents: original documents, preprocessing, indexing, and
machine learning model.

Original Documents. Collection of the corpus of
documents to analyze. The origin of these documents can
differ, such as text files, PDFs, or HTML web pages.

Preprocessing. Set of mechanisms that prettify
documents, with the removal of useless information (e.g.,
TAG, format controls). This stage can involve different
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Figure 1: Zero-Width (ZeW) on a real-life scenario: Google Translate. The translated sentence means “I love you”.
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Figure 2: Machine Learning pipeline in Natural Language
Processing.

techniques, such as tokenization, where sentences are
decomposed in lists of words, stopword removal, where
common words (and meaningless) are removed (e.g., ar-
ticles), and stemming, where words are converted in their
root form (e.g., books — book).

Indexing. The mechanism that converts the sym-
bolic representation of a document/sentence into a nu-
merical vector. At training time, a vocabulary V' of the
possible representations (word/character level) is defined.
The vectorial representation is usually handled in three
possible ways:

o Word-count encoding. Each document is repre-
sented as a vector of words occurrences. For ex-
ample, given the sentences s; = ‘“hello there”
and so = “hello hello’, a vocabulary V =
[hello, there], the sentences are represented as

S1 = [17 ],
So9 = [2,0],

where the numbers represents the number of oc-
currences of the correspondent index in the vo-
cabulary (i.e., “hello” in position 0, “there” in
position 1). A variant of the word count often use
the Term Frequency-Inverse Document Frequency
(TF-IDF); this encoding tries to capture the impor-
tance of a word in the document given a collection
of documents.

e One-hot encoding. This encoding represents a doc-
ument as a list of vectors (one per word/char in
the document). Given the previous example, the
sentences are represented as

S1 = [[17 O]v [0’ 1H>
S2 = [[170}7 [LOH

e Dense encoding. In this category, we find word
embeddings, powerful vectorial representations of
words [13], [14]. Here, each word is represented
as a vector of real numbers (abstract representa-
tion). Dense representations can be pre-trained or
trained end-to-end (e.g., using Language Models).
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For example, given the words “dog”, “cat” and
“hello”, the dense representation indicates that the
word “dog” is spatially closer to “cat” rather than
“hello”.

During the indexing phase, the pipeline needs to deal with
unrecognized items (word/character level), i.e., items out-
of-vocabulary (OOV). There are two possible ways to deal
with it: i) discarding them from the analysis or ii) mapping
them to a special token “UNK”. In the latter case, the
special token has a proper representation, based on the
indexing strategy (i.e., word-counting encoding, one-hot
encoding, dense encoding). The problem of unrecognized
items is well-established in NLP, where the frequency of
items in a dataset usually follows long-tail distributions.
To reduce the complexity of the problem, the standard
approach is to maintain small vocabularies with the most
frequent items [15]. In Natural Machine Translation tasks
this could be a problem, where all of the OOVs are
mapped to a single token “UNK”. For example, we can
consider the translation task from English to a target
language of the sentence “Liam meets Noel”. Likely, both
proper names are not present in the vocabulary, and thus
they are mapped to the same token (i.e., “UNK meets
UNK?”), losing the name information in the target lan-
guage. A standard approach, proposed in [16], consists of
using placeholders to map rare items with unique pointers
(e.g., “UNKI meets UNK2”, where UNKI1 = Liam and
UNK2 = Noel) with a final name replacement in post-
processing.

Machine Learning Model. The ML model used for
the task. The set of models vary from simple architectures
(e.g., Logistic Regression, Random Forest), to Neural
Networks (NN) and Deep Neural Networks (DNN). In
the latter case, we can find variants of Recurrent Neu-
ral Networks (RNN) such as Long Short-Term Memory
(LSTM) [17] or Gated Recurrent Units (GRU) [18].

ZeW aims to attack and disrupt the pipeline by af-
fecting the indexing stage, affecting the ML-model per-
formance.

2.2. Adversarial Machine Learning & Applica-
tion Security

Adversarial Machine Learning (AML) is the discipline
that studies the security of ML algorithms [6], [19]. In
literature, we can find several classes of attacks. For
example, the model evasion attack, where the adversary
defines an adversarial example with the aim to affect
target ML predictions [6], [7]. Formally, given a target
model F, an input sample z, the adversary aims to find
a small perturbation € in such a way that F(z) = y;



and F(x + €) = y;, where y; # y;. Another popular
attack is the poisoning attack: if the attacker has access to
the training data, he/she can inject malicious samples that
affect the model performance [20]. A variant of this attack
is called trojan/backdoor attack, where the attacker does
not influence the model performance, but instead creates a
backdoor in the model. At test time, the attacker triggers
this backdoor, with results similar to the evasion [21], [22].

Nevertheless, ML applications contain not only ML
algorithms but also additional steps such as preprocessing
and transformations. For example, in Section 2.1 we de-
scribed an overview of standard text pipelines. Therefore,
the concept of applications security must assess each
component that defines such pipelines.

Despite its importance, not a lot of attention is given to
this broader area of application security. Examples of soft-
ware security-related vulnerabilities are presented in [23],
where the authors disclose a set of attacks (e.g., denial
of service) related to popular ML frameworks as Caffe
and Tensorflow. Similarly, in [24] the authors introduce
the Camouflage Attack, where malicious images change
their semantic meaning after scaling them. Such attack can
be exploited in computer vision (CV) applications, where
image scaler algorithms are usually employed upstream
of CV pipelines.

We remark that adversarial machine learning tech-
niques aim at machine learning models, while our pro-
posed attack ZeW exploits vulnerabilities of preprocessing
and indexing engine algorithms of text pipelines (see
Section 2.1).

2.3. Challenges of adversaries in Text-Domain

While AML gained popularity in Computer Vision
(CV) from its early stages, only in recent years researchers
moved onto the NLP domain. As identified by [! 1], three
major aspects differentiate AML in NLP from CV.

o Input Domain. While images are defined in a
continuous space (e.g., RGB matrix), sentences are
discrete and represented as a list of symbols. It
implies that the meaning of perturbation that we
want to add changes its nature. For example, in CV
the perturbation is defined as a matrix of values to
sum up to the original image. This is not possible
in NLP since there is no meaning in adding an
integer to a word (e.g., “dog” + 1).

e Human Perception. From a human point of view,
perturbations in CV are difficult to perceive, since
the modifications are at a pixel level. Vice-versa,
on text, small changes are easily detectable by both
human beings and machines (e.g., spell checkers).

e Semantic. From the semantic point-of-view, the
addition of a perturbation into an image rarely
changes its meaning. In NLP, the modifica-
tion/addition/removal of a character/word may
lead to a completely different meaning of the
sentence (e.g., “I hate you”, “I ate you”).

As a consequence, state-of-the-art attacks on NLP are
either CV-algorithms adapted to face NLP challenges, or
novel solutions designed from scratch.

In this work, we are mainly interested in the evasion
attack. As previously introduced, our goal is to define a

perturbation that influences the target model while pre-
serving the semantic and readability of the sentence. A
small amount of perturbation can guarantee a correct
human perception; for example, in [25], authors show the
human resistance to leet speech, e.g., “R34D1NG WORDS
WITH NUMB3RS5”. The choice of the measurement is
not trivial as in CV, where spatial distance metrics between
the original sample 2 and the malicious x’ are used. As
stated in [ 1], we can measure the perturbation in different
ways, such as norm-based distances for dense represen-
tations, or edit-based measurement, which identify the
number of changes required by making =’ equal to x.

3. Zero-Width Attack

In this section, we present the Zero-Width attack
(ZeW). We first introduce in Section 3.1 the motivations
and the intuition that drives our investigation. In Sec-
tion 3.2 we describe how ZeW can affect different NLP
pipelines. We conclude with Section 3.3 by describing a
countermeasure to our proposed attack.

3.1. Motivations

Three main motivations guide our investigation.

1) UNICODE representation. Most NLP tools al-
low the use of UNICODE characters. This is
essential, especially for the analysis of web text.
For example, on Social Networks, non-ASCII
characters are often used (e.g., emoji).

2) Readability Preservation. The attack strategy
should apply fewer modifications as possible to
maintain the sentence readability.

3) Indexing stage vulnerabilities. To the best of our
knowledge, most of the attack strategies aim to
leverage ML-models’ weaknesses, while little at-
tention has been put to the security of other stages
of the text ML pipeline, such as the indexing
stage (see Section 2.1).

We asked ourselves if it exists a technique that allows
us to relax the constraint of the number of modifications
to malicious sentences, allowing us to focus only on the
disruption of target models’ performance. We found the
answer in the steganography discipline, which is the “art
of hiding secret messages into plain sources” [26]. In
the UNICODE representation, there are characters whose
width is zero, i.e., when printed, they are invisible, and
human beings cannot perceive them. Some examples of
these characters are zero-width space (U+200B) and zero-
width joiner (U+200C). These allow us to insert an ar-
bitrary number of “invisible” characters in a given sen-
tence. Thanks to this particular property, we can forget
to consider the problem of readability preservation since
sentences semantic is intact. The presence of zero-width
characters allows an attacker to affect the decision of the
indexing stage (see Section 3.2). We identify in total 24
malicious characters®.

In cybersecurity, we can find the usage of zero-width
characters in different ways. For example, in [27] the
authors use zero-width characters in the communication

3. https://github.com/pajola/ZeW/blob/main/ZeW.py



protocol of a botnet, ELISA; here, the botmaster secretly
communicates through public posts with the zombies over
social networks such as Facebook. In late 2018, the
security team AVANAN discovered a phishing method
against Office 365, bypassing Microsoft’s security mecha-
nisms [28]; in this attack, hackers used zero-width charac-
ters in the middle of malicious URLs, evading Microsoft’s
detection mechanisms. While in security zero-width char-
acters are a known threat, to the best of our knowledge,
we are the first to explore their effect in the adversarial
machine learning context.

3.2. Theoretical Perspective

Zero-width characters give us the power to break the
intra-relationship between the characters of a given sen-
tence. Let’s represent from now on zero-width characters
with the symbol “$”. We can recall the example reported
in Section 1 “I hate this album”; the malicious version
“I h$a$t$e this album” appears identical to the original
sentence from a human point of view, while different from
a machine perspective. Figure | presents a real example
of zero-width characters. We can notice that the malicious
sentence appears legitimate.

In Section 2.1 we described possible numerical repre-
sentations of a given sentence (indexing stage). We now
explain how ZeW can affect those representations.

o Word-based representations. In word-based repre-
sentations, a sentence can be seen as a temporal
vector s = tg + t1 + ... + t,, where t; is the
token (i.e., word, punctuation symbol) at the time
i, and n is the length of the tokenized sentence
(see Section 2, preprocessing stage). Here, it is
unlikely that words containing “$” are present
in the vocabulary V. Two possible scenarios can
occur.

— Unrecognized words are mapped to special
tokens (e.g., placeholders, “UNK”). It is
likely that unpoisoned words and “UNK”
have different meanings and effects to tar-
get models, since they appear with a dif-
ferent representation. For example, the sen-
tence “I h$a$t$e this album” is represented
as “[I, UNK, this, album]”.

— Unrecognized words are discarded from the
analysis, with a consequence of loose of
expressiveness of the malicious sentence.
For example, the sentence “I h$a$t$e this
album” is represented as “[I, this, album]”
(the word “h$a$t$e” is discarded). In this
case, the target model analyzes only the
remaining sentence. Potentially, by adding
one zero-width character per token, the re-
sulting sentence will be empty.

o Character-based representations. In char-based
representations, a sentence can be seen as a tem-
poral vector s = tg +t1 + ... + t,,, where ¢; is the
character at position ¢, and n is the total number
of characters that compose the sentence. As in the
previous case, two possible scenarios can occur.

— Unrecognized characters are mapped to the
special tokens (e.g., placeholders, “UNK”),
resulting in an addition of noise in the vec-
torial representation. For example, the word
“h$a$t$e” is represented as “[h, UNK, a,
UNK, t, UNK, e]”.

— Unrecognized characters are discarded
from the analysis. In this case, the poi-
soned sentence coincides with the original
sentence. The attack has no effect in this
scenario. For example, the word “h$a$t$e”
is correctly represented as “[h, a, t, e]”.

In general, ZeW leads to an increase in noise or
reduction of information in the sentence representation.
The attack can be seen as an injection attack, where
malicious characters are injected into target sentences.
Potentially, an attacker can insert an arbitrary number of
“$” on malicious sentences, without any constraint. This
gave us the capability of not considering the perturbation
measurement described in Section 2.3.

To the best of our knowledge, injection strategies using
ZeW characters can be further optimized with target ML-
models, resulting in the following adversarial attacks:

o Evasion. ZeW characters can be optimally inserted
in target sentences to affect ML models’ decisions.

o Poisoning. If the adversary has access to the train-
ing data, the addition of malicious samples could
lead to a noisy dataset, decreasing the overall
performance.

o Trojan. If the adversary has access to the training
data, he/she can inject a rare sequence of zero-
width characters in a small portion of the dataset
and let the model overfit over them. At test time,
the trojan is triggered by samples containing that
specific sequence.

The definition of such adversarial attacks is out of the
scope of the paper.

3.3. Countermeasure

Overall, ZeW is an injection attack that influences the
indexing stage (see Section 2.1), with consequences in the
following steps (i.e., machine learning algorithms). ZeW
leverages peculiar properties of UNICODE representation,
which contains non-printable characters. In the security
field, injection attacks are a standard and well-known
problem [29]. A typical example is the SQL injection,
where the definition of malicious input can damage the
target database structure and destroy its contents. Injec-
tions can be severe, especially when users are allowed to
insert arbitrary input used for critical operations. Similarly,
MLaaS offer users to interact with ML-models through
APIs. It is thus essential to have mechanisms that control
any input feeding the models, placed at the preprocessing
stage; these are also called sanitization or input validation
mechanisms. Regarding ZeW, a simple filter that rejects
malicious sentences containing non-printable characters
is enough. Similarly, the sanitizer can just discard the
malicious characters.



4. Case Study: Hate Speech Manipulation

In this section we introduce the disignated case study
(Section 4.1), followed by the injector algorithm descrip-
tion (Section 4.2).

4.1. Overview

We test and evaluate ZeW on text Machine-Learning-
as-a-Service provided by popular companies such as Ama-
zon, Google, IBM, and Microsoft. These services vary
from sentiment analyzer to language translators. Our idea
is to test some of the most popular ML-based text services
to understand how many applications can be affected by
the attack.

As a case study, we analyze the hate speech manip-
ulation, a topic that raised the interest of a broad area
of researchers in the last years [30], [31]. Our goal is to
understand how zero-width characters affect the outcomes
of different MLaaS. We consider the attack successful if
the injection of zero-width characters affects in some way
the performance of a target model. We are also interested
to understand the magnitude of the vulnerability. In our
opinion, this is a likely scenario where a malicious user
aims to offend a target victim without being detected,
since it is known the problem of malicious interaction be-
tween users and Artificial Intelligence systems. A famous
example is the Microsoft chatbot Tay, which becomes
hateful after a poisoning attack of a group of users [32].

4.2. Manipulation algorithm

In this work, we aim to define a simple yet effec-
tive strategy using ZeW attack. Simple and non-optimal
attacks have been shown to be effective in [33], where
cybercriminals evade sexually explicit content detection
with simple image transformations (e.g., random noise
addition).

In our attack, we assume that hateful sentences contain
a negative part-of-speech, as shown in Figure 3 on the Real
corpus. We thus want to understand how the performance
of the tested MLaaS are affected when “deleting” such
negative parts. To do so, we designed a simple injection
strategy that, given a sentence, identifies negative words
(i.e., words with negative polarity scores) and injects on
them zero-width characters. In the experiment, we inject
zero-width characters in two possible fashions.

1) Maskl. Only one random Zero-Width SPace
character is injected in the middle of the target
word (e.g., hate — haS$te).

2) Mask2. Multiple random Zero-Width SPace char-
acters are injected, one between each character
(e.g., hate — $h$a$t$e$).

The idea behind these two strategies is to measure the im-
pact of ZeW with different levels of injection. Algorithm |
shows the overall attack strategy. To identify negative
words we use VaderSentiment, a free sentiment analyzer
tool available for Python [34]. The code of the injector is
available on GitHub".

4. https://github.com/pajola/ZeW

Algorithm 1: HS-Manipulation

input : An original sentence s and the type of
injection mask m
output: A poisoned sentence Spois
tokens = Tokenizer(s)
Niok = length(t)
i =0 Spois = [] while i < Ny, do
t = tokens]i]
tstem = Stem(t)
tsent = Sentiment(tstem )
if t5en is negative then
| tpois = Injector(t,m)
end
Spois~add(tpois)
1=1+1

end
Spois = JOIN(Spois)

5. Results on Controlled Environments

In this section, we evaluate the impact of the ZeW
injection strategy presented in Section 4 over different
machine learning models and indexing techniques. In
Section 5.1 we first present the experimental settings,
followed by result discussions in Section 5.2.

5.1. Experimental Settings

Algorithm 1 aims to reduce the negative part-of-speech
of a given sentence. We thus decide to understand the
impact of ZeW injection strategy over a binary classifi-
cation task: the sentiment classification. The task consists
of predicting whether a sentence is positive or negative.
For the experiments we use the Sentiment140 dataset [35].
The dataset contains positive and negative tweets (800K
per class), for a total of 1.6M of labeled tweets. We then
randomly split the corpus into a training (70%), validation
(10%), and testing partition (20%). We evaluate two types
of ML algorithms:

e SGDClassifier. This is a linear classifier. We use
Scikit-Learn [36] implementation. The model is
built on top of a TfidfVectorizer, i.e., an engine
that converts raw documents into TF-IDF repre-
sentations.

e Recurrent Neural Network Classifier. We deploy
standard RNN-based classifiers using an embed-
der, followed by a two layers GRU and a final
linear layer. The model is deployed using Py-
torch [37].

Each model is trained over different variants of text rep-
resentation i.e., character and word-based. The SGDClas-
sifier implements two different combinations: character
ngrams defined in the range [1,5], and word ngrams,
defined in the range [1,3]. For example, the range [1, 2]
means that the vectorizer considers unigrams and bigrams.
The RNN classifier is defined over character and word
unigrams tokenizer; in addition, we further consider RNN
classifiers that use and discard “unknown” tokens. The
models use a common and standard preprocessing tech-
nique that removes hashtag, mentions, and URLs from
tweets. Table 1 summarize models’ configuration.



We now briefly describe the hyperparameters selection
and training strategy of the two models categories. The
SGD classifier is implemented with a greed search strategy
over the following Tfidf Vectorizer’s hyperparameters: max
document frequency (0.5,0.75,1), max number of fea-
tures (1000, 5000), and use IDF (T'rue, False). We use
the validation set to find the best configuration. RNN mod-
els implement default hyperparameters configurations: the
embedding dimension is 100, and the GRU’s hidden size
is 256. The vocabulary size is set to 25K tokens for word-
based cases, while 100 for character based ones; these
vocabulary thresholds allows the model to learn the repre-
sentation of “unknown” tokens. The training process uses
Adam optimizer and BCEWithLogitsLoss as loss function.
The models are trained for a maximum of 100 epochs.
Note that we use a stopper mechanism that interrupts
the training if a model does not improve its validation
performance for 5 epochs.

5.2. Results and Considerations

In this section, we evaluate the performance of the
six models presented in Section 5.2. The first evaluation
is conducted with the accuracy score (ACC), i.e., the
percentage of correct predictions. Table | summarize the
results. As expected, DNN-based models tend to outper-
form simple linear models; this gap can be linked with the
limited vocabulary size adopted in the TfidfVectorizer due
to memory limitations. We also highlight that the usage of
unknown tokens does not boost-up models’ performance.

The effect of ZeW is measured with the attack success
percentage (ASP), i.e., the percentage of sentences classi-
fied as positive. Note that such a percentage also contains
those samples that are misclassified in normal conditions.
The evaluation uses three corpora: a set of original tweets
called “real”, and two malicious counterparts (one per
mask) named “maskl” and “mask2”, respectively. The set
“real” corresponds to the negative test sentences (160K);
we then discard those sentences that cannot be modified
by Algorithm 1, resulting in a final set with 75K tweets.

Table 1 presents ZeW success percentage. We can
notice that the ASR is always under 40%. This result can
be explained with:

e a limitation of Algorithm 4.2, where the injection
strategy modifies negative tokens. However, a sen-
tence’s polarity might be the effect of a sequence
of tokens rather than the sum of single instances
polarity.

o a limitation of ZeW, where the injection is limited
to a strict set of operations (i.e., the insertion of a
set of characters).

Nevertheless, we can find some insights from such results:

1) ZeW can affect the performance of different mod-
els that use different tokenization strategies. The
combination of ZeW with state-of-the-art attacks
targeting ML-models can result in dangerous ef-
fects.

2) In general, character-based models are more re-
silient to ZeW. In particular, we highlight that
when unknown tokens are discarded, ZeW attack
fails.

3) In general, models that consider unknown tokens
are more vulnerable. An attacker can thus lever-
age this factor.

6. Results on MLaaS

In this section, we show how ZeW affects the perfor-
mance of different MLaaS of the leading IT companies:
Amazon, Google, IBM, and Microsoft. The considered
companies provide similar services, and, where possible,
the results are grouped-by. We identified the following
macro-areas.

e Hate Speech Detection (Section 6.2). Tools that
identify toxicity/hate speech in comments.

o Insights Extractors (Section 6.3). Tools that extract
insightful information from the text (e.g., tones,
personalities).

o Sentiment Analyzers (Section 6.4). Tools that mea-
sure sentence polarization.

e Translators (Section 6.5). Tools that translate sen-
tences from a source language to a target one.

In this work, we do not compare the performance of
ZeW with state-of-the-art since their focus is to exploit
ML algorithms vulnerabilities, while we aim at the disrup-
tion of the indexing stage. Since our attack model is free
of all of the restrictions in the number of modifications,
an attacker can combine ZeW with attacks targeting ML
algorithms.

6.1. Dataset & Evaluation on VaderSentiment

For the experiments, we use the hateful sentences
available in [38], a well-known dataset of the task. This
dataset contains three distinct classes: “hateful”, “offen-
sive but not hateful”, and “neither” (nor hateful neither
offensive). The dataset includes 1430 hateful sentences.
We call now on the set of hateful sentences Real. Sen-
tences that do not contain any negative word (detected)
are discarded from Real. We then applied the injection
algorithm with the two possible masks, generating two sets
called, respectively, Maskl and Mask2. The final corpora
contain 1094 samples each. All of the analyses and tests
in different MLaaS use these corpora.

We first analyze the impact of ZeW on VaderSen-
timent. As shown in Figure 3, both injection strategies
(Maskl and Mask?2) entirely cancel the perceived negativ-
ity. The median values of negativity scores are 0.35 (Real),
and 0.0 for both Maskl and Mask2. ZeW is effective in
both modalities against VaderSentiment. The injection of
only one character per negative word is enough to disrupt
this service. This might be a relevant problem since this
tool is widely used in the scientific community.

In this section, we further show the effectiveness of
our defense strategies proposed in Section 3.3, where
the sanitization technique discards the malicious character
from any given sentence. Figure 3 shows that the sanitized
sentences have the same distribution of the original and
unpoisoned corpus. Given the simplicity and the effective-
ness of the proposed countermeasure, we decide to do not
report similar results in the rest of Section 6.



ML Model Tokenization UNK ‘ Train (ACC) Valid (ACC) Test (ACC) ‘ Real (ASP) Maskl (ASP) Mask2 (ASP)
SGDClassifier Char No 77.15 77.00 77.19 12.06 22.15 29.63
SGDClassifier Word No 73.04 73.00 73.15 14.94 20.88 27.12

RNN Char No 81.68 81.52 81.46 5.27 3.72 3.72
RNN Char Yes 82.60 82.41 82.39 7.57 12.53 21.34
RNN Word No 84.79 84.20 84.28 6.93 37.75 37.19
RNN Word Yes 84.93 84.38 84.41 6.25 37.29 36.62

TABLE 1: Overview of models’ performance. The accuracy score (ACC) measure the quality of the model on the three
splits. The attack success percentage (ASP) measures the misclassification percentage of a given classifier; in bold the

results of models resistant to ZeW.
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Figure 3: Negative sentiment densities of different corpus
measured by VaderSentiment, where +1.0 is extremely
negative and 0.0 is absence of negativity. The violin plot
shows the distributions of the corpora’s negative scores;
the blue line represents the median value of the distribu-
tion. The service is vulnerable if the distributions under
attack are not equal to the distribution of Real.

6.2. Hate Speech Detection

We start our analysis with hate-speech detection, the
set of tools closer to our case study. These tools aim is to
identify and detect the toxicity of sentences. The goal of
an adversary is to write hateful sentences without being
detected. This scenario is likely on Social Networks (e.g.,
Facebook) that uses account suspension or ban when users
post inappropriate content. We analyzed the following
services.

o Google Perspective’. Perspective is part of the
Conversation Al project, which aim is to improve
the quality of online conversations with the super-
vision of ML. The tool identifies several aspects of
online conversations that might be inappropriate,
such as toxicity, profanity, and flirtation. In this
experiment, we focus on toxicity manipulation,
defined as disrespectful comments.

« Microsoft Content Moderator®. This ensemble of
ML-tools aim to identify potentially offensive con-
tent in different type of media, such as text, im-
ages, and videos. Regarding the text-domain, the
model identifies three categories of malicious con-
tent: sexually explicit content, sexually suggestive,
and offensive. In this analysis, we focus on the lat-
ter. The tool offers the “autocorrect” option, which

5. https://www.perspectiveapi.com
6. https://azure.microsoft.com/en-us/services/cognitive-services/
content-moderator

corrects grammatical mistakes before analyzing
the contents. In our experiment, this parameter is
set to TRUE.

Figure 4 shows the effect of ZeW on the toxicity
detectors. Both services are highly resistant to the attack.
On Google Perspective the median confidence level of the
detector is 0.95 on (Real), 0.84 on Maskl, and 0.83 on
(Mask2). Similarly, on Microsoft Moderator the median is
0.99 on (Real), 0.97 on Maskl, and 0.86 on (Mask2).

The impact of the attack is not strong, and the model
seems resistant. On the other hand, in Google Perspective
the insertion of only one zero-width character per negative
word appears sufficient to damage the model’s confidence
level. Similarly, the Microsoft tool can be affected by
Mask2. We also need to highlight that the purpose of these
tools is to detect high toxicity levels rather than detect
negativity on sentences; thus, the algorithm described in
Figure 1 might not be effective. The combination of ZeW
with other state-of-the-adversarial techniques could seri-
ously damage this service. We can state that both models
are vulnerable to this attack.

6.3. Insights Extractors

Online Social Networks (OSNs) such as Facebook
and Twitter are places where billions of users share their
experiences, ideas, feelings, and opinions. These platforms
are perfect for analyzing social behaviors and interactions.
Several studies are conducted, from sentiment analysis and
opinion mining [39], [40], to the prediction of when a
security vulnerability will be exploited [41]. IBM offers
two services that are helpful to analyze OSNs data. A
possible attacker’s goal is to hide his/her own personality.

o IBM Watson Tone Analyzer’. The tool detects and
extracts emotional and language tones in a written
text.

o IBM Watson Personal Insight®. The tool predicts
the personality of a target user. For example, this
tool allows us to analyze the tweets-history of a
target Twitter account.

IBM Watson Tone Analyzer returns a list of emotions
(strings) detected in a given sentence. Here, a possible
adversary’s goal is to hide/manipulate emotions from his
text. To understand the efficacy of ZeW, we measured the
similarity between the sets of emotions of the unpoisoned
sentences and their poisoned counterparts. In particular,

7. https://www.ibm.com/cloud/watson-tone-analyzer
8. https://www.ibm.com/watson/services/personality-insights
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Figure 4: Toxicity score densities of different corpora measured by Google Perspective (left), and Microsoft Moderator
(right), where +1.0 is high confidence of being classified as toxic. The violin plot shows the distributions of the corpora’s
toxicity scores; the blue line represents the median value of the distribution. A service is vulnerable if the distributions

under attack are not equal to the distribution of Real.
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Figure 5: The similarity distributions between Real vs.
Maskl and Real vs. Mask2 of Watson Tone Analyzer,
where +1,0 is an exact match between two sets. The violin
plot shows the distributions of the corpora’s Jaccard sim-
ilarities; the blue line represents the median value of the
distribution. The service is vulnerable if the distributions
under attack are not close to one.

given a sentence , its adversarial counterpart x’, and a
Tone Extractor function f, we obtain the sets A = f(x)
and B = f(«'). The similarity between A and B is given
by the Jaccard Similarity, defined as follows [42].
dim(AN B)

where dim returns the number of items in the set. The
performance is measured by comparing the Jaccard simi-
larities of Real vs. Maskl and Real vs. Mask2. Ideally, the
API is resistant if the Jaccard Similarity is equal to +1.0
(two identical sets). In Figure 5, we can notice a different
trend. The median values are 0.5 and 0.33 for Maskl and
Mask2, respectively. A good portion of sentences (40%)
are not affected; a possible explanation is that the negative
words of those sentences are not essential to extract the
emotion. Note that from this analysis we discard those
sentences without any “tone” detected by the tool (322
sentences discarded).

On IBM Watson Personal Insight, the adversary’s goal
is to hide/manipulate his personality. In our test, we
extract the personalities from the three corpora. In this

Conscientiousness

=== Real
Mask1

== Mask2

Introversion

Openness

Agreeableness

Emotional Range

Figure 6: Watson Personal Insight detects three distinct
personalities (Real, Maskl, and Mask2). The service is
vulnerable if at least one of the five dimensions changes.

experiment, the analysis is at a corpus-level rather than
a sentence-level, i.e., we obtain one personality for each
corpus. In Figure 6, we can notice that Real and Maskl
differ in terms of “Openness” and “Conscientiousness”,
while Mask2 seems to push all of the dimensions close
to zero. In conclusion, both services of IBM are severely
vulnerable to ZeW.

6.4. Sentiment Analyzers

Sentiment analysis is one of the most popular topics
in NLP [43]-[46] and can be used for several purposes,
such as understand the opinions of restaurants, movies,
or products. This importance is reflected by the fact that
all companies implement this service: Amazon Compre-
hend’, Google Cloud Natural Language'’, IBM Watson
Natural Language Understanding'', and Microsoft Text

9. https://aws.amazon.com/comprehend.
10. https://cloud.google.com/natural-language.

11. https://www.ibm.com/cloud/watson-natural-language-understanding.
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Analytics'?.

In the hate speech scenario, as shown in Figure 3, the
sentences are likely to be perceived as negative. A possible
adversary’s goal is to minimize the detected negativity;
this attack can be seen as a transferable attack [8] since
our malicious sentences are first tested on a sentiment
analyzer (i.e., VaderSentiment).

Figure 7 shows the effectiveness of ZeW on 3 services
out of 4. In particular, Amazon Comprehend is resistant
to both modalities of injection, where the median value is
constant (0.86). Google Cloud Natural Language shows
a similar vulnerability pattern for both masks, with an
equal median value that moves from 0.5 to 0.2. In this
service, the addition of one character per negative word
is sufficient to disrupt it. We conclude with the services
provided by IBM and Microsoft, where we see a common
decreasing pattern of the median values, which move from
0.92 / 0.95 on Real, to 0.56 / 0.24 for Maskl, and to
0.13 7 0.05 for Mask2. We can state that three out of four
services are severely vulnerable to ZeW, while only one
show resistance.

6.5. Translators

We conclude the results section with another well-
known NLP task: the language translation. All four
companies implement this service: Amazon Translate'?,
Google Translation'*, IBM Watson Language Transla-
tor!, and Microsoft Translator'.

In the hate speech scenario, we can imagine that
the adversary writes a hateful message in an unknown
language for the victim. The victim uses translators to
understand the meaning of the message. For example,
human moderators could use automatic translators to un-
derstand if comments written in foreign languages are
hateful. Another example is browsers like Chrome that
automatically translates web content.

An example of this scenario is shown in Figure 1,
where the malicious sentence “I wanna kill you” is trans-
lated as “I love you” by Google Translate'’. Note that
since the target model is unknown, we do not have any
control over the target output. We highlight here that the
aim of the attacker is to degrade the general performance
of the target model rather than control the translation
process. ZeW is evaluated on the translation task English-
Italian. To understand the impact, we measure the simi-
larity between the translations given by the unpoisoned
sentence and its malicious counterpart. The difference
is measured with the Bilingual Evaluation Understudy
Score (BLEU score), with its 4-gram cumulative imple-
mentation. Formally, given a sentence z, its malicious
counterpart z’, and a translation function f, the similarity
is defined as

similarity = BLEUA(f(x), f(2)). 2)

12. https://azure.microsoft.com/en-us/services/cognitive-services/
text-analytics.

13. https://aws.amazon.com/translate.

14. https://cloud.google.com/translate ?hl=en.

15. https://www.ibm.com/cloud/watson-language-translator.

16. https://azure.microsoft.com/en-us/services/cognitive-
services/translator.

17. https://translate.google.com/.

Ideally, a service is not affected if the translations of the
original sentence and its malicious version are the same,
resulting in BLEU score equal to +1.0 (perfect match). In
Figure 8 we can see that all of the services are vulnerable
to the attack. Amazon seems resistant to Maskl, with a
median value equal to 1.0, while vulnerable to Mask2,
with the median equal to 0.83. Similarly, IBM is resistant
to Maskl and vulnerable to Mask2: the median value is
1.0 for Maskl1, and 0.58 for Mask2. Google and Microsoft
show vulnerabilities in both injection strategies, where the
median values move from 0.63 / 0.47 in Maskl, to 0.40 /
0.34 in Mask2.

All of the models show more difficulties in handling
Mask2. These tools show different vulnerability patterns
compared to the sentiment analysis tasks. The possible
explanation is the nature of translators: Seq2Seq models
(i.e., autoencoders). Seq2Seq models likely use different
placeholders to deal with OOV tokens, as introduced in
Section 2.1. We can state that all of the services are
vulnerable to ZeW: three strongly vulnerable, and only
one weakly (Amazon).

6.6. Considerations

In this section, we analyzed how different MLaaS
behave under the ZeW attack. We can notice different
trends among types of services (e.g., sentiment analyzers)
and the same companies (e.g., Microsoft). We now try to
understand why these models behave differently.

ZeW seems to fail on hate speech detectors. This
result suggests that both services use character-based to-
kenizers, which is a reasonable assumption since such
services should deal with noisy text (e.g., grammatical
errors, misspelling) gathered from blogs, forums, and so-
cial networks. Moreover, such services are resistant to the
injected noise (unknown tokens); a possible explanation
is that these services deal with unrecognized words (e.g.,
discard). Amazon services show similar performance.

In general, IBM MLaaS are vulnerable to ZeW attack.
Similar trends are shared among different services (e.g.,
Watson Personal Insight, sentiment extractor), where the
attack is more effective when we inject more ZeW char-
acters. These trends are similar to the RNN char-based
with UNK performance, as shown in Table 1.

Finally, on translators, we find two patterns: i) resis-
tant only to maskl (i.e., Amazon, IBM), and vulnerable
to both injection levels (i.e., Google, Microsoft). Since
mask2 has a stronger impact, the four models might be
character-based. However, it is unclear why there is such
discrepancy, where two out of four models are resistant
to maskl ZeW attack. More in-depth investigations should
be conducted on neural machine translators architecture.

7. Related Work

In the state-of-the-art we can find several adversar-
ial attacks targeting the machine learning algorithms of
MLaaS. We now briefly summarize attacks on the MLaaS
considered in Section 6.

Hate Speech Detectors. Several scientific discus-
sions use Google Perspective as a case study of their
hate speech evasion techniques. For example, in [47], [48]
the authors show the ability to manipulate Perspective
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Figure 7: Effect of Zero-Width Space Attack on different sentiment extractor services. The violin plot shows the
distributions of the corpora’s negative scores; the blue line represents the median value of the distribution. A service is
vulnerable if the distributions under attack are not equal to the distribution of Real.

by adding small mistakes to the sentences (e.g., typos,
leet speech, word addition, word removal). In [49], the
authors proposed evasion techniques based on acoustic
and visual similarities, with an evasion power equal to
33% and 72.5%.

Sentiment Analyzers. In [50], to manipulate senti-
ment tools, the authors applied techniques from computer
visions, i.e., Fast Gradient Sign Attack [7]. In Deep-
Fool [51], the authors manipulate the sentiment analysis
of a CNN model. This algorithm uses Word Mover’s
Distance (WMD) [52] to find suitable words whose em-
beddings allow to influence the target classifier. Similarly,
in [53], the authors propose a word replacement algorithm
based on semantic similarities. In [54], authors describe
TextBugger, a black-box framework that achieves high
evasion success rate on different Machine-Learning-as-a-
Services.

Machine Translators. Cheng et al. propose Adv-
Gen, a gradient-based method for attacking Neural Ma-
chine Translation (NMT) models [55]. In [56], the authors
propose two techniques to evade Seq2Seq models (e.g.,
translators) using ad-hoc loss functions: non-overlapping
attack and keyword attack. For the first, the goal is to
generate completely novel adversarial sentences, while
for the latter, the malicious translation contains target
keywords. For the interested reader, we suggest finding
more details on adversarial machine learning in Seq2Seq
models in [56].

8. Limitations

In this section we briefly discuss the limitations of
ZeW attack and the proposed coutermeasure.

Attack. The results presented in Section 6 show
how different commercial services can be affected by the
proposed attack ZeW. However, the efficacy of ZeW is
strictly related to services implementation choices. For
example, as shown in Section 5, char-based models are
more resilient compared to word-based ones. Moreover,
when the model discards unrecognized characters, the at-
tack is completely unsuccessful. Another major drawback
is the limited control over malicious samples and, as a
consequence, over the effect of the attack. If we consider
language translators, an attacker can affect the translation,
but he/she has no control over the output. For example,
in the attack reported in Figure 1 we did not target that
particular translation. Similarly, on the classification task,
an attacker can only reduce the likelihood of a sentence
being in a specific class (e.g., in this work we reduce
sentences’ negativity) and not let the sample be classified
as a target class.

Defense. In Section 3.3, we present a simple yet
effective countermeasure, consisting on the removal (sani-
tization) of zero-width characters from any given sentence.
This choice is possible since normal English sentences
should not contains such characters. Moreover, to under-
stand if a ZeW attack is occurring, models owners can
feed their applications with both original and sanitized
sentences and look for results discrepancies. The proposed
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Figure 8: Effect of Zero-Width Space Attack on different translator services. The violin plot shows the distributions of
the corpora’s BLEU scores; the blue line represents the median value of the distribution. A service is vulnerable if the

distributions under attack are not close to one.

sanitization technique is however applicable only for ZeW
attacks, resulting in a patch rather than a general solution.
A popular countermeasure adopted in the state-of-the-
art is the adversarial training, where, for example, the
defender augments the training data with examples of
adversarial samples to make the model more robust [7].
Even though the adversarial training showed promising re-
sults, we believe that a strong and simple countermeasure
consists of limiting applications’ character vocabulary. We
recall that our attack uses characters that are not normally
present in the written language, and thus a simple input
control can raise alerts whenever unlikely characters are
identified. Finally, as reported in Table 1, character-based
models present an intrinsic resiliency to ZeW attack;
future commercial implementation should consider this
aspect.

9. Conclusions

The migration of machine learning applications from
research to commercial and industrial purposes increases
the necessity of finding security mechanisms that guaran-
tee the correct usage of them. In this work, we present
a novel injection algorithm: Zero-Width attack (ZeW).
This attack injects non-printable UNICODE characters on
malicious sentences, with a potential disruption of the
indexing stage of the ML application pipeline, while main-
taining the full-readability of the text. This gives us the
opportunity to do not consider the readability constraint,

one of the major obstacles in the text adversarial machine
learning field.

Our goal was twofold: i) understand how different
pipelines respond to ZeW attack, and ii) whether commer-
cial applications are vulnerale to ZeW attack. In Section 5
we showed that different implementation are vulnerable
with different magnitude to the attack, while character
based models show promesing “security by design” pat-
terns. We then demonstrate the ferocity of the attack on
commercial solutions (Section 6): on 12 services devel-
oped by top IT companies such as Amazon, Google, IBM,
and Microsoft, 11 show vulnerabilities. Among these 11,
only 3 present a good resistance to the attack, while
the remaining 8 are heavily affected. The simplicity of
the attack allows it to spread to a broad population of
malicious users and activities since no prior knowledge
of machine learning theory is required.

Potentially, we can find several use-cases of our attack
and not only hate-speech manipulation. For example, we
can consider web data mining techniques that can be used
for counter-terrorism [57] where, NLP technologies can
help to identify malicious content. In this scenario, terror-
ists could use ZeW to obfuscate the contents of their web-
pages, affecting the performance of the analyzer. Because
of this, our simple but effective countermeasure based on
an input-validation technique should be integrated into
every real-life NLP tool.

The security of machine learning applications is
strictly related to their input domain. Computer Vision
has different challenges compared to Natural Language



Processing, which has different challenges compared to
the signal domain. Moreover, state-of-the-art mainly focus
on the security of the machine learning models, by for-
getting that a machine learning application is composed
by several stages where the ML model is only one of
these. In conclusion, we believe that novel malicious
opportunities can be derived by exploiting vulnerabilities
of different components of the ML pipeline, and one of
these directions is the leverage of multiple representations
of the text, such as the usage of ASCII and UNICODE.
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