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Abstract—With an increase in low-cost machine learning
APIs, advanced machine learning models may be trained
on private datasets and monetized by providing them as
a service. However, privacy researchers have demonstrated
that these models may leak information about records in
the training dataset via membership inference attacks. In
this paper, we take a closer look at another inference attack
reported in literature, called attribute inference, whereby
an attacker tries to infer missing attributes of a partially
known record used in the training dataset by accessing the
machine learning model as an API. We show that even if
a classification model succumbs to membership inference
attacks, it is unlikely to be susceptible to attribute inference
attacks. We demonstrate that this is because membership
inference attacks fail to distinguish a member from a nearby
non-member. We call the ability of an attacker to distinguish
the two (similar) vectors as strong membership inference.
We show that membership inference attacks cannot infer
membership in this strong setting, and hence inferring
attributes is infeasible. However, under a relaxed notion of
attribute inference, called approximate attribute inference,
we show that it is possible to infer attributes close to the true
attributes. We verify our results on three publicly available
datasets, five membership, and three attribute inference
attacks reported in literature.

1. Introduction

The introduction of low-cost machine learning APIs
from Google, Microsoft, Amazon, IBM, etc., has enabled
many companies to monetize advanced machine learning
models trained on private datasets by exposing them as a
service. This also caught the attention privacy researchers
who have shown that these models may leak information
about the records in the training dataset via membership
inference (MI) attacks. In an MI attack, the adversary (for
instance, a user of the service) with API access to the
model, can use the model’s responses (class labels and
probability/confidence of each label) on input records of
his/her choice to infer whether a target input was part of
the training dataset or not. This can be a serious privacy
breach when the underlying dataset is sensitive, e.g., med-
ical data, mobility traces and financial transactions [25],
[27].

To date, membership inference attacks have been the
primary focus of studies that have contemplated on traits
of the datasets and machine learning models that im-

pact the attacks’ likelihood and accuracy [21], [25], [27],
[31], [34]. Our focus is on a related, and perhaps a
more likely attack in practice, where the adversary with
partial background knowledge of a target’s record seeks
to complete its knowledge of the missing attributes by
observing the model’s responses. This attack is called
model inversion [5], [6], or in general attribute inference
(AI) [34]. Yeom et al. [34] provide a formal definition of
an AI adversary, and argue that this adversary can infer
the missing attribute values by using an MI adversary
as a subroutine. More precisely, for a missing attribute
with t possible values, the AI adversary constructs t
different input (feature) vectors, gives them as input to
the MI adversary, and outputs the attribute value which
corresponds to the vector that the MI adversary deems to
be in the training dataset.

Beyond providing a formal definition, Yeom et al.
experimentally validate the success of an AI attack on
regression models, and conclude that the more overfit the
model, the higher the success of the AI attack [34, §6.3].
Seeking to replicate their results on classification models
(rather than regression models), where the adversary is
given a partial record and its true label, our results in this
paper turn out to be different. We show that even if the
target classification model is susceptible to MI attacks,
AI attacks on the same model have negligible advantage.
Furthermore, the results persist even for highly overfitted
models. We explore the reasons behind this failure, and
find that in order for AI attacks to be successful, the
underlying MI attack, used as a subroutine, should be able
to infer membership in a stronger sense. More precisely,
the MI attack should be able to distinguish between a
member of the training dataset and any non-members that
are close to that member, according to a suitable distance
metric (we consider several such distance metrics based on
the nature of the dataset). We call this, strong membership
inference (SMI), parameterized by the distance from the
training dataset.

We formulate the notion of SMI, and prove that a suc-
cessful MI attack does not necessarily mean a successful
SMI attack. Furthermore, we also formally show that a
successful SMI attack is essential for an AI attack. This
result implies that even a standalone AI attack, which
does not use an MI attack as a subroutine, is bound to
fail if SMI attacks are unsuccessful. We experimentally
validate these results by evaluating several proposed MI
attacks from the literature on several discrete and contin-
uous datasets, and target machine learning models, and
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show that while these attacks are successful in inferring
membership, they fall well short as an SMI attack, and
consequently as an AI attack. On the positive side (from
an attacker’s point of view), we investigate a more relaxed
notion of attribute inference, called approximate attribute
inference (AAI), where the adversary is only tasked with
finding attributes close to the target attributes, according to
a given distance metric. We show that while AI attacks are
not applicable, AAI attacks perform significantly better,
and improve as the target model becomes more overfit.
The AAI notion is also a natural extension of the (exact)
AI notion for continuous attributes which has mostly been
used in discrete settings [34].

In more detail, our main contributions are as follows.
• We provide a formal treatment of membership, attribute,

and approximate attribute inference attacks, and propose
a new definition of strong membership inference (SMI),
building on the work from [34] on the definitions of
MI and AI in Section 2. We formally prove that an
SMI adversary is strictly stronger than an MI adversary
(Theorem 1), and that SMI is necessary for AI (Theo-
rem 2).

• We experimentally validate our theoretical findings
through an extensive set of experiments involving five
MI attacks, three black-box and two white-box, from
[21], [25], [27], [34], eight datasets (constructed from 3
main binary and continuous datasets), and several target
machine learning models (neural networks, support vec-
tor machines, logistic regression, and random forests)
(cf. Section 3). Our results in Section 4 validate our
formal separation and show that while these attacks are
successful to infer membership, they are ineffective in
inferring membership at distances close to the training
dataset (SMI).

• In Section 5, we further construct 3 AI attacks using the
MI attacks of [27], [34] and [25] as a subroutine, and
show via experiments that these attacks are not effective
in inferring attributes, even if we increase the overfitting
levels of the target model. On the other hand, we show
that our constructed AI attacks can approximately infer
attributes (AAI), with the advantage increasing as the
level of overfit of the target model increases.

• Our other key findings include explanation behind the
seemingly contradictory conclusions about AI attacks
on regression models [34] and classification models
(our focus) in Section 5.1. We also show that the
success of an MI attack is dependent on the class
label of the vector; if the corresponding class occupies
an overwhelmingly large portion of the feature space,
then training records belonging to this class are harder
to distinguish from non-members (cf. Section 4.1.3).
This gives one plausible reason why MI attacks have
always performed poorly on target models for binary
classification problems [25], [27].

2. Formal Treatment of Membership and At-
tribute Inference Attacks

In this section, we formally introduce the privacy
notions of strong membership inference (SMI), and recap
the notions of membership, attribute and approximate at-
tribute inference. In order to define them, we need rigorous

definitions of a distance metric on the feature space,
missing (features) attributes of a feature vector and its
relation to distance, and how the probability distribution
on the feature space behaves around feature vectors. We
first define these concepts in the next section followed by
privacy definitions in Section 2.2.

2.1. Notation and Definitions

Feature Space. Let D denote a subset of the real space
R. We assume the feature space to be Dm, where each
point x ∈ Dm is called a feature vector consisting of
m elements/features. We assume the output space to be
Y = R∗. Let D be a distribution over Dm. The training
dataset X is defined as a multiset of n elements drawn
i.i.d. from Dm with distribution D. Each x ∈ X is accom-
panied by its true label y ∈ Y . We denote this mapping
by c, which we call the target concept following standard
terminology [14], [26]. Thus, for each x ∈ X , c(x)
denotes is true label. The term label is used generically;
it may be discrete, denoting different classes, or it may be
continuous, denoting the confidence or probability score
for the different classes. The support of distribution D is
defined as supp(D) = {x ∈ Dm | px > 0}, where px is
PrD(x) if Dm is discrete and fD(x) if Dm is continuous,
f being the probability density function. The notation
a ←$ A indicates sampling an element a from some set
A uniformly at random. The notation x ← D denotes
sampling a feature vector according to the distribution
D. Similarly, the notation X ← Dn denotes sampling
a multiset of n feature vectors (training set) drawn i.i.d.
from D.

Machine Learning Models. A machine learning model
hX trained on X , takes as input x ∈ Dm and outputs a
label y ∈ Y . Let L : Y × Y → R denote a loss function.
The training loss of h, denoted, Ltr(h), determines how
much h differs from c on all x ∈ X . Similarly we
define the test loss of h by Ltest(h), which is evaluated
by computing h(x) and c(x) over the distribution D.
For instance, if Y is discrete, then L can be the 0-1
loss function, which evaluates to L(h(x), c(x)) = 0, if
h(x) = c(x), and 1 otherwise [34]. The generalization
error of h is defined as

err(h) = Ltr(h)− Ltest(h). (1)

The exact form of the loss function L depends on
the learning problem. More specifically, it depends on the
nature of Y . If the learning problem is that of classification
among k different classes, which is our focus, we have
|Y | = k. The true label of a sample x is then a k-element
vector y ∈ Y with 1 in the position corresponding to
the true class, and 0 in all other places. A classifier hX
however, may output a vector y′ ∈ Y such that each
element yi ∈ [0, 1] and ‖y′‖1 = 1.

Metrics. The notions of SMI and AAI, informally in-
troduced in the introduction, are based on the ability to
distinguish nearby vectors in the feature space. The notion
of “nearness” is based on a distance metric on the feature
space Dm. The examples of metrics used in this paper are
Hamming distance dH for binary datasets, i.e., over the
domain Dm = {0, 1}m, and Manhattan distance dM for
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normalized continuous datasets, i.e., over Dm = [−1, 1]m.
In general, our results generalize to any conserving metric
(See Appendix C). The following defines the distance of
a non-member vector from the training dataset.

Definition 1 (Distance and Neighbors). Let d be a (con-
serving) metric on Dm. Let r be a positive real number
and let x ∈ Dm. The set of r-neighbors of x is the r-ball
centered at x defined as

Bd(x, r) = {x′ ∈ Dm | d(x,x′) ≤ r}.

A member of Bd(x, r) is called an r-neighbor of x. The
distance of a vector x ∈ Dm from a set X ⊆ Dm is defined
as minx′∈X d(x,x′). We call x′ the nearest neighbor of
x in X .

For attribute inference, we define the notion of a vector
with missing attributes as portion:

Definition 2 (Portions). We introduce a special symbol ∗
called star, and define D∗ = D ∪ {∗}. Let S be a subset
of indexes from [m], which we call the set of unknown
features. We define the map φS : Dm → D∗m, which
given as input a feature vector x outputs a vector x∗, such
that x∗i = ∗ for each i ∈ S and x∗i = xi for all i /∈ S.
We call x∗ = φS(x) a portion of x under S, or simply
a portion of x if reference to the set S is not relevant.
The set of features that are masked, i.e., replaced by ∗, in
φS(x) will be called the unknown part of x∗.

Definition 3 (Siblings). Define the set:

ΦS(x) = {x′ ∈ Dm | φS(x) = φS(x′)},

then ΦS(x) is called the set of siblings of x under S, and
any member of the set a sibling of x under S. Note that
x is also a sibling of itself.

For attribute inference, the algorithm will be given a
portion x∗ = φS(x), such that the feature corresponding
to the set S will be missing (unknown). The set ΦS(x)
contains all vectors which could possibly have the portion
x∗, including the original vector x. These are the possible
candidates of the portion, and the algorithm would need
to distinguish them from x. In Appendix C, we show
that given a vector x, all of its possible portions with
i unknown features are within a ball whose radius can be
determined through i. This result is useful to show the
link between attribute inference and strong membership
inference, as we shall see later.

In some of our inference definitions, we would need
to sample vectors in the vicinity of some feature vector x.
Depending on the distribution D, it may well be the case
that the vectors around x have a negligible probability
of being sampled as feature vectors. Thus, the adversary
may simply be able to infer non-membership by checking
which vector is not likely to be sampled under D [34].
To overcome this technical issue, we assume that the
distribution D is such that there is at least one vector
within a small radius around x which is assigned a similar
probability as x. This is made precise by the following
definitions.

Definition 4 (Induced Distribution). Let Z be a set of
feature vectors. Define ZD = supp(D)∩Z. We say that a
vector z is sampled from Z according to the distribution

induced by D if the resulting random variable has proba-
bility mass function pz∑

z′∈ZD
pz′

or the probability density
function pz∫

ZD
fD(z′)dz′ in the continuous case.

Note that the probabilities are only defined if ZD is
non-empty. We shall always assume this to be the case.

Definition 5 (Indistinguishable Neighbor Assumption).
Let r > 0, and let d be a metric. Let x ← D. Let x′

be sampled from Bd(x, r) according to the distribution
induced by D. Let A be any algorithm (distinguisher)
taking as input a feature vector x and a distribution
D, which outputs 1 if x ← D and 0, otherwise. Let
b←$ {0, 1}. Let A be given x, if b = 1 and x′, if b = 0.
Then

Pr[A(x,D) = 1]− Pr[A(x′,D) = 1] ≤ ε(r). (2)

We call ε(r), the r-neighbor distinguishability advantage,
and assume it to be negligible for small r.

The above assumption states around any vector x,
there are some vectors sampled according to the distri-
bution induced by D that are indistinguishable from x
under D. Note that this does not apply to all neighbors of
x (which may be out of distribution). Put in other words,
it states that around any vector x, there are neighborhood
vectors which have similar probability of being sampled
under D. It is easy to see why this assumption should hold
on datasets with continuous attributes, as minor changes
in the attributes would hardly be off-distribution. We
argue that this is also a plausible assumption for discrete
datasets. For instance, consider the Purchase (shopping
transactions) dataset [2], which records the items bought
by customers; 1 if the corresponding item is purchased
by the customer and 0, otherwise. Given any vector x,
a nearby vector where a few item purchases have been
removed can barely be considered an anomaly. Further
note that the ability to distinguish increases, the further
we move from the original vector, since now there are
other vectors likely to be sampled through the induced
distribution which are starkly different from x, i.e., at
greater distance from x. Hence, the advantage ε(r) is
defined as a function of r. To experimentally validate
our claim, we trained a generative adversarial network
(GAN) on the Purchase dataset to see if it can distinguish
between original and nearby vectors. The results shown
in Appendix B.2 are in agreement with our assumption.

Decision Regions. Our final definition in this section
is that of decision regions, i.e., regions in the feature
space assigned to a given class. We shall show later that
performance of membership inference is linked to the
volume of decision regions. Let k ≥ 2 be the number
of classes.

Definition 6. Given a classifier hX , for each class j ∈ [k],
we define its decision region (DR) as

Rj = {x ∈ Dm : hX(x) = j} (3)

This is analogous to the definition of acceptance region
in [36]. Similar to [36], we sample a large number of
feature vectors from Dm uniformly at random, and use
the fraction of vectors labelled j by hX to estimate the
fractional volume of the decision region Rj . Overloading
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notation, we shall use decision region to mean both the
region and its fractional volume. A class is said to domi-
nate another class if the DR of the former is larger than
the DR of the latter. The class with the largest DR shall
be called the most dominant class.

2.2. Formal Results: Relationship between Vari-
ants of Membership and Attribute Inference

Membership Inference. Our first definition is that of
membership inference which is derived from the definition
in [34].

Experiment 1 (Membership Inference (MI) [34]). Let A
be the adversary, let X ← Dn be the input dataset.

1) Construct model hX .
2) Sample b←$ {0, 1}.
3) If b = 0, sample x← D.
4) Else if b = 1, sample x←$ X .
5) A receives x, c(x) and oracle access to hX .
6) A announces b′ ∈ {0, 1}. If b′ = b, output 1, else

output 0.

Using the True Label. Note that in addition to the vector
x, its true label c(x) is also given to the adversary. This
then allows the adversary to compute the loss function
L(hX(x), c(x)) from the output of the model hX . This
is considered for instance in [34], the shadow model
technique in [27] and the shadow model variants of mem-
bership inference attacks in [25]. However, note that the
true label is not necessarily required as is demonstrated in
one of the attacks in [25] which only uses the knowledge
of the input sample and the prediction returned by hX . In
this case, the adversary simply ignores the true label c(x).
The same is true in all the other experiments (definitions)
to follow.

Let ExpMI(A, h, n,D) denote the output of the above
experiment.

Definition 7 (Membership Inference Advantage). The
membership inference advantage of A on the classifier
h, i.e., AdvMI(A, h, n,D), is defined as

Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

= Pr[b′ = 0 | b = 0]− Pr[b′ = 0 | b = 1]

It is the thesis of this paper that an MI adversary with a
significant advantage in distinguishing between members
and non-members is due to the fact that non-members are
at a significant distance away from member vectors. If on
the other hand a non-member vector is close to a member
vector, then the adversary may not be able to distinguish
between the two. We therefore present another definition
of membership inference, called strong membership in-
ference (SMI) defined next. The definition challenges the
adversary to distinguish between two neighboring feature
vectors. The closeness of the two vectors is controlled by
the parameter r in the definition. We show later why such
a strong inference attacker is a better starting point for
constructing an attribute inference attacker in the spirit
of [34].

Experiment 2 (r-Strong Membership Inference (SMI)).
Let A be the adversary, let X ← Dn be the input dataset,

let d be a (conserving) metric, and let r > 0 be a real
number.

1) Construct model hX .
2) Sample b←$ {0, 1}.
3) Sample x0 ←$ X .
4) If b = 0, sample x from Bd(x0, r) according to the

distribution induced by D (cf. Definition 4).
5) Else if b = 1, x = x0.
6) A receives x, c(x) and oracle access to hX .
7) A announces b′ ∈ {0, 1}. If b′ = b, output 1, else

output 0.

Definition 8 (Strong Membership Inference Advantage).
The SMI advantage of A on the classifier h, i.e.,
AdvSMI(A, h, r, n,D), is defined as

Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

= Pr[b′ = 0 | b = 0]− Pr[b′ = 0 | b = 1]

Relationship between MI and SMI. SMI is the same as
MI if r is large enough to encompass all feature vectors
in the support of D. Otherwise, the next theorem shows
that the two definitions are not equivalent.

Theorem 1. There exists a domain Dm, a distribution D
on the domain, an r > 0, a dataset X ← Dn, a clas-
sifier h, and an algorithm A such that an MI adversary
gains non-negligible advantage using A whereas an SMI
adversary has 0 advantage using the same algorithm.

Proof. See Appendix D.

The proof of the above result essentially constructs
a dataset such that the output of the classifier is constant
around any vector x in the dataset. In a real-world dataset,
this implies that we assume the output of the classifier
to be nearly constant around any feature vector x, thus
making it hard for an SMI attack to distinguish non-
members in the vicinity of members. We shall later show
that this assumption holds for real-world datasets and
classifiers.

Attribute Inference. We first start with the definition of
attribute inference derived from [34].

Experiment 3 (Attribute Inference (AI) [34]). Let A be
the adversary, let X ← Dn be the input dataset, and let
S be a subset of [m] with cardinality m′ such that 1 ≤
m′ < m.

1) Construct model hX .
2) Sample b←$ {0, 1}.
3) If b = 0, sample x← D.
4) Else if b = 1, sample x←$ X .
5) Let x∗ = φS(x) be a portion of x.
6) A receives x∗, c(x) and oracle access to hX .
7) A announces x′ ∈ Dm. If x′ = x output 1, else

output 0.

Definition 9 (Attribute Inference Advantage).
The AI advantage of A on the classifier h, i.e.,
AdvAI(A, hX ,m′, n,D), is defined as

Pr[ExpAI(A, hX ,m′, n,D) = 1 | b = 1]

− Pr[ExpAI(A, hX ,m′, n,D) = 1 | b = 0].
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The above definition mirrors the one from [34]. How-
ever, the attribute inference covered in [34] is more gen-
eral; it considers arbitrary background knowledge about
x, and not necessarily a portion. The version that we
consider is called the model inversion attack [6], [34].
We remark that the above definition is by no means the
standard definition of AI. We refer the reader to Section 6
for a discussion on other definitions of AI proposed in
literature.

Inferring through the Distribution vs the Model. Note
that these definitions purposely define advantage as the
difference between inferring through the distribution alone
versus inferring via access to the model. For instance,
one way to infer the missing features is to exploit statis-
tical correlations between the observed features and the
label. But notice that this can be done directly through
knowledge of the distribution, irrespective of access to
the model. The AI advantage will therefore be negligible
for such a strategy. Hence, the definitions only define an
AI attack as advantageous if it can infer more through
the model as opposed to through statistical trends of the
feature vectors. The same applies to approximate attribute
inference to be defined shortly. See Section 6 for further
discussion on this point. Correlations can indeed be a pri-
vacy issue if the distribution is not known to the attacker.
But this definition is outside the scope of our work, where
we consider the distribution to be known by the attack
algorithm.

Relationship between AI and SMI. It is easy to see
how an AI adversary can use an SMI adversary to infer
attributes. Given a portion x∗ = φS(x), the AI adversary
uses the size of S, i.e., m′, to choose an r according
to Corollary 1, in Appendix C, and then runs the SMI
adversary with input r and each possible sibling of the
vector x (Even though the set S is not explicitly given
to the AI adversary, it is implicit from the portion).
Whenever, the SMI adversary outputs 1, i.e., predicts the
corresponding vector to be a member, our AI adversary
outputs that vector as its guess for x. Thus SMI⇒ AI.

In the other direction, the following theorem shows
that AI implies SMI, or in other words ¬SMI ⇒ ¬AI.
Therefore, if an SMI adversary has negligible advantage,
then we cannot hope to find an AI adversary with signif-
icant advantage.

Theorem 2. Let A be an AI adversary with advantage
δ. Then there exists an SMI adversary B with advantage
δ+ ε(r), assuming ε(r), the r-neighbor distinguishability
advantage, is negligible for small r.

Proof. Consider an SMI adversary B which is given x.
SMI chooses a random index, or alternatively, a random
index set S of cardinality 1. The adversary B constructs
x∗ = φS(x) and gives it to A. Upon receiving x′ from
A, the adversary B checks if x′ = x. If yes, it returns 1.
Else it returns 0. The advantage of adversary B is

Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

= Pr[ExpAI(A, hX , 1, n,D) = 1 | b = 1]

− Pr[Exp∗AI(A, hX , 1, n,D) = 1 | b = 0], (4)

where Pr[Exp∗AI(A, hX , 1, n,D) = 1 | b = 0] denotes
the version of Experiment 4, where x ← D in Step 3 is

replaced with x0 ←$ X,x← Bd(x0, r), according to the
distribution induced by D. From Eq. 2 for any algorithm
C, we see that:

Pr[ExpAI(A, hX , 1, n,D) = 1 | b = 0]

− Pr[Exp∗AI(A, hX , 1, n,D) = 1 | b = 0]

≤ Pr[C(x,D) = 1]− Pr[C(x′,D) = 1] ≤ ε(r),

where ε(r) is the r-neighbor distinguishability advantage.
Thus, Eq. 4 becomes

Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

≤ Pr[ExpAI(A, hX , 1, n,D) = 1 | b = 1]

− Pr[ExpAI(A, hX , 1, n,D) = 1 | b = 0] + ε(r)

= δ + ε(r).

Under the indistinguishable neighbor assumption 5, we
assume ε(r) to be negligible for small r.

Theorem 2, together with the previous result, shows
that SMI⇔ AI, provided the r-neighbor distinguishability
assumption holds. If ε(r) is large, then the advantage does
not translate, as now the neighbor vector (sampled from
the induced distribution) does not follow the distribution
D expected by the AI algorithm A in Experiment 4. This
observation is mirrored by our experiments where we
show that constructing an attacker that can exactly predict
the missing values of a portion of a member vector with
high probability is highly unlikely. Since this equivalence
is under the r-neighbor distinguishability assumption, SMI
is not identical to the notion of AI. This is true in
particular for datasets where the assumption fails to hold.
For instance, a location dataset with sparse locations.
However, the assumption should hold for most real-world
datasets, such as the ones considered in this paper. We
remark that in its raw form the definition may be overly
strict for continuous attributes. To overcome this, in our
experiments we apply binning, and flag any continuous
attribute value as correctly identified if it falls in the
correct bin (See Section 5.1 for the CIFAR dataset). Even
with this judicious interpretation of the definition, our
experimental results show that the adversary does not have
much advantage in predicting the missing attributes. This
leads to the definition of approximate AI, that requires the
attacker to predict the missing values only “approximately
close” to a member vector.

Experiment 4 (Approximate Attribute Inference (AAI)).
Let A be the adversary, let X ← Dn be the input dataset,
let S be a subset of [m] with cardinality m′ such that
1 ≤ m′ < m, and let α ≥ 0 be a distance parameter.

1) Construct model hX .
2) Sample b←$ {0, 1}.
3) If b = 0, sample x← D.
4) Else if b = 1, sample x←$ X .
5) Let x∗ = φS(x) be a portion of x.
6) A receives x∗ and oracle access to hX .
7) A announces x′ ∈ Dm. If d(x′,x) ≤ α output 1, else

0.

Definition 10 (Approx. Attribute Inference Advantage).
The AAI advantage of A on the classifier h, i.e.,
AdvAI(A, hX ,m′, n, α,D), is defined as
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Pr[ExpAI(A, hX ,m′, n, α,D) = 1 | b = 1]

− Pr[ExpAI(A, hX ,m′, n, α,D) = 1 | b = 0].

Note that with α = 0, Experiment 3 becomes a special
case of Experiment 4. It is easy to see that AI ⇒ AAI,
but the converse is not necessarily true.

Depending on the distance metric, the AAI advantage
definition can have different interpretations. For instance,
if the distance metric is Euclidean distance, then this
captures the notion of mean squared error. Similarly,
the Manhattan distance metric gives the absolute error
interpretation. The parameter α should be set carefully to
avoid degenerate cases, e.g., if α is set too small, then an
adversary whose guess is always slightly off α would be
deemed less advantageous than an adversary with only one
guess within α and the remaining deviating significantly
from α. For our experiments, we set α as the distance of
a random guess from the target vector.

Computing Advantages in Practice. As most prior work
on membership inference uses the Area Under the Curve
(AUC) of a Receiver Operating Characteristics (ROC)
curve as a measure of aggregated classification perfor-
mance of the MI attacker (viewed as a binary classifier),
we use the same metric in our experiments in Section 3.
In Appendix E, we show how our advantage definitions 7
and 8 are related to the AUC statistic. For the evaluation
of AI and AAI attacks we employ the advantage metrics
defined in Definitions 9 and 10.

3. Experimental Methodology

In this section, we describe the datasets, instances of
MI and AI attacks used, and how we carry out mem-
bership and attribute inference attacks in our experiments
in Sections 4 and 5. We first evaluate the performance
of several MI attacks in terms of MI advantage (Def. 7)
with increasing distance of the challenge vectors from the
training set (Section 4). We then evaluate the performance
of AI attacks in terms of AI advantage (Def. 9) which
use MI attacks as a subroutine (Section 5.1). Finally,
we study the performance of the same AI attacks in
the sense of approximate attribute inference (Def. 10).
These experiments demonstrate the shortcomings of MI
and AI definitions and the need for our newly proposed
definitions, i.e., SMI and AAI.

3.1. Data and Machine Learning Models

We evaluate MI and AI attacks on three different
datasets: (a) Location: a social network locations check-
in dataset obtained from Foursquare [32], (b) Purchase: a
shopping transactions dataset [2], and (c) CIFAR an image
dataset [15]. These datasets have previously been used to
demonstrate MI [12], [25], [27] and AI attacks [12]. The
first two datasets are binary, with 467 binary features in
Location and 599 in Purchase, whereas the CIFAR dataset
was processed, using principal component analysis (PCA),
to yield 50 continuous features normalized between −1
and 1 [12]. We applied k-means clustering to obtain class
labels in both the Location and Purchase datasets. The
number of classes in the Location dataset is 30 and for

the Purchase dataset, we create 5 variants differing in the
number of classes (2, 10, 20, 50, 100), as is done in [25].
Finally, the CIFAR dataset contains 100 class labels for
the images, with an additional set of 20 labels which are a
superset of the 100 classes, e.g. the label “flowers” is the
superset of orchids, poppies, roses, sunflowers, and tulips.
We call the two datasets CIFAR-100 and CIFAR-20.

We predominantly explore the neural network as our
target model. However, later in Section 4.2, we show that
our observations generalize to Logistic Regression, Sup-
port Vector Machine, and Random Forest classifiers. The
exact configurations of these models for each experiment
are detailed in Appendix A.

3.2. MI and AI Adversaries

We use five MI attacks from literature as examples of
an MI adversary (Def. 7), and three AI attacks as examples
of an AI adversary (Def. 9).

3.2.1. MI Attacks. Our MI attacks include three black-
box attacks: the shadow model based attack from Shokri
et al. [27], the attack from Yeom et al. based on prediction
loss [34], and the attack from Salem et al. based on
maximum prediction confidence [25], and two variants
(local and global) of a white-box attack from Nasr et
al. [21]. Recall that in an MI attack, the attacker is given
a member or a non-member vector with optionally its true
label, and is asked to infer membership.

Shadow MI [27]. This attack trains a machine learning
model, called an attack model, to discern membership of a
given vector from the prediction output vector (confidence
of every class label). This attack model leverages outputs
from shadow models which are trained with a disjoint
dataset to mirror the behaviour of the target model.

Loss MI [34]. This attack eliminates the high computa-
tional cost of training shadow and attack models by eval-
uating the prediction loss of a vector on the target model
directly. This attack, in practice, may use the target model
training loss as a loss threshold to determine membership.

Conf MI [25]. Conf MI, short for Confidence, is even
simpler than Loss MI; instead of computing the prediction
loss, the attack simple uses the confidence value of the
most likely label. With less information available to the
attack, it performs worse than both Loss MI and Shadow
MI (as we shall see in Section 4). However, it is arguably
a more practical attack, requiring less information.

Local White Box (WB) and Global White Box (WB)
MI [21]. The three previous attacks are all black-box
attacks with little to no information about the target model,
and only API access to the model. An alternative form
of MI attack is a white-box membership inference attack,
which in a federated setting, may offer additional informa-
tion for an adversary to launch an MI attack. Despite the
federated setting, we suspect any observations we perform
on the black-box setting should be reflected in a white-
box setting. Nasr et al. attack [21] is a standalone attack
targeting federated machine learning models in a white-
box setting. The white-box setting lends additional hidden
layer information and intermediate model states from the
training process to better inform the attack model. This
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information includes the final layer gradients, outputs and
the true label, obtained from intermediate and final states
of the target model.

The federated setting consists of multiple parties, each
training models independently and contributing param-
eters to a central server. The server aggregates these
parameters before sending the results back to each party
to replace their individual model. Two different attacks are
tested: the Global WB MI attack, where the attacker has
server level information and attacks each of the parties
individually (in the case of a Malicious MLaaS provider);
and the Local WB MI attack whereby the attacker is
an external or contributing party attacking the server or
MLaaS provider.

3.2.2. Attribute Inference (AI) Attacks. We use three
AI attacks as examples of an AI adversary. All three
attacks use an MI attack as a subroutine as mentioned in
Section 2. We, therefore, use the same names for them as
the underlying MI attacks. Briefly, our general procedure
to evaluate an AI attack is as follows. Given a portion
x∗ = φS(x) for a set S of unknown features (cf. Def. 2),
we first construct all siblings of x (cf. Def. 3), by trying
all possible permutations of the missing attribute(s), i.e.,
features. We then give each sibling as input to the MI
attack. From the set of siblings, the vector with the highest
membership confidence from the underlying MI attack
is deemed the original vector x, and thus its attributes
identified as the missing attributes.

Shadow AI. The basis of this attack is to use the attack
model from Shadow MI [27] for AI. While the MI version
of the attack only uses the final decision (member or
non-member), in the AI attack, we use the prediction
confidence from the attack model to gauge which vector
is most likely the original vector, and thus infer attributes.

Loss AI [34]. This attack follows the original proposal
from Yeom et al. to use the training loss as the deciding
factor for attribute inference. Given all siblings, the vector
that achieves the prediction loss (from the target model)
closest to the training loss, is flagged as the original vector.

Conf AI [35]. Recall that Conf MI [25] uses the single
largest prediction confidence of the vector to deduce its
membership. We repeat the same process, and flag the
highest confidence vector (prediction confidence from the
target model) from all siblings as the original vector.

Note. Although both Local WB and Global WB MI
attacks can also be used to perform AI, we opted against,
as they are computationally more demanding than other
attacks. Fortunately, as we shall show, Local WB and
Global WB MI attacks show similar trends as the other 3
MI attacks we use as subroutines for AI.

3.3. Attack Methodology

Prior to inference, we must first train a target model on
a given dataset. To do so we split the dataset into training
and testing sets. We describe the exact training/testing data
split, the architecture of the neural network, and other
hyper-parameters in Appendix A. These models have been
tuned to replicate models observed in prior works. The
training set is used to train the target model, and the

prediction accuracy of the target model is evaluated on
the testing set. We tune our target models to produce
prediction accuracies comparable to [27] (exact attack
accuracy values are reported in Table 4 in Appendix A).
From the training and testing sets we then sample 1000
vectors each to serve as our member and non-member sets.
With the target model prepared, we take the following
steps to launch MI and AI attacks.

MI. For MI, we obtain AUCs by evaluating the member
and non-member subsets with either the MI attack model
(for Shadow, Local WB and Global WB MI), or the
target model (for Loss and Conf MI) for a membership
confidence score.

AI. For AI, we take our set of member and non-members,
and then use the top most informative features according
to the Minimal Redundancy Maximal Relevance (mRMR)
criterion [23]. Intuitively, the informative features are
likely to have more influence on the classifier’s output.
This also follows previous work [30], [34] where it is
shown that informative features, i.e., those with more
influence, have a positive impact on attribute inference,
albeit the results apply for Boolean and binary variables.
Thus, the use of most informative features increases the
likelihood of an AI attack. The set of most informative
features forms the set S of unknown features. For each
vector, we then create its portion based on S, and gen-
erate all siblings of the vector, only one of which is
the original vector with the target attribute values. With
this set of siblings, for each member and non-member
vector, we perform an MI attack. This produces a mea-
sure of membership confidence (either as attack model
probability, prediction loss, or prediction confidence, c.f.
Section 3.2.2). From this measure, the sibling with the
highest membership confidence is regarded as the correct
vector, and consequently containing the correct missing
attributes. For AI, we regard the attack as a success when
the recovered sibling is exactly equal to the original vector
(Exp. 3). For AAI, we regard the attack a success when
the recovered sibling is within a given α distance away
from the correct attributes (Exp. 4).

4. Membership Inference

We first show results from MI attacks highlighting the
need for our definition of strong membership inference
(SMI) (Exp. 2). Two key findings are:
• MI attacks perform better if the non-members are at a

greater distance from the training dataset. This obser-
vation is crucial for attribute inference, as we shall see
in the next section.

• MI attack performance is not uniform across all classes
in the dataset. In fact, it is inversely related to the
dominance of the class, i.e., the decision region of the
class (Def. 3).

4.1. MI Attacks on Neural Networks

We first inspect the performance of the five MI attacks
(See Section 3.2.1) on members and non-member vectors
from the original dataset as a function of their distance
from the training dataset (Def. 1). We observe that the
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vectors in the original dataset are quite far away from each
other, consequently lacking MI performance information
at small distances. Thus we follow this analysis with MI
performance on synthetically generated vectors, to illus-
trate a complete picture of MI performance as a function
of distance from the training dataset (Section 4.1.2). We
also explore the relationship between MI attack perfor-
mance and the decision region of a class (Section 4.1.3).

4.1.1. MI Performance on the Original Dataset as a
Function of Distance. After training the target model,
we compute the distance of each non-member vector
from the training set. Recall from Section 2, we use
Hamming distance dH for Location and Purchase datasets
(which are binary), and Manhattan distance dM for the
continuous (normalized) CIFAR datasets. The vectors are
then grouped according to their distance from the training
dataset (the distance is 0 for members). We then calculate
AUC for each distance by taking the membership score
of each vector in this distance group as the negative class,
and all member vectors as the positive class. This test
is repeated 50 times (10 for the WB MI attacks due
to computational resource limitations), and the AUC is
computed on the aggregation of all confidence values
(Fig. 1).

Results. From Figs. 1a to 1e, we observe that for the
Location dataset the AUC improves as the distance of non-
members from the training dataset increases in all five MI
attacks, with the AUC being closer to random guess (0.5)
for non-members closest to the training dataset. From the
same figures, we can see that this trend is less obvious
for the Purchase datasets. This is mainly because non-
members in the Purchase datasets are at a greater distance
from the training dataset. The same observation can be
made for CIFAR-100 in Fig. 1f (results for CIFAR-20 are
in Appendix B.1). This gives a first indication that SMI
(Exp. 2) is less successful than MI (Exp. 1).

An issue with the results in Figure 1 is that there is a
lack of vectors close to and farthest away from the training
datasets. This is evident from the distribution of distances
displayed in Fig. 2. Observe that there is little data avail-
able when we attempt to inspect AUC for distances close
to the original dataset. As the non-members in the original
Purchase datasets do not provide a full picture of how the
MI performance behaves across all distances, and hence
MI performance, in the next section, we generate synthetic
vectors allowing us to control the distance (Hamming or
Manhattan) from the training dataset providing a more
complete picture.

A few other observations are worth highlighting:
• Consistent with what has been previously reported on

MI attacks, the attack accuracy improves on target mod-
els with a greater number of classes [25], [27]. Higher
number of classes is also linked to a higher degree of
overfitness (Table 4).

• The AUC performance of the Loss and Conf MI attacks
is almost identical. Recall that Conf MI uses the maxi-
mum confidence value of the prediction, while Loss MI
uses the prediction loss. Note that the prediction loss
for a classification model is simply the loss between the
confidence of the true label and 1. Given that a (good)
target model is likely to predict the correct label of the

vector, it follows that, most of the times, the maximum
prediction confidence (as used in Conf MI) will be equal
to the confidence used to compute the loss in Loss MI.

• Some of the AUCs exhibit peaks; an increase as the
distance from the training dataset increases followed by
a decrease. This is due to the decision regions (DR)
learnt by the classifiers. We shall elaborate on this in
Sections 4.1.2 and 4.1.3.

• Another peculiar observation is that some of the AUCs
drop below 0.5, meaning that the strategy employed by
the corresponding MI attack predicts flips and applies
more to non-members than to members. The potential
reason behind this is the same as the observation above
which we shall explain in Section 4.1.3.

Observation 1. In the MI attacks reported in literature,
the distance of non-members from the training dataset is
large. In general, an MI attack is more likely to accurately
predict a non-member, the greater its distance from the
training dataset.

4.1.2. MI Performance on Synthetic Non-Members as
a Function of Distance. Ideally, synthetic vectors should
follow the original data distribution. Unfortunately, this
would not yield vectors close to the training dataset as
can be seen from Figure 2. To circumvent this, we take
existing vectors and create synthetic vectors by flipping
or perturbing some of the features. This creates synthetic
vectors that are deliberately off-manifold, but still close to
a training vector, where the majority of unaltered features
still follow the original data distribution, while allowing
us to control distance from the training dataset.

To generate synthetic vectors for the binary datasets
(Location and Purchase), we (a) randomly select a mem-
ber of the training set, (b) randomly select features to
invert, (c) and vary the number of features and generate
5 non-members for each distance group, ranging from
Hamming distance 1 to, 467 for Location, and 599 for Pur-
chase. For CIFAR datasets, we define Manhattan distance
groups at increments of 0.05 from the training dataset,
starting from 0.05 to 5. We then produce non-members
by randomly selecting features and adding additive per-
turbations to the feature values of the original vector. The
process is repeated 5 times for each Manhattan distance
group. The entire process is repeated for all selected 1000
member vectors for each dataset. The distance to the
training dataset is recomputed for all non-members, to
cater for the event that the nearest neighbor of a non-
member in the training dataset has changed. The vectors
thus generated are non-members, with the same label
as the original member, unless, by chance, any of them
collides with a member, in which case we discard it. We
also ensure that the nearest neighbor in the dataset of the
newly generated vector is of the same label as the base
member vector, if not, this generated vector is discarded.

Results. The AUCs of the five MI attacks are displayed
in Fig. 3. For all five attacks, we observe that the AUC
is close to 0.5 for vectors close to the training dataset,
and starts improving as the distance from training dataset
increases. It is also evident that the higher the number
of classes, the steeper the improvement in AUC as the
Hamming distance increases for the Location and Pur-
chase datasets. This is more obvious through the magnified
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(c) Shadow MI
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(d) Local WB MI
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(e) Global WB MI
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Figure 1: Increasing AUC of various MI attacks with increasing Hamming distance of original non-members
from the training dataset on target models. Subplot (f) compares the difference in attack AUC between MI
attacks on CIFAR-100 (CIFAR-20 can be found in Appendix B.1).
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Figure 2: Histogram of distances of non-members
from members in our training datasets. This data
distribution is consistent across all attacks.

Fig. 6, where we show AUC of the Conf MI attack on
the Location, Purchase and CIFAR datasets at smaller
distances from the datasets. The AUC is below 0.6 for
Hamming distances of less than 5 and Manhattan distance
of less than 0.2. This implies that the MI attack is not suc-
cessful enough in the stronger sense, i.e., in the sense of
SMI (Def. 8). This has implications for attribute inference,
as we shall see in Section 5.

On datasets with higher number of classes, the AUCs
of Loss MI (Fig. 3b), Local WB (Fig. 3d) and Global WB
(Fig. 3e) MI, show little change after a certain distance,
even if the distance of non-members from the training
dataset increases. On the other hand, on the Purchase
datasets, for smaller number of classes (2, 10 and 20),
Conf (Fig. 3a), Loss (Fig. 3b) and Shadow (Fig. 3c)
MI attacks observe an increase in AUC followed by a
decrease. For the 10 and 20 class variants, we see a second
incline in the AUC performance of Shadow MI around a
Hamming distance of 250. The reason for this is that at
certain distances a non-member vector x′ with a class
label j, might be in the decision region of another class,
even when the nearest neighbor of x′ in the dataset has
the class label j. We elaborate this in the next section.
Interestingly, in Fig. 3f, the AUC curves of Conf and Loss
MI diverge as the Manhattan distance from the training
dataset grows greater than 0.7-0.8. This is because at
larger Manhattan distance, the target model starts giving

incorrect label predictions. The Loss MI attack detects
this (as it computes loss with the predicted confidence).
On the other hand, Conf MI only uses the highest confi-
dence. It is therefore unable to detect this, showing worse
performance. Finally, we note that a few of the AUC
lines are ragged, especially at distances furthest away from
the datasets. This is exhibited by attack model based MI
attacks (Shadow, Local and Global WB). This is because
the underlying attack models have less exposure to vectors
at large distances as a result of the data distribution (c.f.
Fig. 2a, corresponding to distances where the AUC lines
becomes ragged). The AUC curves of Loss and Conf MI
are smooth throughout.

Observation 2. The existing success of MI is a conse-
quence of most non-member vectors being very different
to members in terms of distance. For non-member vectors
very close to members, the MI attacks perform similar
to a random guess (0.5 AUC), and hence fail in the
sense of SMI. Thus, the incumbent definition of MI does
not capture the behavior of an MI adversary for non-
members at distances close to the training data, i.e., SMI,
which is essential for launching attribute inference attacks
(Theorem 2).

4.1.3. MI performance on Synthetic Non-Members as
a Function of Class Label and Distance. The results
thus far have been averaged over members and non-
members from all classes. However, as we shall show, the
performance of the MI attacks is not consistent over all
classes. In fact, the more dominant a class, i.e., the larger
the decision region (DR) of the class (Def. 6), the less
likely it is to be susceptible to membership inference. We
empirically measure the decision region of a given class
by sampling one million vectors from the feature space
by sampling each feature uniformly at random within
feature bounds (see feature bounds in Section 3.1). A
similar approach has been adopted in [36] for binary
classification.

For per-class analysis, we train the target model and
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(d) Local WB MI

0 50 100 150 200 250 300
Minimum Hamming Distance from Training Vectors

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
C

Pur-2
Pur-10

Pur-20
Pur-50

Pur-100
Loc-30

(e) Global WB MI
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Figure 3: Increasing AUC of various MI attacks with increasing Hamming distance of synthetic non-members
from the training dataset on target models. (f) compares the difference in attack AUC between MI attacks on
CIFAR-100 (CIFAR-20 can be found in Appendix B.1).
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Figure 4: Increasing AUC of various MI adversaries with increasing Hamming distance of synthetic non-members
from the training dataset on target models, with a separation of class labels depending on the size of the Decision
Region (DR), for the Purchase-20 dataset.

generate the synthetic vectors as before, except that now
not only do we group synthetic vectors by the distance
from the training dataset, but also according to the class
label of the nearest training dataset vector. Due to space
restrictions, we only show results for the Purchase-20
dataset. Results from the other datasets are in agreement
with the conclusions drawn here, and are presented in
Appendix B.1. In the figures, we highlight the AUC
performance of the most dominant (largest DR) and least
dominant (smallest DR) classes.

Results. Each plot in Fig. 4 has 4 salient features. A
blue line representing the mean AUC of all classes, an
accompanying blue shaded area representing 2 standard
deviations of AUC between classes, a green and blue line
representing the class with the smallest DR, and the largest
DR, respectively. From Fig. 4, we observe that across all
MI attacks, the AUC of the most dominant class is well
below the average. In particular, at distances close to the
dataset.

This can be explained as follows. Near the dataset,
a non-member vector with class label j (which is also
the label of its nearest neighbor in the dataset) is likely
to lie in the decision region Rj of class j. As we move
away from the dataset, by varying the distance, the cor-
responding non-member vectors shift further away from
the spot in the decision region occupied by their nearest
neighbors in the dataset. At certain distance, depending on

the target or attack model, the decision region changes to a
decision region occupied by a different class, even though
the nearest neighbor still has the class label j. These non-
members are then likely to be misclassified as member
vectors of another class, since they lie deep in the decision
region of another class. This phenomenon is particularly
true if one class overwhelmingly dominates other classes,
thus occupying the bulk of the decision region. In this
case, the attack will not be able to distinguish between
members and non-members from the dominating class.

This is most evident from the results on the 2-Purchase
dataset (Fig. 7a-e in Appendix B.1), in which one of the
two classes overwhelmingly dominates the other class (a
DR of almost 1). The AUC performance of the dominant
class is poor, whereas it is high for the other class,
bringing the average AUC close to 0.5. This partly ex-
plains why the reported performance of MI attacks on
2-Purchase has always been comparatively poorer in the
literature [25], [27]. The per-class analysis on the remain-
ing binary datasets is in Appendix B.1.

Observation 3. If a class overwhelmingly dominates
other classes, i.e., occupies a significant portion of the
decision region in the feature space, then it is least sus-
ceptible to MI and SMI. An MI or SMI attack is unable to
efficiently distinguish between members and non-members
from this class.
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Tuning Attack Models for SMI. It may be argued that
these MI attacks are not specifically trained to distinguish
between members and nearby (synthetic) non-members,
which may explain their poor performance in terms of
SMI. We performed additional experiments where we
tuned the training process of these attack models to further
include nearby synthetic non-members. We observe even
with tuning, the attack model is unable to achieve SMI.
Details appear in Appendix B.4.

4.2. Generalization to Other Machine Learning
Models

In this section, we demonstrate that the previous ob-
servations are not just limited to neural networks, and
generalize to other machine learning models as well.
More specifically, we use Logistic Regression (LR), Sup-
port Vector Machines (SVM) and Random Forests (RF)
classifiers as the target classification models. Since our
observations are consistent across all MI attacks, we only
evaluate the Conf MI attack as it requires the least amount
of information about the target model, making it the most
portable attack between different machine learning target
models.

Results. Figs. 5a, 5c, 5e display the AUCs on the original
non-members from the datasets. We see that, in general,
they exhibit the same as the neural network: the AUC
improves as the distance of non-members from the dataset
increases, with the AUC performance closer to 0.5 near
the dataset. This trend in the AUCs is more prominent
on the synthetic non-members shown in Figs 5b, 5d, 5f.
An interesting observation is that the AUC of the RF
model is very high even for non-member vectors close to
the dataset, across all datasets. The main reason for this
is that the RF model in general is more overfitted than
the other models (see Table 4 of Appendix A). This may
seem to suggest that it is possible to launch a successful
SMI attack on an RF-based target model. However, if we
zoom into distances close to the training dataset, i.e., inset
Fig. 5f, we see that the AUC is close to 0.5 for Hamming
distance ≤ 2. Thus, it is still difficult to launch an SMI
attack for small distances.

Observation 4. The observation that an MI attack is
unable to distinguish between members and nearby non-
members (strong membership inference) is consistent
across different machine learning target models.

5. Attribute Inference

In this section, we first present the results of our
experiments using the three attribute inference (AI) attacks
described in Section 3.2.2. We show that all three AI
attacks have negligible advantage in inferring the missing
attributes of a target vector. On the other hand, for the
same three attacks, we show that approximate attribute
inference attack (AAI) advantage (Def. 10) is significant,
thereby suggesting that these attacks can approximately
guess the missing attributes with a probability better than
a random guess. We only focus on neural networks as the
target model, since we have already shown that the results
generalize to other machine learning models. We also
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Figure 5: Increasing AUC of MI with increasing Ham-
ming distance of original and synthetic non-members
from the training dataset on target models with various
ML algorithms.

study the effect of overfitting on the success advantage
of both AI and AIA attacks in the last subsection.

5.1. Attribute Inference Attacks

To perform AI experiments (Exp. 3), we train the
model exactly as described in Section 3.3. We then (a)
randomly select a member of the training set, or a non-
member (from the testing set), (b) we mask a select
number of most informative feature values as determined
by mRMR [23] on the entire dataset to create the set S
of unknown features (15 binary features for Location and
Purchase; 5 continuous features for CIFAR datasets), (c)
and generate all possible siblings of the vector under S (2
value bins per feature for Location and Purchase, and up
to 10 value bins per feature for CIFAR). We then evaluate
the AI attacks by giving each of the generated siblings to
the underlying MI attack, and flagging those siblings that
the corresponding MI attack identifies as a member vector.
Again, the decision to use the most informative features
from mRMR is to improve the likelihood of success for
AI, as differences in the most informative features are
likely to have the largest influence on the output of the
classification model. We determine the AI attack to be
successful, if the original member vector is in this set
of flagged siblings. If there are more than one flagged
sibling (excluding the original vector), we treat it as a
tie and regard the attack as only partially successful. We
add a fraction (determined by the number of ties) to its
success count. For instance, 1/100 if there is a tie between
100 candidates. We then compute the AI advantage as the
difference in the success counts between members, and
non-members divided by the total counts of the tested
members and non-members, respectively. We note that we
also performed Exp. 3 on a single missing feature (as is
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TABLE 1: Attribute Inference (Exp. 3) Advantage,
where the adversary seeks to infer the exact attributes.
The results below are normalized when dealing with
ties.

AI Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100 CIF-20 CIF-100
Conf 7.78E-4 1.38E-5 -3.69E-4 2.16E-4 2.00E-3 1.65E-3 -3.32E-7 4.14E-7
Loss 7.76E-4 -9.79E-5 5.57E-3 6.69E-3 4.59E-3 5.09E-3 3.33E-4 7.80E-4

Shadow 8.00E-4 -2.00E-4 2.17E-3 2.63E-3 4.10E-3 4.20E-3 2.26E-4 7.99E-4
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Figure 6: Closer inspection of Hamming and Man-
hattan distance for select datasets and MI attacks
previously seen in Fig. 3. Note at small distances from
the training vectors, the AUC is close to 0.5, suggesting
a poor AI attack.

done in other works [12], [34]). The results are shown in
Appendix. B.3. For this section, we focus on the expanded
number of missing features, which is a more general case.
The results for single feature AI, as we shall see, are only
slightly better than multiple missing features.

Results. Across all attacks, we observe negligible AI
advantages irrespective of the dataset and the attack (see
Table 1). Moreover, the advantages are also very low
for more overfitted target models (Location-30, Purchase-
50, Purchase-100). This suggests that an AI attack is
difficult to launch, even though the same target model
and datasets are susceptible to MI attacks. Our conclusion
runs counter to the results from Yeom et al. on the
success of attribute inference [34], who demonstrate that
on regression problems, a Loss AI attack can successfully
infer attributes (using Loss MI attack as a subroutine), and
the more overfit the target model, the more successful the
attack. But this is easily reconciled by noting that our
results apply to the classification problem, where the true
label given to the attacker is discrete (class label). This
is in contrast to the regression problem, where the true
label (response) is a continuous value. The latter provides
more information to the attack algorithm, which can be
employed to launch a loss-based attack, i.e., Loss AI. The
link to overfitting merits further exploration, and we defer
this to Section 5.3.

A closer look at the Location dataset sheds more light
on the reasons behind the failure of the AI attack. Previ-
ously, in Section 4.1.2, we observed that the performance
of the Loss MI attack on the Location dataset reaches AUC
greater than ≥ 0.7, significantly higher than other datasets.
In Fig. 6a we focus on the Loss MI attack on non-members
at Hamming distances 1 to 15 from the dataset. We can
see that the AUC reaches 0.7 at Hamming distance 10 but
remains close to 0.5 between distance 1 to 3. Thus, while
the Loss MI attack should easily be able to discard siblings
of the original vector at Hamming distances greater than
10, it fails at closer distances and thereby resulting in
an overall negligible advantage for the corresponding AI

TABLE 2: Approximate AI Advantage (Def. 10), where
the adversary seeks to infer approximate attributes
(α = 7.5 for Location and Purchase, α = 3.33 for
CIFAR). Results with ties are normalized.

AAI Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100 CIF-20 CIF-100
Conf 0.1609 0.0366 0.0516 0.0502 0.0958 0.1307 -0.0004 0.0016
Loss 0.1030 0.0125 0.0516 0.0541 0.0789 0.1012 0.0300 0.0325

Shadow 0.0554 0.0054 0.0067 0.0149 0.0766 0.0964 0.0339 0.0445

attack. The same reasoning applies to the CIFAR-100
dataset (Fig. 6b), although under Manhattan distance.

Observation 5. It is difficult to infer (exact) attributes
of a target vector in the training dataset from a machine
learning model trained for a classification task, even if it
is susceptible to membership inference.

5.2. Approximate Attribute Inference Attacks

Since an MI attack starts performing better as the dis-
tance of non-member vectors from the dataset increases,
this suggests that the relaxed notion of approximate at-
tribute inference (AAI) defined in Exp. 4 may be realiz-
able in practice. Recall that an AAI adversary is given
a portion x∗ of a vector x, and is asked to return a
vector x′ such that d(x,x′) ≤ α, where the parameter α
determines closeness to the exact attributes. In this section,
we evaluate AAI attacks. These are essentially AI attacks,
but the success is determined by the parameter α. To set
an appropriate value of α, we need to take into account
any algorithm that randomly guesses the missing features
without even using the output of the classifier. Over all
challenge vectors, the average distance of the guessed
vectors from the target vectors will approach the expected
distance of a vector x′ from x whose missing features
are randomly generated. We therefore set α equivalent to
this expected distance. This means that any algorithm that
successfully guesses more the missing features within an
α distance of the target vector is non-trivial. Note that
guessing missing features trivially due to correlations in
the data distribution is already covered by the way our
AAI definition is constructed, i.e., learning via the model
versus via the distribution. Thus, for the Location and Pur-
chase datasets, where we have 15 unknown features, we
set α = 7.5, and for the CIFAR dataset, with 5 unknown
continuous features (normalized between −1 and 1), we
set α = 3.33, which is the average distance of a random
guess from the original values (See Appendix E).

Results. Table 2 shows the AAI advantage (Def. 10) of
the three AI attacks on all datasets. Overall, the AAI
advantage is considerably higher than the AI advantage
(from Table 1), reaching up to 0.1609 for the Loss AI
attack on the Location dataset. However, the advantage
obtained is still lower than the theoretical maximum of 1.
Furthermore, the advantage is higher for more overfitted
datasets, i.e., Location, Purchase-50, Purchase-100, and
CIFAR-100. This indicates that increasingly the level of
overfitting may improve the attack accuracy, which we
shall explore in the next section. Interestingly, Shadow AI
either performs worse or comparable to Conf AI and Loss
AI, even though the latter attacks have less information
available to them. The advantages seen in Table 2 exceed
AI with one missing feature (See Appendix B.3), despite
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TABLE 3: Approximate AI (Exp. 4) Advantage, where
the Shadow adversary seeks to infer approximate
attributes (α = 7.5) from various states of generalized
Purchase-100 Models

Dataset Size 20K 40K 60K 80K 100K 150K 200K
Overfitting 0.368 0.301 0.271 0.251 0.237 0.211 0.193
Shadow AI 0.0024 0.0046 0.0021 0.0052 0.0040 0.0049 0.0033

Shadow AAI 0.118 0.098 0.096 0.078 0.066 0.046 0.026

the increased inference difficulty, with more missing fea-
tures.

Like Yeom et al. [34], our current evaluation, regards
the measure of success as an adversary’s ability to infer
attributes with a single guess, reported as an average
over multiple vectors; However, we acknowledge there
are additional measures of success. For example top-k,
whereby an attacker has the opportunity to submit their
top k guesses.

Observation 6. It is possible to infer attributes approx-
imately close to their true values with a success rate
significantly greater than random guess when the target
model is susceptible to membership inference.

5.3. AI, AAI and Relation to Overfitting

In both AI and AAI attacks, we observed greater
advantage on more overfitted target models. To explore
this further, we focus on the Purchase-100 dataset and
the Shadow AI attack. We define the overfitting level of
a model as the generalization error (GE) as defined in
Eq. 1. To alter GE, and hence the degree of overfitting,
we vary the amount of training data, while maintaining
proportional splits between training and testing sets. As
we increase the training data size from 20,000 (20K) to
200,000 (200K), the generalization error decreases from
0.368 down to 0.193 as shown in Table 3.

Results. From the “Shadow AI” row of Table 3, we can
see that increasing the overfitting level has little to no
impact on the AI advantage (the Shadow AI result in
Table 1 corresponds to a dataset size of 40K). Returning
to the comparison with the findings of Yeom et al. on
the effectiveness of AI on regression tasks in Section 5.1,
our results indicate that for a classification problem, AI
remains ineffective even if we increase the degree of
overfit. On the other hand, there is a positive correlation
between overfitting level and the AAI advantage, evident
from the row labeled “Shadow AAI” in Table 3. As the
overfitting level increases from 0.193 up to 0.368, the AAI
advantage improves from 0.026 to 0.118.

Observation 7. The more overfitted a target classification
model, the more susceptible it is to approximate attribute
inference. On the other hand, attribute inference remains
hard even with increased overfitting levels.

6. Related Work
The three black-box MI attacks evaluated in this paper

were proposed by Shokri et al. [27], Salem et al. [25] and
Yeom et al. [34]. All three works have used a split of a real
dataset into training and testing sets, and demonstrated the
effectiveness of MI using the testing sets. We have shown
that most vectors in the testing set, i.e., non-members, are

expected to be far from the training set, which explains
why the relationship of MI performance to distance from
members was not identified in these works. We have also
shown that our results apply in the white-box setting,
by evaluating the MI attacks from Nasr et al. [21], who
proposed passive and active white box attacks targeting
both standalone and federated models. Of course, the
research on MI is not limited to these works. For instance,
in [11] black and white box MI attacks are evaluated on
generative adversarial networks; in [13] a new MI attack
is proposed based on the loss-based MI attack from Yeom
et al. evaluated in our paper, and in [31] the authors show
that even if MI attacks are ineffective as a whole on
a dataset, they have disparate effectiveness on different
sub-groups in the dataset. We have already demonstrated
that our observations generalize to other MI attacks and
models, since the underlying principle remains the same,
i.e., ML models are less susceptible to strong membership
inference in the classification setting.

The central theme of our paper is on the feasibility of
attribute inference, also known as model inversion [5],
[6], [33], [37]. A criticism of these works on model
inversion is that they essentially exploit the correlation
between the attributes and the true label, to infer the
missing attributes [27]. Finding such correlations is the
very purpose of the learning task, and therefore, the
missing attributes would be learned regardless of whether
the challenge vector is a member or a non-member [27].
The model inversion or attribute inference definition from
Yeom et al. [34] avoids this issue by defining the AI
advantage as the difference between inferring attributes
with the model and without the model (i.e., through the
distribution). Indeed, our definitions of AI and AAI use the
same approach, based on their work. Yeom et al. [34] are
also the first to formally relate MI attacks to AI attacks.
They also formalise the role of overfitting to the effective-
ness of MI and AI attacks, a link which was previously
experimentally identified and demonstrated in [25], [27].
As mentioned previously, they demonstrate that AI attacks
are feasible on regression problems, with the accuracy of
the attacks improving with the level of overfit. Although
the AI attack performance is not as significant as the MI
attack, it is still quite substantial reaching an advantage
of up to 0.5 on one of the datasets [34]. We have shown
that for classification problems, only approximate attribute
inference seems to be feasible. Apart from [34], Jayama-
ran and Evans [12] have also experimentally evaluated
attribute inference attacks on classification models. Even
though the goal of their analysis is to evaluate privacy
leakage from classification models treated with differential
privacy, their results with lower privacy (higher values of
the privacy parameter ε [3]) can be considered as closer
to the non-private setting. These results also show low
AI advantages as compared to MI attacks, although the
authors do not delve into the reasons.

Another related area is the investigation of factors
effecting membership inference. Sablayrolles et al. [24]
seek the optimal strategy for membership inference and
find that such a strategy depends only on the loss function,
implying that, asymptotically, knowledge of the model pa-
rameters (white box setting) does not provide any benefits
over black box access. However, their treatment does not
explore distance-based impact on membership inference
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as is done in our work. Long et al. [17] explore the
performance of membership inference focused on train-
ing data records which are more vulnerable, in contrast
to looking at membership inference performance as an
aggregate over the entire training dataset. They find that
records which have fewer neighbors are more vulnerable,
as their presence or absence has more influence on the
model’s output. They also state that it is difficult for an
MI attack to distinguish between a member and its non-
member neighbors. Unlike [17], we formally prove the
distinction between MI and SMI, and how this separation
negatively impacts AI (and AAI) on classification models.

On the definitional side, Wu et al. [30] present an
initial formal definition of attribute inference as the dif-
ference in inferring from the output of the model versus
through the distribution (without access to the model). The
definition from Yeom et al. [34], which is the basis of
our related definition, follows the same line of thinking.
In addition to membership and attribute inference, Melis
et al. [18] also consider property inference, which is a
property of a subset of training points within a class
but not true of the entire class. They show that it is
possible to infer properties that are independent of what
characterizes the class through unintended learning by
the machine learning algorithm. Unlike membership or
attribute inference which is tied to individual data points,
their property inference relates to multiple training points
(subsets).

This is similar to other attacks on machine learning
models, such as model extraction [29], which apply to
the entire model itself and not necessarily to individuals
in the training dataset. In a model extraction attack, un-
known parameters of the model are retrieved to construct
similarly behaving models (hence stealing the model in a
proprietary sense). On the defense side, it has been demon-
strated that MI and AI attacks can be mitigated by the use
of differential privacy [1], [3], [12], although, this comes
at a potential loss in utility [4], [12], [37]. Our findings on
the infeasibility of AI attacks indicate that we may only
need protection against (the weaker) approximate attribute
inference, for which tailored differentially private learning
algorithms can be constructed offering better utility. This
is particularly useful for applications where membership
inference is less of a concern, or may even be desirable.
A case in point being machine learning auditors, based on
membership inference attacks, to prevent unauthorized use
of personal data [19], [28]. Additionally only evaluating
defenses against AI may mask potential privacy leakage
though AIA, an arguably simpler attack and thus a more
difficult task to defend.

Finally Adversarial examples are vectors with applied
perturbations close to the original target that result in large
variations in the model’s behavior, commonly observed as
a mis-prediction [8]. In the setting of MI or AI, given an
adversarial example of a vector within the training dataset,
the large difference between the behavior of the known
and adversarial example would allow for their distinction.
However, as Long et al. [17] state, the majority of the
neighborhood around the vector would have a minimal
difference on the model output; with the adversarial ex-
ample behaving as an exception, rather than the norm.
Though combative methods have been developed to train
models robust to adversarial examples [9], we speculate

that robust adversarial models will only have a minor
positive impact on the mitigation of the MI/AI attack, as
robust models should preserve the regular behavior of the
model, to only mitigate the behavior of the adversarial
examples. Though this warrants further investigation.

7. Conclusion

Our results show that it is infeasible for an attacker
to correctly infer missing attributes of a target individual
whose data is used to train a machine learning model for
a classification problem owing to the inability of mem-
bership inference attacks to distinguish between members
and nearby non-members. For applications, where the
privacy concern is attribute inference, and not membership
inference, defense mechanisms tailored to protect against
approximate attribute inference can be constructed. As a
future direction, it will be interesting to explore whether
the approximate attribute inference attacks mentioned in
this paper can be improved to infer missing attributes as
close as possible to the original attributes.
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Inequality, pages 65–81. Springer Netherlands, 1993.

[21] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive
privacy analysis of deep learning: Stand-alone and federated learn-
ing under passive and active white-box inference attacks. arXiv
preprint arXiv:1812.00910, 2018.

[22] Mı́cheál O’Searcoid. Metric spaces. Springer Science & Business
Media, 2006.

[23] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection
based on mutual information: criteria of max-dependency, max-
relevance, and min-redundancy. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 2005.

[24] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann
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TABLE 4: Summary of training and testing accuracies,
with MI AUC for all machine learning classifiers.

Dataset Model Train Acc Test Acc MI AUC Model - MI Train Acc Test Acc MI AUC
LR - Conf 1.000 0.582 0.897 NN - Conf 1.000 0.794 0.705

Loc-30 SVM - Conf 1.000 0.731 0.916 NN - Loss 1.000 0.794 0.710
RF - Conf 1.000 0.566 0.975 NN - Shadow 1.000 0.666 0.909
NN - Local 0.998 0.430 0.891 NN - Global 0.998 0.430 0.886
LR - Conf 1.000 0.484 0.765 NN - Conf 0.999 0.765 0.708

Pur-100 SVM - Conf 1.000 0.799 0.855 NN - Loss 0.999 0.765 0.720
RF - Conf 1.000 0.606 0.998 NN - Shadow 1.000 0.700 0.842
NN - Local 0.538 0.487 0.508 NN - Global 0.538 0.487 0.719
LR - Conf 0.995 0.601 0.614 NN - Conf 0.998 0.832 0.629

Pur-50 SVM - Conf 1.000 0.857 0.716 NN - Loss 0.998 0.832 0.638
RF - Conf 1.000 0.724 0.980 NN - Shadow 1.000 0.778 0.763
NN - Local 0.692 0.657 0.520 NN - Global 0.692 0.657 0.668
LR - Conf 0.973 0.785 0.552 NN - Conf 0.999 0.889 0.577

Pur-20 SVM - Conf 1.000 0.906 0.584 NN - Loss 0.999 0.889 0.582
RF - Conf 1.000 0.813 0.917 NN - Shadow 1.000 0.841 0.690
NN - Local 0.803 0.781 0.505 NN - Global 0.803 0.781 0.626
LR - Conf 0.973 0.878 0.521 NN - Conf 0.999 0.911 0.558

Pur-10 SVM - Conf 1.000 0.932 0.530 NN - Loss 0.999 0.911 0.561
RF - Conf 1.000 0.840 0.902 NN - Shadow 1.000 0.868 0.644
NN - Local 0.836 0.818 0.503 NN - Global 0.836 0.818 0.608
LR - Conf 1.000 0.986 0.499 NN - Conf 0.998 0.959 0.521

Pur-2 SVM - Conf 1.000 0.987 0.502 NN - Loss 0.998 0.959 0.522
RF - Conf 1.000 0.921 0.781 NN - Shadow 0.999 0.944 0.580
NN - Local 0.914 0.906 0.505 NN - Global 0.914 0.906 0.567

CIFAR-20 NN - Conf 0.920 0.322 0.544 NN - Loss 0.920 0.322 0.799
NN - Shadow 0.999 0.281 0.925 - - - -

CIFAR-100 NN - Conf 0.831 0.214 0.524 NN - Loss 0.831 0.214 0.844
NN - Shadow 0.999 0.170 0.967 - - - -

[31] Mohammad Yaghini, Bogdan Kulynych, and Carmela Troncoso.
Disparate vulnerability: on the unfairness of privacy attacks against
machine learning. arXiv preprint arXiv:1906.00389, 2019.

[32] Dingqi Yang, Daqing Zhang, and Bingqing Qu. Participatory
cultural mapping based on collective behavior data in location-
based social networks. ACM Transactions on Intelligent Systems
and Technology (TIST), 7(3):30, 2016.

[33] Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural
network inversion in adversarial setting via background knowledge
alignment. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 225–240, 2019.

[34] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh
Jha. Privacy risk in machine learning: Analyzing the connection
to overfitting. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 268–282. IEEE, 2018.

[35] Benjamin Zi Hao Zhao, Hassan Jameel Asghar, Raghav Bhaskar,
and Mohamed Ali Kaafar. On inferring training data attributes in
machine learning models. arXiv preprint arXiv:1908.10558, 2019.

[36] Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and Mohamed Ali
Kaafar. On the resilience of biometric authentication systems
against random inputs. In Network and Distributed System Security
Symposium (NDSS), 2020.

[37] Han Zhao, Jianfeng Chi, Yuan Tian, and Geoffrey J Gordon.
Adversarial privacy preservation under attribute inference attack.
arXiv preprint arXiv:1906.07902, 2019.

Appendix A.
Model Parameters

A.1. Target Models

We will first describe the Neural Network (NN)
based target models used in the bulk of our experiments,
followed by the configurations of the classifiers in Sec-
tion 4.2. The training and testing accuracies can be found
in Table 4. Location: The model was trained in keras as a
fully connected NN with 1 hidden layer of 128 nodes with
the “tanh” activation function. We replicate the training
and testing accuracy of [27]’s target model. Purchase:
The target model was trained in keras as a fully connected
neural network with 1 hidden layer of [128] nodes with
a “tanh” activation function. This architecture replicates
the training and testing accuracy for the target model as
previously reported in [27]. CIFAR: The target model is a
multilayer perceptron, consisting of two hidden layers of
256 units, with relu activation layer and a softmax output
layer. This is the same architecture used in [12].

Logistic Regression (LR): The parameter C was set
at 100 for all datasets, with all other parameters remain
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at the default values. Support Vector Machine (SVM):
We select a linear kernel for all the datasets. We keep
parameters at default values. Random Forest (RF): The
number of estimators was chosen to be 100 with no depth
specified, the remaining parameters were kept as defaults.

The training and testing accuracies for each algorithm,
and for each datasets are noted in Table 4.

A.2. MI Attack Configurations

Due to the different data requirements for each attack,
the way the data is partitioned differs, we note these
differences in this section. The average MI AUC can be
found in Table 4. For the Conf and Loss attacks, we do
not require additional data to train an attack model.

A.2.1. Conf and Loss attacks. Location: We take the
full dataset and divide it into 2 parts. 20% is used for
training the target model and remainder 80% is kept for
testing purposes. Purchase: We sample 20,000 records
from the dataset and divide it into 2 parts. The first 80%
is used for training the target model and remaining 20%
is kept for testing purposes. CIFAR: 50,000 records are
sampled from the dataset to constitute our experimental
dataset, from this 20% is reserves as the training data,
and the remaining 80% is use for testing.

A.2.2. Shadow MI. Location: We take the full dataset
and divide it into 3 parts. The first 20% is used for training
the target model, 64% for training the shadow models and
the remaining 16% is retained for testing. Our Shadow MI
attack is from the open-source library [16]. The training
and testing accuracies are found in Table 4. Our models
are as follows:
1) Shadow Models: We select 60 attack models for Lo-

cation dataset, consistent with [27]. The architecture
of these shadow models and the size of their training
dataset are equivalent to the target model.

2) Attack Model: The attack model is multilayer percep-
tron with a 64-unit hidden layer and a sigmoid output
layer. This architecture replicates the precision and
recall as previously reported in [27]. For the Location-
30 dataset our MI attack obtains a precision of 0.93
and recall of 0.82

Purchase: We sample 40000 records from the dataset and
divide it into 3 parts. The first 25% is used for training
the target model, 67.5% for training the shadow models
and the last 7.5% is kept for testing. The setup for running
this attack on the Purchase datasets are as follows:
1) Shadow Models We chose the number of shadow

models as 20 for Purchase dataset. The architecture
of these shadow models and the size of their training
dataset are the same as the target model.

2) Attack Model The attack model is multilayer percep-
tron with a 64-unit hidden layer and a sigmoid output
layer. This architecture replicates the precision and
recall observed in [27]. We obtain precision of 0.66,
0.78, 0.81, 0.85, 0.89 and recalls of 0.54, 0.57, 0.6,
0.67, 0.76 for Purchase-2, 10, 20, 50, 100, respectively.

CIFAR: We sample complete dataset(around 50000
records) from the dataset and divide it into 3 parts. The
first 20% is used for training the target model,next 72%

for training the shadow model and the rest 8% is kept for
testing purposes. The setup for running this attack on this
dataset is as follows:
1) Shadow Models We chose the number of attack mod-

els as 5 for CIFAR dataset which is the same as [12].
The architecture of this shadow model and the size of
the training dataset is the same as the target model.

2) Attack Model A multilayer perceptron (two 64 unit
hidden layer with “tanh” activation layer and a sigmoid
output layer). This architecture matches the precision
and recall of the attack model previously reported in
[27]. We achieve 0.98 precision and 0.9 recall for
CIFAR-100.

A.3. Local and Global White Box Inference At-
tacks [21]

As a result of the federated setting, the target models
for our datasets differ. The target models and attack model
architecture, as well as the training and testing setup,
originally described by [21] are utilized in this study.

Target Model Our target model for both datasets
consisted of five layers (1024, 512, 256, 128, 100) with
“tanh” activation, replicated from [21]. Each party as well
as the server is trained on this model across 100 epochs
with an Adam optimizer with learning rate of 0.0001 and
cross entropy loss.

Attack Model The attack model takes in a number of
different inputs from the target model, which are trained
on ’submodules’ before being combined in a final net-
work. These inputs described below, with c being equal
to the number of classes of the dataset:
• Gradient loss of the final layer - One convolutional layer

(1000) with kernel size (1, c) and three hidden layers
(1024, 512, 128)

• One hot encoded true label - 2 hidden layers (128, 64)
• Predicted labels - 2 hidden layers (100, 64)
• Output for the correct label – 2 hidden layers (c, 64)

The combined input is trained using three hidden lay-
ers (256, 126, 64, 1). ”ReLu” activation is used throughout
the attack model, with an Adam optimiser with learning
rate of 0.00001 and mean square error loss.

Datasets During target model training the Location
and Purchase datasets were both split with 20% (30,000
for Purchase, 1,158 for Location) used for the initial target
model training, and 80% (150,000 for Purchase, 5,790 for
Location) for testing, as described for the purchase dataset
in [21]). The data was further split equally amongst the
three parties so that each party had a training and testing
set of the same size. The attack model was subsequently
trained with half of the original training data and the same
amount of the original testing data (representing members
and nonmembers, respectively). Each batch was designed
to have 50% of members and nonmembers. The remaining
samples were used for testing.

Appendix B.
Additional Figures and Experimentation

B.1. Additional Plots

CIFAR-20 Plots In Section 4, we presented results
for CIFAR-100, here we provide accompanying plots in

16



This is a pre-print of work accepted at IEEE EuroS&P 2021

0 50 100 150 200 250
Min Hamming Distance

0.2
0.4
0.6
0.8
1.0

AU
C

Min DR (0.00)
Max DR (0.90)
Loc-30 Class Mean

(a) Loc-30 Conf MI
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(e) Loc-30 Global WB
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(g) Pur-2 Loss MI
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(h) Pur-2 Shadow MI
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(i) Pur-2 Local WB
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(j) Pur-2 Global WB
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(k) Pur-10 Conf MI
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(l) Pur-10 Loss MI
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(m) Pur-10 Shadow MI
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(r) Pur-50 Shadow MI
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(t) Pur-50 Global WB
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(u) Pur-100 Conf MI
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(v) Pur-100 Loss MI
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(w) Pur-100 Shadow MI
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Figure 7: Increasing AUC of MIA with increasing distance of synthetic non-members from the training dataset,
with a separation of class labels depending on the size of the DR, for the Loc-30, Pur-2, 10, 20, 50, 100 datasets.
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Figure 8: AUC of MI attacks on original and synthetic
non-member vectors of the CIFAR-20 dataset as a
function of Manhattan distance.

Figure 8a and 8b for CIFAR-20, which demonstrates the
same trends as those observed in CIFAR-100. We do note
that the AUC curves for CIFAR-20 are slightly lower than
the respective CIFAR-100 curves. An expected result due
to the reduction in the number of class labels.

Per-Label Plots As previously discussed in Sec-
tion 4.1.3, we had only shown the Purchase-20 dataset. We
now provide the per-label plots of our remaining binary
datasets in Fig. 7.

B.2. Validating the Indistinguishable Neighbor
Assumption

To demonstrate that the indistinguishable neighbor as-
sumption from Definition 5 holds for real-world datasets,
we train a Generative Adversarial Network (GAN) to
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Figure 9: Advantage of the GAN distinguisher in dis-
tinguishing between real and perturbed vectors from
the Purchase dataset at increasing distances.

produce and discriminate between real and perturbed vec-
tors from the Purchase dataset. We train the GAN over
50 epochs with 90% of the data, and evaluate with the
remaining 10%. We use a 100 length noise input to the
generator. In Figure 9, it is clear that at small distances (r-
values) there is little advantage in distinguishing between
a real vector and a perturbed vector. The advantage in-
creases, and becomes significant, as the distance increases,
validating our theoretical assumption.

B.3. Exact AI on a Single Missing feature

In this section we present an equivalent AI attack to
that in Section 5.1, with the exception that only the single
most informative feature is to be inferred. Compared to
Table 1, we see that AI advantages for a single missing
feature are better than their counterparts for multiple
missing features. This is intuitively clear since with more
feature information withheld from an attacker (15 features
as in Section 5.1), the difficulty of the attack increases,
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TABLE 5: Attribute Inference (Exp. 3) Advantage,
where the adversary seeks to infer the exact attribute,
when a single most informative feature is missing. The
results below are normalized when dealing with ties.

AI Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100
Salem Advantage 0.0700 0.0051 0.0266 0.0396 0.0815 0.0917
Yeom Advantage 0.0581 0.0069 0.0191 0.0294 0.0655 0.0791

Shokri Advantage 0.0377 -0.0057 0.0445 0.0581 0.0318 0.0251
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Figure 10: AUC performance on Shadow MI tuned
with additional close vectors (dotted lines). The existing
Shadow MI results (solid lines) have been mirrored on
0.5 to allow for easier comparison pre and post tuning.

and the likelihood of AI success will decrease. However,
when compared to Table 4, we note that the significant MI
performance (in terms of AUC) is not reflected in the AI
performance of Table 5. For a single missing feature, AI
is equivalent to AAI, since in a binary dataset, with only
one missing feature, it is either correct or incorrect. Thus,
we only perform AAI for the case of multiple missing
features, as is done in Section 5.1.

B.4. Tuning Attack Models for SMI

It may be argued that these MI attacks are not specif-
ically trained to distinguish between members and nearby
(synthetic) non-members, which may explain their poor
performance in SMI. To investigate if we can improve
their performance of SMI, we tune the training process
of these attack models to further include nearby synthetic
non-members. This augmented training process is only
applicable to the MI attacks that employ an attack model,
i.e., Shadow, Local WB, and Global WB. The other two
MI attacks, i.e., Conf and Loss MI, directly inspect the
outputs of the target model for their MI decision, and
hence tuning the decision based on member and nearby
synthetic non-member vectors is not applicable.

To perform this experiment we take the same experi-
mental steps as Section 4.1.2, select the Shadow MI attack,
and augment the tuning step with synthetic non-members
generated from both members and non-members of the
attack model training set. For each training vector (mem-
ber or non-member), we generate two synthetic vectors
at all Hamming distances up to 10. These synthetic non-
members are then used to update the attack model.

From Fig. 10, it can be observed that the AUC of
the attack at distances close to the dataset still remains
close to 0.5, while at larger distances, the AUC approaches
0, indicating that the attack can distinguish between
members and non-members as we move away from the
dataset, although with membership label reversed, i.e.,
more members are now classified as non-members and
vice versa. Upon closer inspection, the attack model had
no advantage in inferring membership of member vectors
(near 0.5 AUC across all datasets). On the other hand,

the attack model erred more towards mislabeling non-
members (both original and synthetic) as members. We
hypothesize this output label ‘flipping‘ of the trend is
due to the numerous additional close non-members pro-
vided to the attack model, which “confuses” the model
in distinguishing members from non-members, producing
an AUC below 0.5. Regardless, for all datasets tuning the
attack model for SMI does not show any improvement
in detecting non-members close to the dataset compared
to the original attack model. We also carried out an
additional repetition of the experiment with one synthetic
vector generated per member and non-member, at each
Hamming distance up to 50. This demonstrated worse
AUC performance over all distances.

We conclude that despite the retraining the attack
model with additional nearby non-members, the attack
failed to achieve SMI. In fact, MI performance gener-
ally decreased, due to the similarity of members and the
synthetic nearby non-members.

Appendix C.
Metrics, Balls and Siblings

The results from Section 2.2 do not apply to any
arbitrary distance metric. For instance, given any distance
metric d, the metric C · d, where C > 0 is a constant
is also a distance metric. But this introduces arbitrarily
large (artificial) distance between vectors. We, therefore,
restrict ourselves to metrics that do not exhibit arbitrarily
large deviation given small perturbation in vectors. This
leads to the notion of conserving metric [22, §1.6] to be
introduced shortly.

Theorem 3 (Metrics). Let d1 be a metric on D. Let x,x′ ∈
Dm. Then the functions

1) dM (x,x′) =
∑m

i=1 d1(xi, x
′
i),

2) dE(x,x′) =
√∑m

i=1(d1(xi, x′i))
2,

3) d∞(x,x′) = maxi∈[m](d1(xi, x
′
i)),

are metrics on the product space Dm. Moreover, for every
x,x′ ∈ Dm, we have d∞(x,x′) ≤ dE(x,x′) ≤ dM (x,x′)
[22, §1.6].

Definition 11 (Conserving metric). A metric d is called
a conserving metric [22, §1.6] on the product space Dm
if for all x,x′ ∈ Dm, we have

d∞(x,x′) ≤ d(x,x′) ≤ dM (x,x′).

Examples of conserving metrics include the Hamming
distance over Dm = {0, 1}m, where d1(x, x′) = |x −
x′|, x, x′ ∈ {0, 1}, the Euclidean distance over Dm =
[0, 1]m, where d1(x, x′) = |x − x′|, x, x′ ∈ [0, 1], and
the Manhattan distance (dM ) over Dm = [−1, 1]m, where
d1(x, x′) = |x − x′|, x, x′ ∈ [−1, 1]. Henceforth we will
assume the metric d to be a conserving metric on Dm.

For any subset X ⊆ Dm, the diameter of X , denoted
diamd(X) is defined as max{d(x,x′) | x,x′ ∈ X}.
Bounded Feature Space. We assume D to be bounded,
i.e., diamd1(D) < ∞. Since d is a conserving metric
it follows that diamd(Dm) < ∞, and hence the feature
space is also bounded. This is equivalent to saying that
for any x ∈ Dm, there exists an R > 0 such that
Dm = Bd(x, R) [22, §7.1].
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Siblings. Overloading notation, we also define

Φi(x) =
⋃

S⊆[m]
|S|=i

ΦS(x),

where 1 ≤ i ≤ m− 1.

Proposition 1. Let 1 ≤ i ≤ m−1. Let r ≥ i×diamd1(D).
Then for every feature vector x ∈ Dm, we have Φi(x) ⊆
Bd(x, r).

Proof. Consider any x′ ∈ Φi(x). Then x′ ∈ ΦS(x), for
some S ⊆ [m] where |S| = i. Then, as d is a conserving
metric,

d(x,x′) ≤ dM (x,x′) ≤
m∑
j=1

d1(xj , x
′
j) =

∑
j∈S

d1(xj , x
′
j)

≤
∑
j∈S

diamd1(D) = i× diamd1(D) ≤ r.

Hence x′ ∈ B(x, r).

For metrics dE and dM , we define di to be the
restriction of dE or dM to i dimensions in a natural way,
where 1 ≤ i ≤ m.

Proposition 2. If diamd1(D) = δ > 0, then diamd1(D) <
diamd2(D2) < diamd3(D3) < · · · .

Proof. Consider the metric to be dE . Consider i = 1. Then
there exist x, x′ ∈ D such that δ = d(x, x′). Construct the
2-dimensional vectors x = (x, x) and x′ = (x′, x′). Then,

diamd2(D2) ≥
√

(d1(x, x′))2 + (d1(x, x′))2

=
√

2δ > δ = diamd1(D).

The rest of the proof follows by induction. The case for
dM is similar.

Proposition 3. Let 1 ≤ i ≤ m−1. Let diamdi+1
(Di+1) >

r ≥ diamdi(Di), where dj is dE restricted to j dimen-
sions. Then,

1) For any feature vector x ∈ Dm, we have Φi(x) ⊆
BdE (x, r).

2) There exists a feature vector x ∈ Dm, such that
Φi+1(x) 6⊆ BdE (x, r).

Furthermore, the same holds for the metric dM , and dj
being dM restricted to j dimensions.

Proof. For part (1), consider any x′ ∈ Φi(x). Then x′ ∈
ΦS(x), for some S ⊆ [m] where |S| = i. Then,

dE(x,x′) =

√√√√ m∑
j=1

(d1(xj , x′j))
2

=

√∑
j∈S

(d1(xj , x′j))
2 ≤ diamdi(Di) ≤ r.

Hence x′ ∈ BdE (x, r). For part (2), let δ =
diamdi+1(Di+1). Then their exist (i+1)-dimensional vec-
tors x′,x′′ ∈ Di+1 such that di+1(x′,x′′) = δ. Fur-
thermore, d1(x′j , x

′′
j ) 6= 0, for all j ∈ [i + 1]. Suppose

not, and wlog assume that d1(x′i+1, x
′′
i+1) = 0. Then, we

can discard the last element from both vectors, and the
resulting i-dimensional vectors have distance δ according
to di, which is greater than diamdi(Di); a contradiction.

Now, sample any (m − i − 1)-dimensional vector from
Dm−i−1 and append it to both x′ and x′′. Let us call the
resulting vectors x1 and x2. Let S = {1, 2, . . . , i + 1}.
Then, |S| = i+ 1, and x2 ∈ ΦS(x1) ⊆ Φi+1(x1), but

dE(x1,x2) =

√√√√ m∑
j=1

(d1(xj , x′j))
2

=

√∑
j∈S

(d1(xj , x′j))
2 = δ > r.

Hence x2 /∈ BdE (x1, r).
A similar proof holds for the metric dM .

Corollary 1. Let i and x be as in the statement of the
previous proposition. Define d1(x, x′) = |x − x′| for
x, x′ ∈ D.

1) Let dH be the Hamming distance on D = {0, 1}m.
Let r ≥ i. Then Φi(x) ⊆ BdH (x, r).

2) Let dM be the Manhattan distance on D = [−1, 1]m.
Let r ≥ 2i. Then Φi(x) ⊆ BdM (x, r).

3) Let dE be the Euclidean distance on D = [−1, 1]m.
Let r ≥

√
4i. Then Φi(x) ⊆ BdE (x, r).

The above corollary can be used to select an r such
that all siblings of a portion are within the r-ball. This is
used, for instance, by the AI adversary to employ an SMI
attack as a subroutine to infer attributes in Section 2.2.

Appendix D.
Relationship between Inference Notions

Proof of Theorem 1.

Proof. We essentially show that a membership inference
(MI) adversary does not imply a strong membership in-
ference (SMI) adversary, i.e., MI 6⇒ SMI. Let r > 0 be
fixed. Let k ≥ 2 be a fixed number of labels. Let N � n.
Sample N points from Rm such that for all pairs of points
x,x′ in this sample, with x 6= x′, we have d(x,x′) > 3r.1
Let us call this sample S1. For each x ∈ S1, assign it an
arbitrary label from the k labels and set c(x) to this label.
Initialize an empty set S2. Now for each x ∈ S1, sample
a random point from B(x, r) − {x}, and add to S2, and
assign it the same label as x, i.e., c(x). Let S = S1 ∪S2.
Notice that every vector in S has precisely one r-neighbor
in S. To see this, first note that every vector in S1 is not
an r-neighbor of any other vector in S1 by construction.
Next, we take a vector x in S1, and see if it has more than
one r-neighbors in S2. Let y be the r-neighbor guaranteed
by construction. Assume now that w ∈ S2 different from
y is another r-neighbor of x. Let z ∈ S1 be the r-neighbor
of w in S1 guaranteed by construction. Then,

d(x, z) ≤ d(x,w) + d(w, z)⇒ d(x, z) ≤ r + r = 2r,

a contradiction. Next, we will look at vectors in S2. We
will check if any vector from S2 has more than one r-
neighbor in S1. Then, we will check if the vectors in S2

have any r-neighbors in S2. This exhausts the cases.

1. There can be many such vectors, which can be found using a
greedy algorithm [10]. For instance, if D = {0, 1}, r = 1, and d is the
Hamming distance, then the Gilbert-Varshamov bound states that there
are at least 2m/

∑3
i=0

(m
i

)
, vectors with minimum Hamming distance

> 3r = 3 [7], [10].
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Let y be the r-neighbor in S2 of some x ∈ S1. This
is true by construction. Let z be some other vector in S1.
Then, d(x,y) ≤ r, and d(x, z) > 3r. Therefore,

d(x, z) ≤ d(x,y) + d(y, z)

⇒ 3r < d(x,y) + d(y, z)

⇒ 3r < r + d(y, z)⇒ 2r < d(y, z),

hence y is not an r-neighbor of any other z in S1. Now
consider some w ∈ S2 not equal to y. Assume to the
contrary that d(y,w) ≤ r. Let z be the r-neighbor of w
in S1 (again by construction, it should exist). Then,

d(x, z) ≤ d(x,y) + d(y,w) + d(y, z)

⇒ d(x, z) ≤ r + r + r = 3r,

which is a contradiction.
Let Dm = S. Define the distribution D as the uniform

distribution over S. Sample a dataset X ← Dn. Define
a classifier hX which given a point x in X , assigns its
label c(x) to all vectors within the ball B(x, r), i.e., all
r-neighbors of x have the constant label. The classifier
hX , when queried for a point x ∈ X , simply outputs the
label c(x). For any point x /∈ X , it checks if there is some
x′ ∈ X such that d(x′,x) ≤ r. If yes, it returns the label
c(x′). Otherwise, it returns an arbitrary label from the k
labels.

Now consider an MI adversary A which given
(x, c(x)), queries hX with x, and outputs 1 (member)
if hX(x) = c(x) and 0 (non-member) otherwise. Let us
calculate the probabilities in:

Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0],

which define the adversary’s advantage (Definition 7). If x
is a member, then the adversary does not make a mistake,
as the label returned by hX is exactly the label c(x) by
construction. Therefore,

Pr[b′ = 1 | b = 1] = 1.

Now consider the other probability, i.e., Pr[b′ = 1 | b =
0]. The adversary could erroneously output x as a member
either if its r-neighbor was in X , or if its r-neighbor was
not part of X , but the classifier gives it the correct label
by chance. Thus

Pr[b′ = 1 | b = 0] =

(
1−

(
2N − 2

2N − 1

)n)
+

(
2N − 2

2N − 1

)n(
1

k

)
= 1−

(
1− 1

2N − 1

)n(
k − 1

k

)
Subtracting this from the above, we see that the advantage
is (

1− 1

2N − 1

)n(
k − 1

k

)
By Bernoulli’s inequality [20], we have(

1− 1

2N − 1

)n
≥ 1− n

2N − 1
,

and noting that N > n, we get 2N − 1 ≥ 2n. And
therefore,

1− n

2N − 1
≥ 1− n

2n
=

1

2
.

Finally, we get the advantage of at least 1
2
k−1
k , which

is a constant.2 However, the same adversary if used as
a subroutine in Experiment 2, will always output 1 if
queried on x and its r-neighbor, since every r-neighbor of
a member x ∈ X , is assigned the true label (even if it is
not in X , by construction). Hence, the resulting adversary
has no advantage in the sense of SMI.

Appendix E.
Miscellaneous Results

Relationship between AUC and Advantage. The MI
advantage from Definition 7 denoted AdvMI(A, hX , n,D)
can be empirically estimated as TPR(τ) − FPR(τ)3 with
τ denoting the threshold parameter of the given classifier
hX and TPR(τ) and FPR(τ) denoting the True Positive
Rate and False Positive Rate respectively at τ . The AUC-
ROC statistic captures the aggregate performance of the
classifier hX for all possible values of the threshold τ and
is computed as AUC =

∫ 1

FPR(τ)=0
TPR(τ)d(FPR(τ)) =∫ 1

x=0
TPR(FPR−1(x))dx.

When AdvMI(A, hX , n,D)) = Advm for all possi-
ble values of τ (i.e. Advantage is same for all values
of the threshold parameter), the AUC is computed as∫ 1

x=0
(FPR(FPR−1(x)) + Advm)dx = 1

2 + Advm. Thus,
AUC − 1

2 equals the advantage from Definition 7. Even
when the advantages vary with τ , AUC − 1

2 is a good
approximation for the average advantage.

Similarly, the Advantage in the strong membership
inference definition, AdvSMI(A, hX , r, n,D) can be empir-
ically estimated as TPR(τ)−FPR(τ) as long as Bd(x0, r)
is assumed to have a small number of samples from X ,
i.e., in general Bd(x0, r) would contain more elements
outside of X .

Average Manhattan Distance. Let Dm = [−1, 1]m.
Given a vector x ∈ Dm, we want to find the Manhattan
distance dM between x and a vector y ∈ Dm, each of
whose elements is sampled uniformly at random from the
set D = [−1, 1]. Define the distance as αm. Consider
first m = 1. Then, α1, the expected Manhattan distance
between x and y, can be defined as

α1 =
1

R

∫ +1

−1

∫ +1

−1
|x− y| dx dy,

where R = 4 is the area of the square [−1, 1] × [−1, 1].
Integrating the above we get,

α1 =
1

4

∫ +1

−1

(∫ y

−1
(y − x) dx+

∫ +1

y

(x− y) dx

)
dy

=
1

4

∫ +1

−1
(y2 + 1) dy =

1

4
· 8

3
=

2

3
.

By independence, we get αm = mα1 = 2m/3. For m =
5, we get α5 = 10/3 ≈ 3.33. Thus, we set α = 3.33 as
the benchmark for a random guess with 5 missing features
in the CIFAR dataset.

2. Note that if the adversary just guesses randomly, the advantage is
0. This is significantly greater than 0.

3. i.e., Pr[b′ = 1 | b = 1] =
Pr[b′=1∧b=1]

Pr[b=1]
= TPR and Pr[b′ = 1 |

b = 0] =
Pr[b′=1∧b=0]

Pr[b=0]
= FPR
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