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Abstract—The Android operating system is currently the
most popular mobile operating system in the world. Android
is based on Linux and therefore inherits its features including
its Inter-Process Communication (IPC) mechanisms. These
mechanisms are used by processes to communicate with one
another and are extensively used in Android. While Android-
specific IPC mechanisms have been studied extensively, Unix
domain sockets have not been examined comprehensively,
despite playing a crucial role in the IPC of highly privileged
system daemons. In this paper, we propose SAUSAGE, an
efficient novel static analysis framework to study the secu-
rity properties of these sockets. SAUSAGE considers access
control policies implemented in the Android security model,
as well as authentication checks implemented by the daemon
binaries. It is a fully static analysis framework, specifically
designed to analyze Unix domain socket usage in Android
system daemons, at scale. We use this framework to analyze
200 Android images across eight popular smartphone ven-
dors spanning Android versions 7-9. As a result, we uncover
multiple access control misconfigurations and insecure au-
thentication checks. Our notable findings include a permis-
sion bypass in highly privileged Qualcomm system daemons
and an unprotected socket that allows an untrusted app to
set the scheduling priority of other processes running on the
system, despite the implementation of mandatory SELinux
policies. Ultimately, the results of our analysis are worrisome;
all vendors except the Android Open Source Project (AOSP)
have access control issues, allowing an untrusted app to
communicate to highly privileged daemons through Unix
domain sockets introduced by hardware manufacturer or
vendor customization.

1. Introduction

One of the fundamental features any modern oper-
ating system provides is Inter-Process Communication
(IPC), used extensively by applications to implement inter-
functionality between their components. The widely-used
Android OS provides a variety of its own IPC mechanisms
(e.g., Binder, Intents, Messenger), while also inheriting
the traditional IPC mechanisms available in a Linux en-
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vironment, in particular, Unix domain sockets. As with
any IPC mechanism, privileged processes communicating
over these sockets are potentially vulnerable to confused
deputy attacks, if they are inadequately protected by the
access control policy. In that case, a malicious unprivi-
leged process can control a privileged process to overwrite
critical files [29], execute shell commands [6], or gather
screenshots and sensitive system logs [27], among other
things.

Multiple vulnerabilities and exploits are due to the
misuse of Unix domain sockets. For example, CVE-2011-
3918 [5] describes an unprotected socket to the Zygote
process, which can be leveraged to perform a denial of
service attack on a device running AOSP Android 4.0.3.
Other examples include the “HTC WeakSauce” exploit,
which uses a socket connection to the privileged dma-
gent system daemon to achieve privilege escalation to
root [29], and CVE-2013-4777 and CVE-2013-5933 [0],
[7], privilege escalation vulnerabilities affecting Motorola
devices, due to an unprotected socket to the init process.
More recently, an information disclosure vulnerability
was discovered on Huawei phones, allowing attackers to
gather screenshots and kernel and system logs [27]. The
vulnerability is exploited by sending commands via an
exposed socket to a vendor-customized version of the
debuggerd daemon. These vulnerabilities demonstrate that
unprotected sockets can degrade the security of the system
whether they originate in stock (i.e., AOSP), or vendor-
customized Android.

However, previous research has primarily focused on
Android-specific IPCs, such as Binder [19], [23], [28],
[30], [32] and Intents [24], [39], with comparatively lit-
tle evaluation of traditional Linux IPCs such as Unix
domain sockets. While Shao et al. [40] examined the
misuse of Unix domain sockets in Android, finding that
the inadequate protection of these sockets is a common
pitfall in Android, their approach fell short for system
daemons, which are arguably much more valuable targets
for exploitation. This shortcoming is due to the use of
dynamic analysis to avoid challenges such as reasoning
about the complex interaction of Android access control
layers, extracting firmware images from different vendors



with different formats, and statically analyzing system
daemon ARM binaries accurately. As a consequence, their
analysis requires access to a running, rooted Android
device, and thus only covers two vendors across three
Android versions. Also, the approach of Shao et al. makes
a cross-vendor analysis infeasible at scale, despite being
essential to uncover the misuse of sockets introduced by
vendor customization. Furthermore, it fails to uncover
inactive sockets, which can be created in response to an
event or configuration change.

To address this gap, we propose SAUSAGE, a static
analysis framework to identify valid socket connections
that untrusted apps can establish to system daemons on
an Android device, without the need of a running device,
enabling large-scale analysis. Given an Android firmware
image, our framework analyzes access control policies
and performs static binary analysis on daemon binaries
to discover socket addresses that an untrusted app can
connect to and any authentication checks implemented
in the binary. We overcome the challenge of reasoning
about Android access control policies by using a version
of the BIGMAC [26] SELinux policy analysis tool; we
extend its functionality to enable socket creation within
the init boot simulation step. Since all Android IPC is
governed by MAC (and sometimes by DAC), we believe
that our approach may serve as a good base for future
work examining the security of Android IPC mechanisms
(especially statically). We also implement our own binary
analysis component. The SAUSAGE framework extracts
the system’s SELinux policy, system daemon binaries
and init RC files from an Android firmware image. It
analyzes the SELinux policy to determine which system
daemons an untrusted app can communicate with. By
using inter-procedural data-flow analysis, it then detects
socket addresses, their access control credentials, and any
authentication checks in the system daemon binaries with
high accuracy.

We used our framework to analyze 200 Android
firmware images, spanning eight different vendors and
Android versions 7-9. SAUSAGE fully analyzes a firmware
image in around 14 minutes, making it scalable as a cross-
vendor Android firmware analysis tool, without requiring
vendor-specific devices. The results of our analysis are
worrisome; all vendors except AOSP have access control
issues that allow an untrusted app to communicate to
highly privileged daemons. These include HTC dmagent
that has been previously exploited in “HTC WeakSauce,”
and Samsung’s Professional Audio service, which allows
any app to set its process scheduling priority. We also
identify insecure authentication practices used by these
daemons, such as checks based on an app’s process name,
which can be trivially spoofed. Additionally, we demon-
strate that our approach can uncover Unix domain sockets
that would have been missed by the dynamic analysis
approach used by Shao et al. [40]

Contributions.

1)  We propose an access control-aware, fully static
framework to analyze Unix domain socket usage
in Android system daemons, compatible with An-
droid versions 7.0 and above. Using this frame-
work, we conduct an analysis of 200 Android
factory images spanning versions 7.0-9.0 across

eight different vendors, including prominent play-
ers such as Samsung and Xiaomi, which account
for over a third of the mobile vendor market
share worldwide [15], and others such as Asus,
Motorola, HTC, and AOSP, to find system dae-
mon sockets accessible to untrusted apps.! We
compare our results to the ground truth from
three running devices and find that our frame-
work achieves 100% accuracy in detecting socket
addresses and their MAC and DAC credentials.

2) We use a novel methodology based on a version
of BIGMAC (that we modified at the init boot
simulation step) to reason about Android’s com-
plex interaction of access control layers through
static analysis. We will publish the source of the
binary analysis module to the community, as well
as the modified version of BIGMAC we use as
part of our framework.

3) We find multiple instances of unprotected Unix
domain sockets to root processes that could lead
to exploits such as HTC WeakSauce [29]. Our
approach detects Unix domain sockets that are
created under certain conditions and would not
have been detected through past approaches rely-
ing on dynamic analysis alone.

Notable Findings.

1) We found two highly privileged Qualcomm sys-
tem daemons, cnd and dpmd, where a faulty
authentication mechanism is used to authenticate
the peer, relying only on its process name. How-
ever, the process name can be easily spoofed
in both cases. Through static analysis, we infer
that this allows clients to get/set network settings
such as WiFi AP, WiFi P2P, and Default Network
settings, by sending the appropriate command
over the cnd socket.

2) In 25 Samsung Android 7.0-7.1 images, we found
that the daemon apaservice listens over a socket
that can be used to request changing the schedul-
ing priority for any process to any priority. This
can result in DoS of the Samsung audio subsys-
tem. Additionally, the daemon is vulnerable to
buffer overflow, allowing an untrusted app to ex-
ecute code in the daemon’s security context. This
vulnerability was assigned CVE-2021-25461.

3) There are multiple instances of overly permissive
SELinux policies in seven of the eight vendors
we analyzed. These policies allow socket com-
munication between untrusted apps and highly
privileged system daemons, weakening the sys-
tem’s overall security posture. Examples of these
daemons include dumpstate and rild in HTC, and
cnd in most vendors.

4) We discovered multiple instances of vendor cus-
tomization of AOSP binaries that expose addi-
tional unprotected sockets. One example is HTC
rild where two custom sockets were added that
are configured to be accessible to an untrusted

app.

1. We use the term untrusted app to reference third-party applications
a user can install.



We have contacted Samsung and Qualcomm as part of

our responsible disclosure process with details of the vul-
nerabilities and proof-of-concepts. We detail this process
in Section 7.
Outline. The remainder of the paper is structured as
follows: Section 2 provides the necessary background on
how Unix domain sockets work and their role in the
Android security model. Section 3 details key related
work. Section 4 develops the design of SAUSAGE and
Section 5 its implementation. In Section 6 we evaluate
SAUSAGE against multiple Android firmware images and
demonstrate the scalability and impact it can have when
discovering accessible sockets. In Section 7 we present
case studies on the results obtained with SAUSAGE. We
discuss our limitations in Section 8, and finally conclude
in Section 9.

2. Background

In this section, we provide background about how
Unix domain sockets work and where they fit in the
Android security model.

2.1. Android Security Model

The Android security model implements various lay-
ers. Apps run in sandboxes defined by the creation of a
unique Linux UID for each application at install time. Pro-
cesses can only communicate with other applications via
enforced mandatory access control (MAC). This is a fea-
ture implemented in Security-Enhanced Linux (SELinux)
through the modified SEAndroid framework. Interested
readers can find a comprehensive discussion of the An-
droid security model in [33]. In this section, we explain
the key concepts behind it that are relevant to our work.
Discretionary Access Control on Android (DAC). DAC
is an access control model that is used by Linux. It is
implemented in Android by using a fixed set of user
and group IDs for system-related purposes and limiting a
range of user IDs for dynamically installed applications.
Android limits the number of processes that can run as
root, therefore a highly-privileged process would typically
run under the system UID, or another UID specific to
execute the role intended for the process. This avoids
granting more permissions than necessary to a process,
which can inherently avoid security issues. Untrusted apps
are assigned a unique UID from a specified range of IDs
that are available. This prevents third-party applications
from having more access than necessary on any other files
that are not included in their installation.

SELinux. Security Enhanced Linux (SELinux) provides
a framework for enforcing Mandatory Access Control
(MAC) on Linux. It was introduced into the Android
platform in 2013 through the SEAndroid framework [43].
SELinux contains a set of rules that are based on file
labels which contain information such as user, role, type,
and level. These rules determine what types and actions
a process has access to and are structured to group items
together based on their accessibility. In Android, SELinux
is not only restricted to access control for files, but it
also manages access control for IPC mechanisms, such as
Binder and Unix domain sockets. Thus, for processes to

TABLE 1. SECURITY ENFORCEMENT CORRESPONDING TO ANDROID
UNIX DOMAIN SOCKET NAMESPACES

Namespace Security Enforcement
SELinux | File Permissions
RESERVED v v
FILESYSTEM v v
ABSTRACT v X

communicate with one another, the communication must
be explicitly allowed by the SELinux policy.

SELinux policies are developed by vendors by com-
bining the core AOSP policy with device-specific cus-
tomization. Policies compare rules that guide the SELinux
security engine, including types for file objects and do-
mains for processes. The SELinux policy uses roles to
limit the domains that can be accessed and has user iden-
tities to specify the roles that users can have. New rules
can be added into the policy which is then preprocessed
and built into the policy.conf file.

Supplementary Groups. Adding a supplementary group
ID to an application will grant it all the privileges of
the specified group. The groups for an application are
assigned within the manifest file. An example of some
supplementary groups would be the Bluetooth group or
the Internet group. The permissions of a supplementary
group can be enforced at the kernel level or at the Android
Framework level depending on the functionality granted
to the group [18].

Middleware Permissions. The Android middleware
layer contains a reference monitor that mediates inter-
component communication [22]. Middleware permissions
grant apps access to resources and services that are pro-
vided by the Android operating system rather than the
Linux kernel.

2.2. Unix Domain Sockets

A Unix domain socket is a communications endpoint
for exchanging data between processes on the same host
operating system. It can also be referred to as an inter-
process communication socket. The main difference be-
tween Unix domain sockets and Internet sockets is that a
Unix domain socket is an IPC where all communication
occurs strictly within the operating system kernel. Internet
sockets use an underlying network protocol for commu-
nication. Unix domain sockets also have what is called a
namespace, or a unique identifier to an object of a certain
kind, that is used to label the socket types. There are three
types of Unix domain socket namespaces in Android, as
can be seen in Table 1.

FILESYSTEM. Sockets with this namespace are asso-
ciated with a file on the file system and are created by
a process that needs them. Once a socket file is created
it will be protected by the discretionary access control
system, or the DAC, as well as the mandatory access
control, or the MAC. Only processes with the proper read
and write permissions can communicate with these socket
files.

RESERVED. This namespace is introduced in Android
and falls under the FILESYSTEM namespace and thus
inherits its access control properties. The socket files are
created by init and are located under /dev/socket.



The name indicates that these socket files are reserved
for system use. The socket file descriptors are made
available to their owner service daemon through an en-
vironment variable named ANDROID_SOCKET_<addr>
where <addr> is the address of the socket in the RE-
SERVED namespace.

ABSTRACT. These sockets allow a program to bind a
Unix domain socket to a name without the name being
created in the filesystem. The socket’s name begins with
a null byte which removes the need to create a filesystem
path name for the socket.

There are three prerequisites for a process to be al-
lowed to establish a connection to a FILESYSTEM socket.
First, the connecting process must be allowed to com-
municate to the server process through the Unix domain
socket IPC by SELinux. Second, the connecting process
must be allowed to write to the socket file, based on its file
context in SELinux. Third, the connecting process must
have the appropriate UID or GID to write to the socket
file, depending on the socket file’s DAC file permissions.
On the other hand, only the first prerequisite is needed in
the case of ABSTRACT sockets since file-based access
control policies are not applicable to them. As a result,
ABSTRACT sockets are the least secure of the three
namespaces. Furthermore, Unix domain sockets can only
be bound by one process. Filesystem MAC and DAC can
restrict the creation of sockets under certain directories to
a set of processes, preventing untrusted apps from binding
sockets used by system daemons. This does not apply to
ABSTRACT sockets, however, allowing a malicious app
to DoS the system daemon by occupying an ABSTRACT
address if the app manages to bind the socket address
before the daemon. Fortunately, daemons started by init
are always started before apps, and in most cases, their
sockets are bound on initialization and stay bound for the
daemon’s entire lifecycle.

3. Related Work

Android IPC security has long been the focus of a
large body of research. Most of this research, however,
centered on either the Binder IPC interface [19], [23],
[28], [30], [32], or on Android Intents [24], [39]. Further-
more, the majority of these analyses are concerned with
Android application security rather than Android frame-
work security. lannillo et al. [28] designed Chizpurfle, a
grey-box fuzzer for system services that discovers vendor-
specific system service methods exposed through Binder
IPC and runs a fuzzing campaign on the identified meth-
ods. However, it heavily relies on analyzing Java reflection
by design, so it is not compatible with native system ser-
vices. Liu et al. [32] overcame this limitation with, FANS,
which is capable of finding vulnerabilities in native system
services, but is limited to examining the Binder IPC
mechanism. While, these works clearly demonstrate their
effectiveness finding vulnerabilities in system services,
there is no clearly defined threat model that accounts for
the multi-layered Android security model. Thus, some
of the reported vulnerabilities from these works may
require chaining with other privilege escalation exploits to
interact with privileged, but vulnerable, Binder interfaces.
Additionally, the chaining may be prevented by commonly
deployed access control policies.

Shao et al. [40] conducted the first study of Unix
domain socket usage by both Android apps and system
daemons. To perform their analysis, they developed Sln-
spector, which identifies Unix domain socket addresses
and detects authentication checks. SInspector exclusively
utilizes static techniques for apps, allowing for large scale
analysis of apps. However, for system daemons, the tool
needs to be run on a live, rooted Android system. The
reasons for this limitation include the difficulty of un-
packing Android factory images from different vendors
and the complexity of security enforcement for sockets,
which involves the interplay of SEAndroid and DAC file
permissions. However, with the advent of new open-source
tools such as the Android image unpacking library [44]
and BIGMAC [26], it is now feasible to tackle these
challenges and develop a fully static large-scale cross-
vendor analysis framework for Unix domain socket usage
in system daemons. We use these tools to overcome the
challenges faced by Slnspector that caused it to resort to
dynamic analysis for system daemons.

A separate growing body of work examines Android
OS security from an access control perspective [26], [31],
[37], [46], [47]. Android access control, especially SEAn-
droid, plays an essential role in securing IPC. All Android
IPC mechanisms are protected by the SEAndroid policy
and some are protected by DAC. Lee et al. proposed
PolyScope [31], a tool to vet Android filesystem access
control policies. They define three possible patterns of
integrity violations in access control policies and rely
on AOSP documentation as well as the integrity walls
method [45] to categorize process into different integrity
levels. However, PolyScope requires a rooted phone, pre-
cluding the possibility of using it in a static analysis
framework. Hernandez et al. [26] proposed BIGMAC
that combines DAC and MAC to construct an attack
graph representing allowed data-flows between subjects
and objects in a running system. BIGMAC succeeds to
recover the running system’s security state purely though
static analysis with high accuracy. This makes it an ideal
candidate as a base on which we can bootstrap more
in-depth analysis. Although BIGMAC serves to abstract
away the complexity of the Android security model, which
was recently detailed by [33], it cannot detect DAC checks
that occur dynamically in a running process.

4. Design

An overview of the architecture of the tool can be
seen in Figure 1, we describe these steps in further detail
below. The tool begins with the firmware image extraction.
The filesystem is unpacked and extracted to acquire the
SELinux policy, daemon binaries, and the init RC scripts.
The SELinux policy is analyzed using a modified version
of BIGMAC [26] to query the processes an untrusted app
can communicate with via sockets. The results from the
analysis are then compiled into a list that is separately
filtered with the daemon binaries and the relevant service
definitions we have been able to extract. Once filtered
with the service binaries, the tool conducts binary analysis
to verify the socket address and find any security checks
that may be in the binaries. Running in parallel is the Init
RC Service Definition Analysis which will extract socket
addresses and file permissions from the init RC files. The
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Figure 1. SAUSAGE Framework Architecture. Following the unpacking of an image, the SELinux policy is analyzed to find the processes an untrusted
app can communicate with via Unix domain sockets. The processes’ binaries and their RC service definitions are retrieved from the extracted filesystem
and analyzed independently to find the socket addresses that the process uses, their access control configurations, and any authentication checks in
the binary code. The list of socket addresses is filtered down to the ones an untrusted app can access based on their access control permissions.

output of the binary analysis is combined with the output
of the Init RC Service Definition Analysis and compiled
into a list that can be used to filter for accessible sockets.

4.1. Threat Model

Unix domain sockets can only be accessed from pro-
cesses that have proper permissions when checked by
the MAC and DAC. Our threat model specifically fo-
cuses on untrusted apps, labeled untrusted_app in
SELinux. In our threat model, an app is allowed to ob-
tain middleware permissions that can be granted to any
untrusted_app. Middleware permissions are not part
of the MAC or DAC, so they are not directly considered
when a socket is being accessed. However, the DAC
supplementary groups assigned to an untrusted app depend
on the permissions it has. Thus, we assign the following
supplementary group to an untrusted app in our threat
model:

The android.permission.INTERNET
permission, which corresponds to the inet group,
allows the untrusted_app to perform network
operations, such as opening network sockets. The
android.permission.BLUETOOTH_ADMIN
permission, which corresponds to net_bt_admin,
allows applications to discover and pair Bluetooth
devices. Similarly, the Bluetooth permission labeled
android.permission.BLUETOOTH permission,
corresponding to net_bt, allows applications to connect
to paired Bluetooth devices. The final permission is the
external storage permission, android.permission.
MANAGE_EXTERNAL_STORAGE, which belongs to the
external_storage group, allows an application a
broad access to external storage in Scoped storage, a
feature in Android allowing an application to only have
access to their application directory on external storage
plus any media created by the app [13].

4.2. Image Extraction

The initial step of our tool is the firmware image
extraction from a repository of firmware images that we
have collected. A majority of the images have either been
downloaded directly from vendor specific websites, such

as the AOSP firmware images website [2], or from third-
party websites such as firmwarepanda [3]. The image
packing format varies by vendor, e.g., HTC required
an RUU Decrypt tool to account for the Rom Update
Utility format, while Samsung required LZ4 decom-
pression. Thus, we rely on existing unified tools that
support every Android vendor and version to avoid devel-
oping our own from scratch. We use a modified version
of the ATextract tool [44] to extract the files needed to
analyze the SELinux policies and native daemons from
the firmware images. For Android versions higher than
8.0, and for vendors that are not supported by the modified
version of the ATextract tool, we use the newly released
unpacking tool developed by Possemato et al. [37]. The
tool was modified to restructure the extracted image in the
right format to be interpreted by our analysis pipeline. Our
analysis pipeline collects DAC/MAC/CAP metadata, init
RC files, daemons, shared libraries and SELinux policy
files to be used by BIGMAC and our binary analysis
component.

4.3. SELinux Policy Analysis

Following extraction, our framework reasons about
the system’s access control policies in order to determine
which processes an untrusted app can connect to through
Unix domain sockets. The Android security model is
based on the complex interaction of multiple security
layers, including SEAndroid policies, Linux filesystem
permissions and Linux capabilities. Thus, we use a version
of BIGMAC that we modified, to extract and recreate the
security state of the running system. BIGMAC is a fine-
grained SELinux policy static analysis tool [26]. It first
goes through the filesystem and extracts files’ DAC file
permissions, SELinux labels and Linux capabilities. Then,
it parses the system’s init scripts and simulates commands
that affect the filesystem (e.g., mkdir, chmod), as well
as service commands which execute service binaries.
Performing boot emulation is required to create files in
the /sys, /dev and /data directories, which would
not be present in a static firmware image. We extended
BIGMAC's init boot simulation step to parse the socket
option of service commands in order to create the
socket files in the /dev/socket/ directory. For a full discus-



sion of BIGMAC, we refer readers to the original paper
by Hernandez et al. [26].

Once the modified version of BIGMAC finishes ana-
lyzing an image and generating an attack graph, it pro-
vides a query engine that can be used to find all the
objects an untrusted app can write to. We can filter the
resultant list of objects to only include IPC objects of the
“socket” type. Since each IPC object holds a reference to
its owner process, we extract the file path of the process’s
binary executable. The next steps of the analysis are then
performed on these binaries.

4.4. Socket Address Extraction

Once we have the set of binary files for processes that
an untrusted app can communicate with through Unix do-
main sockets, we can start to extract the socket addresses
that these processes are listening over. We employ two
methods for each one of these service binaries: init RC
parsing and static binary analysis. These two methods are
complementary to each other; parsing init RC files guar-
antees all RESERVED socket addresses will be recovered,
and static binary analysis will recover all three types of
socket addresses that the binary might be listening over.

4.4.1. Init RC Service Definitions. For each one of these
binaries, there exists one or more service definitions in the
Android system’s init RC files. These service definitions
can have options that configure how and when init runs
these files. One of these options, socket,? creates a
socket file for the service in the RESERVED namespace,
creates a file descriptor for this socket and binds it to the
created socket file, and saves the socket’s file descriptor as
an environment variable® for later retrieval by the service
process. Therefore, it is straightforward to retrieve all
RESERVED socket addresses from service definitions,
by finding and parsing the socket options. However,
this method does not capture socket addresses in other
namespaces.

4.4.2. Static Binary Analysis. In the binary analysis
module, we first construct the Control Flow Graph (CFG)
of the binary and all externally linked objects, and identify
all defined functions. We then perform an inter-procedural
dataflow analysis starting at the entry point of every
function that calls the bind system call in the binary. At
the bind callsite, we extract the value of the address argu-
ment. The address is checked to determine whether or not
it is a Unix domain socket address. If it is, we detect the
namespace that the address belongs to by checking the first
character of that address. If it is a null byte, then it belongs
to the ABSTRACT namespace and no further analysis is
needed. If the address starts with a directory separator
(’/’), then it belongs to the FILESYSTEM namespace,
and we attempt to determine the permissions the socket

2. The socket option follows the syntax: socket <name>
<type> <perm> [ <user> [ <group> [ <seclabel> ]
] 1 where <name> is the address of the socket, <perm>, <user>
and <group> are its credentials on the filesystem, and <seclabel>
is its SELinux label.

3. This  environment variable’s name is formatted as
ANDROID_SOCKET_<address> where <address> is the address
of the socket in the reserved namespace.

file is created with. This is done by detecting all preceding
umask, seteuid and setegid system calls in the
binary and extracting their arguments. The same process
is carried out for subsequent chmod, fchmod, chown,
and fchown calls. Additionally, the static binary analysis
module detects RESERVED socket addresses by perform-
ing the same type of dataflow analysis for functions that
call getenv. If the requested environment variable name
starts with the “ANDROID_SOCKET_” prefix, the rest of
the environment variable name is saved as a RESERVED
socket address.

4.5. Peer Credential Check Extraction

The get sockopt system call [4], when invoked with
a file descriptor sockfd, retrieves the value of various
options for the socket pointed to by sockfd. The option
retrieved is specified by the optname argument, which
is an integer corresponding to a valid socket option. The
retrieved option is stored in the pointer specified by the
optval argument. In our case, we are mainly interested
in get sockopt calls where the opt name is specified as
SO_PEERCRED (0x11). In this case, the connected peer’s
credentials are stored at the optval pointer in a ucred
struct. This struct contains three member variables: the
process ID (PID), user ID (UID) and group ID (GID) of
the connected peer.

Using the same CFG used in the Socket Address
Extraction step, we perform another dataflow analysis
of every function that invokes the getsockopt sys-
tem call. First, we check the value of the option name
(optname) argument. If the function is called with the
SO_PEERCRED optname, we track all subsequent uses of
the returned credentials in the function and record which
credentials are being used. We use the same categorization
used in [40]; UID- and GID-based checks are considered
secure, while PID checks are considered weak. Addition-
ally, we attempt to detect and categorize uses of these
credentials. We have identified two types of uses: (1)
Integer comparisons: We detect whenever a credential is
used in a comparison instruction and record the operand if
it is a constant integer, or “UNDEFINED” if it is not. (2)
Function arguments: We detect whenever a credential
is used as a function argument and record the function
address and name (if it was not stripped). With this usage
information, we can determine exactly what credentials
a connected peer needs to be able to communicate with
the process through a given socket, thus greatly aiding in
further interpretation of the analysis result.

4.6. File Permission Analysis

Following the detection of all socket addresses and
their filesystem permissions (if any), we check whether
an untrusted app with all possible permission-mapped
GIDs can access the socket file for each FILESYSTEM or
RESERVED socket address. We use a modified version of
BIGMAC to reason about the MAC policy and determine
whether an untrusted app has access to a socket file. We
also inspect the socket file’s permission bits, UID and GID
to determine access w.r.t. the DAC policy.



TABLE 2. ANDROID-SPECIFIC BIND APIs

Function Namespace | Library
FrameworkListener RESERVED | libsysutils.so
SocketListener RESERVED | libsysutils.so
android_get_control_socket | RESERVED | libcutils.so
socket_local_server_bind Any libcutils.so
socket_local_server Any libcutils.so

5. Implementation

In this section, we discuss the implementation of the
three most crucial parts of the SAUSAGE architecture,
which includes the extension of BIGMAC to better serve
our use case, the static analysis of daemon binaries using
angr [42], and the final step of filtering and categorizing
accessible sockets.

5.1. BigMAC Query

The first step following successful extraction of a
firmware image is the SELinux policy analysis. We imple-
mented an easy-to-use API that exposes the most crucial
functionalities of BIGMAC to the developer. This API
facilitates running the whole workflow of BIGMAC in a
single call, and implements an interface to the prologue
engine that facilitates query operations on the gener-
ated Attack Graph. We use this API by specifying the
path of the extracted SELinux policy and running the
attack graph instantiation. Using this attack graph, we
run the query: query (untrusted_app, _, 1) to
retrieve all nodes in the graph that an untrusted app can
write/connect to. We then filter only socket objects from
the resultant list. Since socket objects are IPCNodes,
they hold a reference to the owning process. Thus, we can
retrieve all the processes, and their executable binaries,
that an untrusted app can connect to through a Unix
domain socket.

Additionally, we extended BIGMAC’s init boot sim-
ulation step to handle socket options under service
definitions in init RC files. On encountering a socket
entry under a service definition, BIGMAC now creates the
corresponding file in the simulated filesystem as part of the
boot process with the specified permissions. Additionally,
it assigns the correct SELinux context to the socket file
based on the extracted filesystem contexts. This addition is
essential as BIGMAC removes filesystem contexts that do
not have a backing file from the attack graph which would
have prevented us from querying whether an untrusted app
has access to these socket files.

5.2. Static Binary Analysis

Our static binary analysis implementation contains
three modules (about 2K LoC). The Socket Address
Extraction module extracts socket addresses that the bi-
nary is listening over by analyzing bind call sites.
The DAC Check Extraction module detects and ana-
lyzes DAC checks by performing data flow analysis after
getsockopt calls with the SO_PEERCRED argument as
discussed in Section 4.5. Each daemon binary an untrusted
app can connect to is statically analyzed to retrieve all
the Unix domain socket addresses it listens on and the

permissions they are created with, as well as detect any
hardcoded DAC checks in the binary.

We implement our static binary analysis using the
angr framework [42]. We first generate the CFG of
the analyzed binary during which function prologues are
detected and stored in the angr project’s knowledge base.
The dataflow analysis is implemented by angr’s intra-
procedural ReachingDefinitions analysis [1] and
is used in both socket address extraction and DAC check
extraction. To make the analysis inter-procedural, we im-
plement a FunctionHandler which handles function
calls by performing the ReachingDefinitions anal-
ysis recursively based on [36].

Socket Address Extraction. First, we find all call sites to
the bind system call. This is done by finding the bind
function node in the CFG and listing all of its predecessor
nodes where the connecting edge is of type Ijk_Call,
signifying a function call. For each one of these nodes,
we find the function that it belongs to, and perform an
inter-procedural data flow analysis on that function. The
FunctionHandler also simulates common libc string
manipulation functions, such as strcpy, sprintf and
others, in order to capture dynamically constructed socket
addresses at the bind callsite. These string manipulation
handlers are implemented in order to avoid inaccuracies
caused by the complex control flow structures associated
with string operations. Additionally, Android provides
additional utility APIs for system daemons to create,
bind, and listen over local sockets. These functions are
found in 1ibcutils.so and libsysutils.so and
are detailed in Table 2. We perform the same analysis at
the call sites of these functions to recover socket addresses
passed to these utility functions.

DAC Check Extraction. The same dataflow analysis
implementation is used for DAC check extraction. We
analyze call sites of the getsockopt system call, and
check its arguments. If the optname argument is set to
SO_PEERCRED, we track usages of the ucred struct,
stored in the pointer optval, by tainting its member
variables. We record any variables used and attempt to
identify the type of usage as discussed in Section 4.5.

5.3. File Permission Analysis

We add additional functionality to BIGMAC allowing
us to add previously undetected files, e.g., files created dy-
namically by a running process. Following the recovery of
FILESYSTEM socket addresses and their DAC metadata,
we insert these filenames along with their metadata into
BIGMAC'’s recovered filesystem, and rerun BIGMAC’s
workflow. This will assign the correct SELinux labels
to these files in an automated manner, which allows us
to determine whether a socket file is accessible through
simple queries of the Prolog engine.

6. Evaluation

In this section, we first present our findings on accessi-
ble sockets, and security downgrade; we then report on the
performance measurements and ground truth comparison.
The number of firmware images analyzed per vendor and
Android version can be found in Figure 2. Accessible
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sockets are the sockets that we have identified to be
accessible for an untrusted app without any prerequisites
(following our threat model). For security downgrade, we
consider daemons that exist in AOSP Android but have
weaker security protections due to vendor customization
of access control policies and customization of the dae-
mons themselves.

6.1. Accessible Sockets

Figure 3 displays the number of accessible system dae-
mons by vendor. In this figure, we count daemons that are
accessible to an untrusted app by SELinux and for which
we have found at least one socket. We divide them into
three categories: AOSP daemons, Qualcomm daemons
and vendor-specific daemons. We count AOSP daemons
with additional vendor-specific sockets as vendor-specific
daemons. From these daemons, we identified 28 unique
socket addresses that an untrusted app is allowed to con-
nect to by the access control policy in at least one of the
firmware images analyzed. We present 17 of these socket
addresses and their daemons in Table 3. We omit the
remaining 11 sockets from the table as they are intended
to be accessible to untrusted apps as part of the Android
framework. We also specify any authentication checks
performed on the client after a connection is established,
as well as the list of vendors these socket addresses were
detected on.* In the following, we discuss each daemon’s
functionality and its accessible sockets. Information about
proprietary daemons’ functionality is not publicly avail-
able. Therefore, we infer their functionality based on static

4. We only specify the vendors with firmware images where the
system daemon that uses these sockets is accessible. If the daemon exists
in other vendors’ firmware images, we do not include it.

analysis of the binaries, as well as whatever information
we can find online.

6.1.1. AOSP Daemons. AOSP daemons are available in
all Android systems as part of AOSP Android. The AOSP
version of these daemons’ source code is made available
by AOSP, although vendors might make proprietary cus-
tomizations to them in their own distributions of Android.
These daemons purposefully expose sockets for commu-
nication with an untrusted app to implement various func-
tionalities. These sockets were detected consistently across
our dataset, confirming our tool’s reliability at detecting
accessible sockets. Since these sockets are intended to
be accessed by untrusted apps, we omit these accessible
sockets from Table 3 and briefly discuss the daemons’
functionality instead.

The logd daemon is a centralized logger implementing
all logging operations in Android [10]. It utilizes three
sockets, all of which are accessible to an untrusted app:
logd, logdr, and logdw. The netd daemon is responsible for
managing network interface configurations [10]. In AOSP
Android, the netd daemon utilizes four socket addresses:
netd, dnsproxyd, mdns and fwmarkd. Of these sockets,
dnsproxyd and fwmarkd are accessible to an untrusted
app with the INTERNET permission. The surfaceflinger
daemon’s main functionality is to compose and render
multiple display surfaces onto the display [10]. In An-
droid 8.0+ images, we found three accessible RESERVED
socket addresses from the surfaceflinger daemon binary
located in the pdx/system/vr/display/ directory and include
client, manager, and vsync. The fombstoned daemon was
added in Android 8.0 and it plays a role in capturing crash
data from a system and storing it for further analysis.
The traced daemon is part of an open-source solution
developed by Perfetto [16] and used in Android for system
profiling, app tracing and trace analysis. The perfd dae-
mon collects information to keep track of performance on
the system.

6.1.2. Qualcomm Daemons. Qualcomm provides a wide
range of hardware and peripherals on Android devices,
such as the processor and the Mobile Station on Mo-
dem (MSM) system on chip (SoC). For interoperability
between these peripherals and the operating system, Qual-
comm implements daemons that bridge the communica-
tion between these devices and the rest of the Android
framework. These daemons were found to be accessible
across multiple vendors’ images in our dataset. In AOSP
however, these daemons exist, but none of them are ac-
cessible to an untrusted app. This discrepancy indicates
that access control policies placed by AOSP were relaxed
by other vendors where these daemons were found to be
accessible.

cnd. The cnd daemon manages Qualcomm Connectiv-
ity Engine which chooses between 3G/4G and Wi-Fi
networks based on their performance for the specific
application a user is using [9]. It is a proprietary dae-
mon, therefore its exact functionality is not publicly
known. In Android versions prior to 8.0, it uses the
cnd RESERVED socket and a FILESYSTEM socket lo-
cated in /dev/socket/nims, both of which are accessible
to an untrusted app with the INTERNET permission.
The /dev/socket/nims socket was also found to be world-



TABLE 3. SOCKET ADDRESSES AN UNTRUSTED APP CAN CONNECT TO, THEIR SYSTEM DAEMONS, AUTHENTICATION CHECKS THEY
IMPLEMENT AND THE VENDORS WHERE THEY WERE FOUND TO BE ACCESSIBLE

Address Namespace System Daemon | Auth. Checks Vendor

/dev/socket/nims FILESYSTEM | cnd None Asus, HTC, Motorola, Xiaomi
cnd RESERVED cnd GID or AppName | Asus, HTC, Motorola, Xiaomi
qvrservice RESERVED qvrservice None Asus, HTC, Samsung, Xiaomi
qvrservice_camera RESERVED qvrservice None Xiaomi

seempdw RESERVED seempd None Asus, HTC, Xiaomi
@fmhal_sock ABSTRACT fmhal_service UID Asus, Motorola, Xiaomi
@qcom.dun.server ABSTRACT dun-server None Asus, Xiaomi
@cand.socket.ctrl ABSTRACT cand None HTC

@cand.socket.msg ABSTRACT cand None HTC

dmagent RESERVED dmagent None HTC

cfiat RESERVED rild UID HTC

kipc RESERVED rild UID HTC

/dev/socket/dpmwrapper FILESYSTEM | dpmd None HTC, Xiaomi

@btloggersock ABSTRACT bt_logger None Motorola, Xiaomi
@dev/socket/jack/set.priority | ABSTRACT apaservice None Samsung

napproxyd RESERVED netd None Samsung

tcm RESERVED dpmd None Xiaomi, Asus

dpmwrapper RESERVED dpmd None Xiaomi, Asus

accessible in some HTC, Motorola and Xiaomi images. It
is unclear whether this is a result of misconfiguration or
a change of the socket’s functionality.

qvrservice. The gvrservice daemon is a proprietary dae-
mon that manages Qualcomm VR service. It exposes a
world-accessible RESERVED socket gvrservice. On Xi-
aomi Android 9.0 images, it also exposes the qvr_camera
RESERVED socket with the same permissions.

seempd. The seempd daemon is part of the Qualcomm
Trusted Execution Environment stack (QTEE [38]). It
exposes a world-writable DGRAM socket with address
seempdw.

dpmd. The dpmd is a daemon which stands for Data Port
Mapper, and is part of the QTI DPM Framework [35].
It is unclear what functionality it provides. This dae-
mon utilizes two sockets: a RESERVED socket with
address dpmd and a FILESYSTEM socket with address
/dev/socket/dpmwrapper. The dpmd socket is configured
to be inaccessible to apps. In Android 8.0 images, it
uses an additional RESERVED socket named tcm, and
the FILESYSTEM socket /dev/socket/dpmwrapper was
changed to a RESERVED socket “dpmwrapper”. The
dpmwrapper and tcm RESERVED sockets require the
INTERNET permission to be able to connect.

dun-server. dun-server is a daemon that implements and
manages Dial-Up Networking over Bluetooth [41]. It
listens over the @qcom.dun.server ABSTRACT socket
address. It contains no authentication check, allowing any
client to connect to dun-server over this socket. Addi-
tionally, manual static analysis of the binary reveals that
this socket is bound and closed repeatedly by dun-server.
Since this is an ABSTRACT socket, any process can
create one with the same name as long as that address is
not being used. Therefore, a malicious process can bind to
this socket address before dun-server re-binds it, denying
dun-server from using it and disrupting its workflow.

fmhal_service. fimhal_service is an open-source daemon
that manages FM radio on supported systems [25]. It ex-
poses an ABSTRACT socket with address @fmhal_sock.
Since this socket is ABSTRACT, it is accessible by de-
fault. Thus, any app can establish a connection to it. How-
ever, when a client connects, a UID check is performed

to ensure that the client’s UID is one of root, system or
bluetooth.

bt_logger. bt_logger is an open-source daemon that has
the ability to log Bluetooth traffic [20]. It exposes an
ABSTRACT socket with address @btloggersock with no
authentication check, allowing any client to start/stop
Bluetooth snooping.

6.1.3. Vendor-specific Daemons. Vendor-specific dae-
mons are daemons that are developed by the Android
device manufacturer and bundled with their operating
system distribution. A daemon is classified as vendor-
specific if it is present in the Android images of a single
vendor. In our results, two out of three accessible vendor-
specific daemons run as root, presenting valuable targets
for exploitation. The third daemon provides an interface to
a function available only to processes running privileged
UlDs.

dmagent. HTC dmagent is a proprietary daemon that
manages the Open Media Alliance Device Management
protocol. dmagent runs with UID root and listens over
the RESERVED socket address dmagent. The socket
is configured to be accessible to applications with the
INTERNET permission. This socket has been previously
used to issue copy file command to the daemon which acts
to copy files as root from arbitrary source to arbitrary des-
tination [29]. Our analysis shows that this socket remains
unprotected by access control policies or authentication
checks, making it a prime target for exploitation of a root
process.

cand. HTC cand is a proprietary daemon which runs as
root and listens over two ABSTRACT socket addresses:
@cand.socket.ctrl and @cand.socket.msg. Through static
analysis, we determined that the daemon serves as an
interface to communicate over the CANBus, although the
specific use case is not clear. Nevertheless, since it runs
as root and listens over unprotected ABSTRACT sockets,
it may present another security risk much like dmagent.

apaservice. The apaservice daemon is part of the Sam-
sung Android Professional Audio framework [34]. It
runs with a UID of “jack”” We found that it cre-
ates and listens over one ABSTRACT socket address



@dev/socket/jack/set.priority which is used as an interface
through which it calls android: : requestPriority
with the parameters it receives. According to AOSP source
code [8], this functionality should only be exposed to pro-
cesses with the audioserver, cameraserver and bluetooth
UIDs.

6.2. Downgraded Security

A system daemon is considered to have downgraded
security if the vendor relaxes SELinux rules that would
have prevented communication between the daemon and
an untrusted app in AOSP. To find these instances of
downgraded security, we go over the list of daemons an
untrusted app can communicate with for each vendor. We
then try to find each daemon in that list and its service
definition in the corresponding AOSP Android version.
If the service exists in AOSP and is enabled, but is not
accessible by an untrusted app, then we flag it as a security
downgrade.

HTC dumpstate. The dumpstate system daemon is an
AOSP system daemon that can generate logs that are used
to collect details of device-specific issues; an untrusted
app is disallowed to communicate with this daemon in
AOSP. HTC relaxed this restriction and added two extra
sockets to the daemon: htc_dk and htc_dlk. Untrusted app
access to these sockets is not allowed by both the MAC
and DAC policies. However, as per the comments of the
file_contexts file, the htc_dlk socket sends kernel
log messages to a system app. This is a bad security
practice as kernel logs can hold sensitive information,
and pre-installed apps packaged with vendor-customized
firmware have been shown to be insecure [21].

HTC rild. rild is the Radio Interface Layer daemon
in Android [11], [12]. It provides an abstraction layer
between Android telephony services layer and the ra-
dio hardware layer and handles all telephony operations
such as call handling, SMS, and others. In Android ver-
sions prior to 8.0, rild utilizes three sockets: rild, rild-
debug and sap_uim_socketl. In AOSP Android, com-
munication with rild using Unix domain sockets is not
allowed for untrusted apps by the SELinux policy. In
HTC images, our SELinux policy analysis showed that
the policy was relaxed and an untrusted app was allowed
to communicate with rild. Furthermore, we detected two
vendor-specific sockets, kipc and cfiat, both of which
grant read and write access to an untrusted app with the
INTERNET permission. These socket addresses have only
been detected on the HTC firmware images we analyzed,
and their file contexts are labeled htc_cfiat_socket and
htc_kipc_socket, confirming that they originate from an
HTC-specific vendor customization of rild. We detected a
UID-based authentication check in the HTC rild binary,
leaving these sockets potentially protected only by a single
post-connection DAC check. Therefore, if a malicious app
changes its UID through a privilege escalation exploit, it
can gain access to these sockets, which would not have
been possible if the SELinux policy had not been relaxed.
cnd. The cnd daemon can be available in AOSP firmware
images. In all of the AOSP and Samsung images tested,
an untrusted app does not have access to this daemon.
On the other hand, Asus, HTC, Motorola and Xiaomi

firmware images allow an untrusted app to communicate
with this daemon. In this case, the daemon exposes two
sockets: cnd and /dev/socket/nims that are accessible to an
untrusted app, one of which has no authentication checks.
Both require the app to have the INTERNET permission.

Asus mm-qcamera-daemon. In Asus Android images,
mm-gcamera-daemon 1is allowed to communicate with
an untrusted app. It contains a socket named at ad-
dress /data/misc/camera/cam_socket in the FILESYSTEM
namespace. The socket itself is inaccessible by both the
MAC and DAC policies.

6.3. Abstract Sockets

Our analysis aims to find sockets accessible to un-
trusted apps. However, we report on the ABSTRACT
sockets in our results that are vulnerable to DoS attacks by
untrusted apps. Such sockets become vulnerable to DoS
if the daemon that owns the socket closes the socket at
any point in its operation, or if the daemon exits for any
reason. We detect the first case through manual static
analysis using Ghidra [17]. This is done by detecting
close calls on the socket that was previously bound
to an ABSTRACT address. If close is called anywhere
outside of a final cleanup of the daemon’s resources during
termination, then we flag it as vulnerable to DoS. As for
the second case, we detect daemons that are started or
stopped by property triggers. These triggers are defined in
init RC files and are used to start/stop a service daecmon
when the specified system property changes, depending
on the value of the system property. A malicious app can
cause DoS of the vulnerable daemon in either of these
cases by repeatedly attempting to bind the ABSTRACT
socket that the daemon would usually bind. As a result,
if the daemon is stopped, restarted, or closes the AB-
STRACT socket, the malicious app will be successful in
binding it. Consequently, the daemon will fail to bind
this ABSTRACT socket again, disrupting IPC between
the daemon and other processes that rely on it.

Four of the ABSTRACT sockets that we
detected are vulnerable to DoS, as they match the
criteria defined above: @dev/socket/jack/set.priority,
@fmhal_service, @qcom.dun.server and  @btlog-
gersock. @dev/socket/jack/set.priority  is  bound
by apaservice and is triggered by a service -call
to IAPAService::StartJackd. Therefore, a
malicious app can occupy this ABSTRACT socket
address before another app makes the service call to
IAPAService: :StartJackd. When the service
call is made, apaservice would fail to bind the socket.
However, this failure is handled gracefully by apaservice
so that its other functionalities would remain unaffected.
@fmbhal_service and @btloggersock are bound by their
system daemons on initialization, but the daemons
themselves are triggered by a property trigger in init RC
files. A malicious app can bind either of these addresses
while the corresponding property is not set. When the
property is set and the daemons are started, they fail
to bind the socket address and terminate due to the
resulting bind error. @qcom.dun.server is bound and
closed repeatedly by dun-server after every connection.
Exploiting this DoS vulnerability would require a race-



condition, where a malicious app attempts to bind the
@qgcom.dun.server address before dun-server re-binds it.

Additionally, by applying our framework to find acces-
sible sockets for the system_app context, we found two
ABSTRACT sockets, @com.mtk.aee.aed and @aee:rttd
created by the aee_aed daemon in the Alcatel Android 8.1
firmware. AEE stands for Android Exception Enhance-
ment, and the daemon serves to collect and log backtraces
of crashes on the system. We found that the daemon
restarts on any configuration change, e.g., triggered by
a system app, allowing a malicious app to occupy this
ABSTRACT socket address and resulting in DoS of the
daemon. This can stop the daemon from logging crash
information on the system, potentially hiding evidence of
exploit attempts.

6.4. Ground Truth Evaluation

To confirm the correctness of our framework in detect-
ing sockets and their access control properties, we ran a
ground truth evaluation on Samsung devices running An-
droid 7.0 and 8.0, and a Motorola device running Android
7.1.1. The test was carried out by an app we developed
which obtains the permissions we listed in our threat
model. The app runs the netstat -x1 command to list
all the listening Unix domain sockets and their addresses.
The app then tries to connect to each socket address and
displays a table containing the socket addresses and the
result of the connection attempt. However, this app is not
part of our framework and only serves to collect ground
truth data for evaluation.

On all devices, the app successfully connected to
the fwmarkd, dnsproxyd, logd, logdr RESERVED socket
addresses. On the Motorola device, the app also reported
a connection to the perfd RESERVED socket address. All
of these socket addresses were accurately detected by our
framework as accessible sockets. For the Samsung device,
our analysis detected an ABSTRACT socket owned by the
apaservice daemon at @dev/socket/jack/set.priority which
was not found on the running device. We later discover
that the socket is created only after a Samsung-specific
service is activated through a Binder call and discuss the
details in Section 7. This demonstrates the effectiveness
of our approach compared to dynamic analysis which may
not detect sockets created conditionally or in response
to a trigger. Note that our ground truth evaluation app
is a simplified implementation of the Connection Tester
dynamic analysis module used in [40]. Thus, we claim
that our approach achieves a better socket detection rate
due to the higher coverage inherent to static analysis. The
accessible sockets detected by the testing app can be found
in Table 4 in Appendix B.

6.5. Performance Evaluation

We ran our analysis on a PC with the Intel(R)
Core(TM) i7-8700 CPU @3.20GHz and 16 GB RAM.
On average, each firmware was analyzed in 770 seconds
(approx. 14 minutes). Figure 4 shows a box plot of the
time taken for each firmware image. The static binary
analysis takes a majority of that time at an average of 736
seconds (approx. 14 minutes), resulting in a large variance
for each image, depending on how many binaries are being

2500 ®
2000 © ®
z o
$ 1500
v
©
£
£ 1000
500

Alcatel AOSP Asus HTC Huawei MotorolaSamsung Xiaomi
Vendor

Figure 4. Analysis time for firmware images in our corpus

analyzed, i.e., how many service daemons are accessible
to an untrusted app, and how complex their binaries are.
The remaining time is used in the initial and final steps
in the instantiation and querying of BIGMAC. Currently,
our prototype does not implement obvious optimizations,
such as parallelization of the binary analysis step for
each binary. We leave these engineering tasks as future
improvements to our framework. Based on monitoring the
memory usage for our analysis, parallelization would have
resulted in a 3x speedup on the same PC.

7. Case Studies and Responsible Disclosure

In this section, we focus on two interesting cases from
our results that translate to vulnerabilities that a mali-
cious app can potentially exploit. We discuss Samsung
apaservice daemon’s FILESYSTEM socket and how it
can be used to request a priority for any process ID
or thread ID, a functionality only available to processes
with the audioserver, cameraserver or bluetooth UID.
We discuss another potential permission bypass exploit
in Qualcomm’s cnd and dpmd daemons, both of which
implement an identical check based on the connecting
process’s name.

Samsung apaservice. Our analysis indicates that
Samsung’s apaservice daemon creates an ABSTRACT
socket with address @dev/socket/jack/set.priority. In our
ground truth evaluation, this socket was not found at first
on the running device. We analyzed the apaservice binary
to determine the reason, and found that this socket is only
created after calling APAService::startJackd.
This method is exposed by the service
com.samsung.android. jam.IAPAService.
After calling this method using the service call
command, the socket was created and appeared in the
netstat output. This demonstrates the effectiveness
of our analysis in uncovering sockets which are created
only under certain conditions, as compared to dynamic
analysis.

The socket at @dev/socket/jack/set.priority is a
DGRAM socket under apaservice that accepts mes-
sages from any client, with no DAC check after re-
ceiving a message. It receives messages of the format
“x4<pid>, <tid>, <priority>,” where <pid> is a
process ID, tid is a thread ID, and <priority> is



the requested priority. These values are then passed to
the function android::requestPriority, which
requests the SchedulingPolicyService to assign a priority
to the requested process ID and thread ID. Although this
request is typically available to system processes running
under the audioserver, cameraserver and bluetooth UIDs,
an untrusted app can set its own priority, or the prior-
ity of any other process through this socket, effectively
bypassing authentication checks.

Additionally, through manual analysis, we discov-
ered that the function that handles messages re-
ceived over this socket, android: :APAService::
handlePriorityMessage, is vulnerable to buffer
overflow. By sending the correct preamble, “4*”, followed
by 25 bytes of data, the apaservice daemon crashes due
to stack corruption. The backtrace logs show that the
return address was successfully overwritten. The impact of
this buffer overflow vulnerability can range from DoS of
apaservice to privilege escalation to the more privileged
“jack” UID (recall that this UID is used by apaservice)
in the less restrictive apaservice SELinux context. We
developed a Proof-of-Concept (PoC) for this buffer over-
flow that crashes the daemon, achieving DoS. Achieving
local code execution would require bypassing the buffer
overflow protections compiled into the daemon binary.
Apaservice exists in Samsung Android up to version 8.1.
Within our analysis, we first noted apaservice in Samsung
Android 7.0. This indicates the lifetime of this vulnera-
bility would, at least, be from the release of Samsung
Android 7.0 on Aug. 22, 2016 through when the vulner-
ability was reported on Sept. 10, 2021 by us.
Qualcomm cnd and dpmd. In 18 Xiaomi and four HTC
images analyzed, we found that dpmd implements an inse-
cure authentication check after a connection is established.
The cnd daemon implements an identical authentication
check in 14 HTC images and seven Motorola images.
Both of these daemons are started by init with root UID,
but later drop to system UID through a setuid call.
The authentication mechanism works as follows: after a
connection with a new client is established, the client’s
DAC credentials are retrieved using a get sockopt call.
First, the GID is compared against a list of GIDs that
are allowed by the daemon. If the GID does not match
any of the allowed GIDs, then the PID is used to re-
trieve the connecting client’s process name by reading
the /proc/<pid>/comn file for that process. In Unix
systems, this file exists for every process and contains the
process name. The process name is then compared to a
list of allowed process names, and access is granted if a
match is found. This is however an insecure check, as any
app can change its own process name dynamically, even
if a different process has the same name. Therefore, a
malicious app can bypass this check trivially by changing
its name to that of an allowed process.

In the case of dpmd, this check is implemented for
an inaccessible RESERVED socket of the same name,
“dpmd,” and an untrusted app is not allowed to connect
to by both MAC and DAC. On the other hand, cnd
implements this check on its “cnd” RESERVED socket,
which is accessible to an untrusted app. Through static
analysis, we infer that this socket allows clients to get/set
network settings such as WiFiAP, WiFi P2P, and Default
Network settings, by sending the appropriate command

over the cnd socket.

Responsible Disclosure. We sent detailed reports of these
vulnerabilities to Samsung and Qualcomm, including the
aforementioned PoC for Samsung. Samsung acknowl-
edged the vulnerability in apaservice and patched it in
in SMR Sep-2021 Release 1. The vulnerability was as-
signed CVE-2021-25461. They also rewarded our find-
ings through their bug bounty program on Bugcrowd.
Qualcomm’s response to our disclosure was that the un-
protected cnd socket is deprecated starting Android 8.0.
Thus, they will not be patching the affected systems,
despite around 180 million users relying on the affected
Android versions (7.0-7.1) [14]. As for dpmd daemon,
they mention that the daemon now uses a more secure
UID check although we still see the same issue up to
Android 9.0 firmware in our dataset.

8. Limitations

Our analysis approach faces certain limitations.
Firmware unpacking and extraction presents the only ob-
stacle to expanding our analysis to more recent Android
versions and a wider variety of vendors. Extending the
current open-source toolset for Android image extraction
requires significant engineering effort, but can pave the
way for similar large-scale analyses. Additionally, we
discuss the limitations inherent in our static binary anal-
ysis approach that make the analysis of statically-linked
stripped binaries difficult.

Firmware Unpacking and Extraction. Extracting and
unpacking Android images is not trivial as the format of
factory images can vary greatly between different Android
vendors and versions. Multiple tools have been developed
that facilitate the unpacking process or different stages of
it. However, to our knowledge, there is no freely available
unified factory image unpacking tool that can unpack any
firmware image across different versions and vendors,
except for the one we used [37], [44]. These tools are
outdated, however, and only support Android versions 5-9
for AOSP, and 5-8 for other vendors. Furthermore, within
these versions the unpacking success rate is not perfect,
and some filesystems may not be recovered. This limits
the operable dataset we can use in our analysis, and as a
result extracted firmware might have missing daemons or
SELinux policy files.

Static Binary Analysis. Our implementation of the static
binary analysis relies on detecting Android bind APIs
and string manipulation functions by their symbol name.
This does not pose a problem in the case of dynamically-
linked binaries since external symbols are persevered for
linking. However, this becomes problematic in statically-
linked stripped binaries. In our analysis, we encountered
three cases of statically-linked stripped binaries which we
ultimately skipped, namely: mcDriverDaemon, debuggerd
and adbd. Additionally, we assume that if a bind call
exists in the binary with a Unix domain socket address
parameter, then that socket is bound on initialization of
the daemon. We do not perform reachability analysis
to avoid the problem of inaccurately resolving indirect
jumps. Additionally, SAUSAGE’s implementation contains
over-approximations that could produce similar dupli-
cate results (e.g. @dev/socket/some_socket vs.



/dev/socket/some_socket) in some cases where
the socket address is constructed in multiple string ma-
nipulation steps.

Manual Analysis. SAUSAGE’s output is a report of all
socket addresses detected by our analysis, and any DAC
checks or file permissions assigned to them. A manual
reverse engineering/analysis process needs to be carried
out in order to evaluate whether these sockets result in
a vulnerability. For instance, in the case of ABSTRACT
sockets, the analyst would examine the binary’s code to
determine if the socket is closed and re-bound in a loop,
which would lead to the socket being vulnerable to DoS.
This is a limitation since it requires manual effort to probe
the results for vulnerabilities.

9. Conclusion

In this work, we present SAUSAGE, a static analy-
sis framework to evaluate the security of Unix domain
sockets used in Android. Our approach combines fine-
grained access control policy analysis with static binary
analysis techniques to comprehensively detect exposed
IPC sockets available to an untrusted app. We use this
framework to analyze 200 Android images from different
vendors and Android versions, and uncover vulnerabilities
and access control misconfigurations, such as permission
bypass and denial of service. Some of these sockets would
not have been discovered by previous work relying on
dynamic analysis. We will open-source our static binary
analysis module to make it available for the community
upon publishing. The source code for our static binary
analysis module is published at https://github.com/mounir-
khaled/SAUSAGE.
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Appendix

1. BigMAC

BIGMAC is a fine-grained SEPolicy static analysis
tool [26]. In this section we discuss the functionality the
process behind how BIGMAC works and what results
can be generated. BIGMAC first walks the filesystem and
extracts files’” DAC file permissions, SELinux labels and
Linux capabilities. Then, it parses the system’s init scripts
and simulates commands that affect the filesystem (e.g.,
mkdir, chmod, etc.) as well as service commands
which execute service binaries. Performing boot emula-
tion is required to create files in the /sys, /dev and
/data directories, which would not be present in a static
firmware image.

After the boot process is emulated, BIGMAC begins
the Backing File Recovery step, where it assigns the
appropriate SELinux file types and domains to all files in
the extracted filesystem.This is done by decompiling the
extracted binary SEPolicy file to a multi-edge directional
graph via the Access Vector rules (AVrules). Afterwards,
it correlates policy types to actual files on the initialized
filesystem. File objects are straightforward to correlate
since their SELinux policy types are captured in the ex-
traction step. For process subjects, Type Enforcement rules
related to process transitions are inverted and processed
allowing for the correlation of subject types and their
executable binary backing files.

Using the full set of subject nodes, BIGMAC con-
structs a dataflow graph which simplifies the SELinux pol-
icy’s access vectors into a read/write model. The dataflow
graph captures all data flows allowed by AVRules for all
subjects and objects by considering vectors that imply a
read or a write. In the dataflow graph, objects can be
one of two types: file objects and Inter-Process Commu-
nication (IPC) objects. As discussed in the previous step,
file objects can contain multiple backing files, each with
its own MAC/DAC/CAP metadata. On the other hand,
IPC objects typically do not have any backing files and
are tagged with the underlying AVClass. For instance, all
classes that derive from the socket class are tagged as
IPC objects.

The recovered subject nodes are also used in the
Process Inflation step. For each subject node, BIGMAC
attempts to match the subject node to a service definition
by comparing the subject’s backing file with the binary
file in the service definition. If the service is enabled
and is not a one-shot (transient) process, the service’s
defined security options are assigned to a new process.
This process is then inserted into a concrete process tree.

The final step in the process is the Attack Graph In-
stantiation. In this step, all file objects within the dataflow
graph are expanded, such that each file corresponds to
one node in the graph, encompassing all of this file’s
MAC/DAC/CAP attributes. All of the edges to and from
the original file object are duplicated for each individual
node. This expanded graph is overlaid onto the concrete
process tree, whereby, for each process in the process
tree, all in- and out-edges in the corresponding subject in
the dataflow graph are copied to the process tree. In the
resultant graph, concrete processes have concrete edges to
all the objects they can read from or write to. BIGMAC
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TABLE 4. ACCESSIBLE SOCKETS DETECTED BY THE TESTING APP
OR SAUSAGE ON EACH OF THE THREE TEST DEVICES. v AND X
INDICATE WHETHER THE SOCKET WAS DETECTED BY THE
CORRESPONDING TOOL.

Socket | Testing App | SAUSAGE
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then uses this graph to generate Prolog facts that can be
used for dataflow paths in that graph.

2. Ground Truth Evaluation Results

Table 4 shows all accessible sockets detected by either
SAUSAGE or the testing app we used in the ground
truth evaluation, as well as the version information of the
Android devices tested. We detect more sockets than the
ground truth testing app as our static analysis approach
allows the detection of inactive sockets that could be
created under certain conditions or configurations. The
ABSTRACT socket @dev/socket/jack/set.priority was de-
tected twice by SAUSAGE, once as a false-positive
FILESYSTEM socket and the second time as a true-
positive ABSTRACT socket. This false positive result is
due to the peculiar construction of the socket address
itself in the apaservice binary. The address string is first
set to “/dev/socket/jack/set.priority.” Afterwards, the ‘/°
character at the Oth index is replaced by a null byte. This
effectively changes the address from a FILESYSTEM to
an ABSTRACT socket address. However, due to the im-
precision of the static analysis, both addresses are reported
by SAUSAGE.
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