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Abstract—Since the introduction of bcrypt in 1999, adaptive
password hashing functions, whereby brute-force resistance
increases symmetrically with computational difficulty for
legitimate users, have been our most powerful post-breach
countermeasure against credential disclosure. Unfortunately,
the relatively low tolerance of users to added latency places
an upper bound on the deployment of this technique in
most applications. In this paper, we present a multi-factor
credential hashing function (MFCHF) that incorporates the
additional entropy of multi-factor authentication into pass-
word hashes to provide asymmetric resistance to brute-force
attacks. MFCHF provides full backward compatibility with
existing authentication software (e.g., Google Authenticator)
and hardware (e.g., YubiKeys), with support for common
usability features like factor recovery. The result is a 106

to 1048 times increase in the difficulty of cracking hashed
credentials, with little added latency or usability impact.

1. Introduction

Despite unprecedented levels of information security
spending [24], the frequency and severity of data breaches
continue to experience exponential yearly growth [1].
While countless factors are at play, stolen or compromised
credentials are both the largest individual cause of data
breaches, accounting for over 80% of breaches on record
[16], [37], and the largest result of data breaches, being
present in nearly 80% of stolen databases [7], [15]. Thus,
data breaches effectively form a negative feedback loop,
whereby stolen credentials from one data breach are often
used to compromise several further systems. Preventing
the extraction of plaintext credentials from stolen data is
an important objective toward breaking this cycle.

Salted hashing of stored passwords has long been our
strongest tool for preventing the disclosure of credentials
after a data breach has occurred. Unfortunately, the low
complexity of typical passwords [10] and the extreme hash
rate of modern ASICs [6] make password hashes stored
using standard cryptographic hash functions highly sus-
ceptible to brute-force attacks. However, “adaptive” hash
functions like bcrypt [32] provide a convenient solution to
this problem by allowing their computational complexity
to increase over time in accordance with improvements
in overall computational power. While more hardware-
resistant hash functions like Argon2 [5] have since been
introduced, the paradigm of adding artificial computa-
tional difficulty as the primary means of strengthening
the resistance of password hashes has remained relatively
unchanged since the introduction of bcrypt in 1999.

Today, the use of adaptive password hashing has
proven necessary but insufficient to prevent password
disclosure following data breaches, as most users’ low
tolerance for added latency [3] has effectively placed an
upper bound on the extent to which such techniques can be
utilized. As a result, some recent data breaches have seen
credential disclosure ratios of nearly 50% despite using
strong adaptive password hashes (see §2.2.2).

Unsurprisingly, coinciding with this alarming trend in
the rate of password disclosure has been the widespread
adoption of multi-factor authentication (MFA), which has
become nearly ubiquitous in high-security applications to
combat the risk of credential stuffing. As it stands, MFA
increases the total entropy used to authenticate a user,
but does so through mechanisms entirely independent of
the primary authentication method. The goal of this paper
is simply to incorporate the added entropy of MFA into
password hashes to significantly increase their resistance
to brute-force attacks without any added latency for users.

In this paper, we present techniques for building a
multi-factor credential hashing function (MFCHF) that
uses entropy from common authentication factors like
HMAC-Based One-Time Password (HOTP) [38], Time-
Based One-Time Password (TOTP) [39], and Out-Of-
Band Authentication (OOBA) to strengthen password
hashes without modifying existing client-side authenti-
cation hardware or software. Doing so in practice is
non-trivial, as the dynamic nature of OTP factors is not
readily conducive to their incorporation in a static hash.
We overcome these limitations through a combination of
novel cryptographic construction and techniques adapted
from the field of multi-factor key derivation. The result is
a dramatic improvement in brute-force attack resistance,
with our experiments showing an MFCHF hash based on
a password and HOTP would take over 8.5 years to crack
compared to just 4.5 minutes with Argon2 alone (§7.3).

Contributions.
1) We performed an empirical study to demonstrate the

real-world impact of hash function design on credential
disclosure across over 4,000 prior data breaches (§2.2).

2) We describe the first known method to use entropy
from common authentication factors like HOTP, TOTP,
OOBA, and YubiKeys within credential hashes (§4).

3) Our scheme supports common usability features like
validation windows (§4.2.1), factor persistence (§5.1),
and account recovery (§5.2) with no loss in security.

4) We demonstrate the merits of our approach through a
full implementation (§6), and perform an experimental
evaluation of its real brute-force attack resistance (§7).
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2. Background & Motivation
Although over $150 billion is now spent annually

on information security [24], data breaches continue to
experience exponential growth. In 2021 alone, there were
over 4,000 publicly disclosed breaches containing over 22
billion records [22]. Thus, while the majority of current
security research focuses on data breach prevention, the
occurrence of thousands of data breaches per year should
still be considered somewhat inevitable in today’s security
landscape. With the average cost of each data breach at
an all-time high of $4.35 million [16], minimizing risk
in the event of a data breach is equally deserving of
research attention. Indeed, the presume breach tenet of the
widely accepted zero-trust security framework compels
implementers to give due consideration to harm reduction
in the event that a data breach does occur [36].

While data breaches may contain a plethora of sen-
sitive and personally identifiable information, password
disclosure is amongst the most ubiquitous risks due to
the prevalence of password-based authentication in user-
facing systems. Increasingly, the consequences of pass-
word disclosure extend not only to the directly affected
systems, but also to unrelated third-party systems via
credential stuffing due to widespread cross-site password
reuse. Hindering the ability of adversaries to obtain user
credentials from breached databases thus remains a sig-
nificant focus of post-breach risk mitigation efforts.

2.1. Password Hashing

Password hashing is today considered the primary
countermeasure to leaking passwords in the event of a
data breach. Rather than storing passwords in plaintext,
systems are configured to store a cryptographic hash of
passwords corresponding to each user. Upon login, cre-
dentials presented by users are hashed and compared to
the stored value. Since hash functions are non-reversible,
the storage of password hashes avoids directly disclosing
passwords in the event of a data breach.

Unfortunately, absent any further security consider-
ations, hashed passwords are still highly susceptible to
brute-force and dictionary attacks. While the average
password contains just 40.54 bits of entropy [10], mod-
ern hardware allows adversaries to calculate trillions of
hashes per second for popular functions like SHA256
[6], allowing password hashes to be reversed (“cracked”)
and the plaintext password to be revealed, often in a
matter of seconds. Moreover, the deterministic nature of
hash functions causes password reuse across users to be
immediately evident even without cracking their hashes.

2.1.1. Salting. The practice of salting, whereby a
randomly-generated “salt” value is used along with a
password as input to a hash function and is then stored
alongside the password, is considered best practice for all
applications where password hashing is used. Its imme-
diate consequence is adding a degree of non-determinism
to the hashing process, such that even users with identical
passwords will have different password hashes, thereby
significantly slowing the process of cracking said hashes.
In some instances, a further fixed random value, known as
a “pepper,” is also used as an input to the hash function
and is stored separately from the primary database.

2.1.2. Brute-Force Resistance. Even with the use of a
salt, most cryptographic hash functions are optimized for
computational efficiency, allowing brute-force attacks to
proceed with relative speed. By contrast, most purpose-
built password hashing functions are designed with a
degree of intentional computational inefficiency, which
significantly slows the pace of brute-force attacks at the
cost of a slightly longer time to verify login attempts.
In so-called “adaptive” password hashing functions, a
variable cost parameter can be used to tune the function’s
computational difficulty and increase it over time as com-
puting power improves. Fig. 1 shows how changing the
cost parameter of bcrypt [32], a popular adaptive password
hashing function, affects the cracking time of an attacker
and the verification time of a user.1
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Figure 1: Effect of bcrypt cost parameter on hash cracking
time of an adversary and verification time for a user.

As illustrated in Fig. 1, a roughly linear relationship
exists between verification time and hash cracking time
for adaptive password hashing functions. In this paper,
we categorize this relationship as symmetric resistance, as
increasing the difficulty of brute-force attacks necessarily
accompanies a corresponding increase in the verification
time for legitimate users. On the other hand, a techni-
cal improvement that increased the difficulty of cracking
password hashes without impacting the verification time
of a legitimate user would provide asymmetric resistance.

A variety of password hashing mechanisms have been
proposed with various approaches for providing sym-
metric resistance. In 2015, Argon2 [5] was selected as
the winner of a competition to determine the best hash
function for hardware-resistant password hashing.

2.2. Breach Statistics

While the choice of password hashing method theoret-
ically plays an important role in preventing hash cracking
after a data breach, how does the choice of hash function
impact password disclosure in practice? We conducted a
small measurement study to evaluate how password hash-
ing has impacted the rate of password disclosure across

1. Simulated cracking 10 salted bcrypt hashes corresponding to the top
100 passwords at each cost parameter. The hardware used to produce
this graph and all other benchmarks in this paper is described in §B.



thousands of real data breaches. To do so, we analyzed
data from Hashmob, a “password research and recovery”
community in which users around the world collaborate
to crack hashes from over 4,000 verified data breaches
comprising over 2.5 billion hashed credentials [13].
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Figure 2: Progressive cracking of salted and unsalted
hashes in the months following a data breach.

2.2.1. Password Cracking Time. Fig. 2 illustrates the
progression of a typical brute-force attack over time us-
ing Hashmob monthly progress data. In an average data
breach, 57% of password hashes are cracked within the
first month, likely corresponding to those passwords which
can easily be located via dictionary attacks. The rate of
password cracking plateaus after the first year at around
74% of hashes cracked, with no cracking attempts being
reported more than 18 months after a data breach.
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Figure 3: Portion of hashes eventually cracked for hash
types seen in data breaches on Hashmob (box plot).

2.2.2. Password Disclosure Ratio. Having established
that the vast majority of password-cracking activity occurs
within the first year following a data breach, we analyzed
all Hashmob data breaches posted at least one year ago
to determine what effect the choice of hash function has
on the percent of passwords eventually cracked by the

community. The results for the six most popular password
hashing methods are shown in Fig. 3. The full results of
our analysis of 4,259 data breaches are given in §C.

2.2.3. Key Findings. We present the empirical findings
of this section to emphasize that research into brute-force
resistant password hashing methods has value that is not
just theoretical but also clearly observable in the password
cracking trends across thousands of actual data breaches.
In particular, the beneficial effect of salting is clearly
evident, with 51.6% of salted hashes eventually being
cracked, in comparison with 74.3% of unsalted hashes.
Even more clear is the impact of adaptive password hash-
ing functions, with less than 15% of bcrypt and PBKDF2
hashes being cracked even a full year after a data breach.

With an average per-record liability of $164 [16],
reducing the likely rate of password disclosure can have
a significant impact on the level of risk associated with a
data breach. Overall, stronger hashing methods have the
effect of increasing the average time between a data breach
and credential disclosure, thereby giving companies more
opportunity to detect and respond to the data breach, and
of reducing the percentage of hashes eventually cracked,
thereby potentially reducing the overall liability associated
with the breach. Adaptive hash functions have clearly
already had a massive positive impact in this regard.

Unfortunately, users are also highly sensitive to the
latency of applications, with loading times of over 400 ms
resulting in significantly decreased website traffic and con-
version rate [3]. Thus, there is effectively an upper limit
on the extent to which symmetric brute-force resistance
can be deployed without affecting usability. We thus argue
that methods for achieving asymmetric resistance should
be a significant focus of research in this area.

2.3. Multi-Factor Authentication

The recent widespread adoption of multi-factor au-
thentication (MFA) is owed in no small part to the
incidence of password disclosure in data breaches, not
because it currently serves to increase the difficulty of
obtaining user passwords, but rather because it is largely
implemented in response to the threat of credential stuffing
attacks that result from leaked credentials.

While a variety of MFA mechanisms are currently in
use, the most popular MFA methods in use today are one-
time passwords (OTPs), such as HOTP and TOTP, and
challenge-response mechanisms, such as HMAC-SHA1
(as used by YubiKeys). The effect of including these
factors in the login process is basically to increase the
overall entropy used to authenticate, as both the password
and secondary factor are used together to verify the user.
Below, we provide some background information on each
of these schemes to clarify their integration with MFCHF.

2.3.1. HMAC-SHA1. HMAC-SHA1 challenge-response
authentication is an instance of ISO/IEC 9798-2 2-Pass
Unilateral Authentication via Cryptographic Check Func-
tion (CCF) [11], where the selected CCF is a Hash-
based Message Authentication Code (HMAC) [19] and
Secure Hash Algorithm 1 (SHA1) [9] is chosen as the
underlying hash function. In a typical implementation,
a client and server will share a 20-byte secret key. The



login process proceeds as shown below, where HS1(k,m)
denotes HMAC-SHA1 with key k and message m:
1) server → client: challenge ∈ [0, 2160)
2) client → server: response = HS1(key, challenge)
3) server: accept iff response = HS1(key, challenge)

Despite the deprecation of SHA-1 [26] due to a lack of
collision resistance, HMAC-SHA1 remains a secure [4]
and popular option for authentication due to its hardware-
based support in products like YubiKey [40], and forms
the basis of most HOTP and TOTP implementations.

2.3.2. HOTP. HMAC-based one-time password (HOTP)
[38] is a 1-pass authentication mechanism that is typically
based on HMAC-SHA1.2 It replaces the challenge and
response mechanism with a shared counter value that
starts at 0 and increments upon each successful login:
1) client → server: OTP = HS1(key, counter) % 106

2) server: accept iff OTP = HS1(key, counter) % 106

3) client, server: increment counter
The elimination of a random challenge and the reduc-
tion of the response size to a small number of decimal
digits (usually 6) has made HOTP a popular choice for
smartphone-based 2FA apps like Google Authenticator.

2.3.3. TOTP. Time-based one-time password (TOTP)
[39] is an extension of HOTP that replaces the shared
counter with a coarse timestamp. As with HOTP,
it is typically based on HMAC-SHA1. Given the
current UNIX time T , an initial time T0, and a time
interval TX , the TOTP code at time T is equal to
HOTPK(⌊(T − T0)/TX⌋). TOTP has the advantage of
avoiding the counter desynchronization issues of HOTP.

HOTP, TOTP, and HMAC-SHA1 all essentially serve
to supplement passwords with additional entropy derived
from a key using HMAC, increasing the overall entropy
used to authenticate a user. The goal of this paper is simply
to take advantage of this added entropy in the password
hashing process to increase the brute-force difficulty of the
resulting hash while, assuming MFA was already in use,
having no significant impact on the user experience, thus
providing asymmetric brute-force resistance. Achieving
this would require popular OTP authentication methods
to be incorporated into the hashing mechanism without
modifying the client-side functionality of these factors,
such that the user experience remains largely unaffected.

Unfortunately, two major difficulties remain in the
realization of this technique. Firstly, while passwords, and
thus password hashes, remain fairly constant over time,
OTPs are by definition intended for one-time use, and are
thus expected to change upon each login. It may not be
immediately clear how a static hash can be guaranteed to
reflect the OTP corresponding to any given login request.

Secondly, while the server must retain the ability to
validate all authentication factors, it can no longer cen-
trally store secret information about those factors. For
example, HOTP and TOTP codes are typically verified
by storing a shared HMAC secret key in the database

2. HOTP can be constructed using other underlying hash functions, but
popular implementations like Google Authenticator only support SHA-
1. Per the HOTP specification, a 31-bit truncation function is applied to
the HMAC output before determining the final OTP value.

along with a password hash, but doing so would defeat
the purpose of using said OTP as part of the hash, as an
adversary obtaining a copy of the database could easily
reproduce the correct OTP and defeat any added difficulty.

Thus, while taking advantage of multi-factor authen-
tication to increase the difficulty of cracking password
hashes seems straightforward, doing so in practice is easier
said than done and requires the design of new techniques.

2.4. MFKDF

The Multi-Factor Key Derivation Function (MFKDF)
[25] is a recent improvement over password-based key
derivation that incorporates multiple authentication fac-
tors into the key derivation process. Its construction pro-
vides an important building block for the creation of a
multi-factor credential hashing function with support for
commonly-used OTP authentication factors.

The MFKDF specification contains two major ar-
chitectural components. The first component is the set
of so-called “factor constructions,” which convert a dy-
namic factor witness3 (W ) and public parameters (α) into
static key material (σ). The public parameters require
no security assumptions and can safely be stored in a
database without concern for revealing information about
the factors to potential adversaries. For some factors, these
parameters must be updated upon each login (αi 7→ αi+1).
Constructions are given for a variety of popular authen-
tication factors, including TOTP, HOTP, OOBA (e.g.,
Email/SMS), and HMAC-SHA1 (e.g., YubiKey).

The second major component of the MFKDF specifi-
cation is the key derivation function itself, which adds
a secret sharing layer to provide functionality such as
threshold-based key derivation, advanced policy enforce-
ment, and factor recovery. While useful in the key deriva-
tion setting, such functionality is not particularly relevant
for building a multi-factor credential hashing function and
adds unnecessary overhead in the form of needing to store
excessive material like secret shares.

While the intended use case of MFKDF, namely client-
side key derivation for end-to-end encryption, is very
different from the goals of this paper, the MFKDF factor
constructions are a key tool for solving the challenge of
using dynamic OTP factors as an input to a static hash.
The core technique of this paper builds atop said factor
constructions to achieve multi-factor credential hashing
with asymmetric resistance.

2.5. Summary

With the introduction of ultra-fast hashing ASICs for
cryptocurrency mining, research into brute-force-resistant
password hashing mechanisms has become more impor-
tant than ever before. We hope the brief empirical study
presented thus far serves to demonstrate that advance-
ments in this area have a dramatic effect on the conse-
quences of actual data breaches.

Clearly, the symmetric resistance provided by adaptive
password hashing functions has already had a significant
impact on password cracking, but the relative intolerance

3. The witness refers to the message used to authenticate (e.g., a 6-
digit OTP), which is often not the same as the underlying shared secret.



of users to added latency places an upper limit on the
potential use of these functions. Simultaneously, the adop-
tion of multi-factor authentication has provided a key op-
portunity to incorporate additional entropy into credential
hashes without increasing the computation time for legit-
imate users. We are thus motivated to explore a scheme
that takes advantage of the additional entropy provided
by MFA to provide asymmetric resistance to brute-force
attacks by incorporating multiple authentication factors,
rather than just passwords, into a single hash.

While achieving such a scheme has long seemed out
of reach, the introduction of MFKDF has provided a
blueprint for realizing its implementation. In the following
section, we will outline the desired security properties of
our multi-factor credential hashing function, and will then
proceed to describe a scheme satisfying these properties.

3. Problem Statement

In a typical password hashing deployment, a user reg-
isters an account with a server by providing a password, a
hash of which is stored by the server in a database. Later,
the user initiates a login process with a server by providing
the password, which the server hashes and compares to
the stored hash to authenticate the request. Secondary
authentication factors are then independently verified.

In this paper, we’ll present a multi-factor credential
hashing approach that differs from typical password hash-
ing by atomically verifying all of a user’s credentials with
a single hash. The purpose of this section is to present
the problem setting and goals of this approach. These are
largely the same as in standard password hashing, except
that all factors are provided and verified simultaneously
rather than sequentially, yielding a significant asymmetric
improvement in brute-force attack resistance.

3.1. Deployment Setting

Our deployment setting consists of the following entities:
• One or more users, each possessing a password along

with a secondary authentication factor.
• A server, which stores data about the factors of each

user and uses it to authenticate user login requests.

3.2. Registration Process

In an initial setup process, a user establishes a
password with the server. The server establishes a
secondary authentication factor and internally stores a
hash relating to these factors that can be used to later
authenticate the user. Thus, the MFCHF SETUP function
requires the following type definition:

SETUP : password 7→ hash,mfainfo

3.3. Login Process

During a login process, a user simultaneously
provides the server with witnesses corresponding to all
authentication factors. For example, they may provide a
password along with a TOTP code (e.g., from Google
Authenticator). The server must then use the data stored

during the registration process to validate all factors
and authenticate the user. If authentication succeeds, the
server may also update its stored hash to prepare for
the next login. Thus, the type definition for the MFCHF
VERIFY function is as follows:

VERIFY : password,witness, hash 7→ reject or
7→ accept , hash

3.4. Threat Model

We consider security under a total data breach threat
model; that is, at some instant, an adversary receives a
snapshot of all data stored on the server. The goal of
the adversary is to use this data to obtain the underlying
credentials of the user, via brute force, dictionary attack,
or any other method available to the adversary in an offline
capacity. To ensure a fair comparison with other password
hashing schemes, the adversary is considered successful
even if just the user’s password is determined.

If given unlimited time, the adversary will be able to
brute-force user credentials under any scheme where the
stored data allows credentials to be verified. Therefore, the
goal of our scheme is to increase the time and difficulty
of attacking user credentials without increasing the time
taken to verify a legitimate user (asymmetric resistance).

3.5. Security Goals

To summarize, a multi-factor credential hashing function
consists of separate SETUP and VERIFY functions. The
security goals of an MFCHF scheme are as follows:

1) Correctness: When provided with valid witnesses cor-
responding to a user’s established authentication fac-
tors and hash, the server outputs accept with p = 1.

2) Safety: When at least one of a user’s factor witnesses
is invalid with respect to the established factors and
hash, the server outputs reject except with p = negl.

3) Asymmetric Resistance: For a given fixed verification
time, a multi-factor hash should be significantly more
difficult to brute-force than a standard password hash.

4. Multi-Factor Credential Hashing
We now present four practical constructions for two-

factor credential hashing schemes corresponding to au-
thentication using a password and either HOTP, TOTP,
OOBA, or HMAC-SHA1 (YubiKey) as a secondary factor.
While these schemes can easily be extended to arbitrary n-
factor variants, their construction is most straightforwardly
presented using two factors, which is the most common
use case. Furthermore, our four chosen secondary factors
are by no means exhaustive with respect to the authentica-
tion methods that can be used with multi-factor credential
hashing, and exist to serve as a template for implementing
the proposed approach with other authentication methods
one may wish to use in the future while simultaneously
demonstrating the backward compatibility of MFCHF
with several popular unmodified authentication factors.



4.1. General Blueprint

We begin with an overview of our general approach
for multi-factor credential hashing. Fig. 5 shows a typi-
cal password hashing setup using a salted adaptive hash
function. Even if MFA is in use, secondary factors are
considered totally independent of password validation.

H1: Adaptive Hash Function

password 2fasalt

hash

Figure 5: Standard adaptive password hashing scheme.

As discussed in §2.3, our goal is to incorporate the
additional entropy of a secondary authentication factor
into the hash function as though it were an additional
hidden salt value, but we are unable to do so directly
due to the dynamic nature of OTPs. A successful multi-
factor credential hashing scheme must convert a dynamic
secondary factor into another static input, and must further
obscure the private material underlying that factor.

H1: Adaptive Hash Function

password

target

salt

1st hash

H2: Standard Hash Function

2nd hash

pad

2fa

US
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 T
O

 U
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Figure 6: Blueprint for multi-factor credential hashing.

Fig. 6 illustrates the general strategy implemented by
all of our MFCHF constructions. It incorporates three
major insights: First, a one-time pad or modular offset can
be used to convert dynamic OTPs into a static hash input
without leaking information. Second, an intermediate hash
value can be used as a key to hide secrets within the data
stored on the server. Finally, those secrets can be recovered
ephemerally upon each login to update the pad or offset.

The resulting feedback loop incorporates dynamic sec-
ondary factors into the hash without weakening them, and
actually strengthens the underlying construction by not
storing shared keys in plaintext. The forthcoming MFCHF
constructions all start with this general blueprint and then
introduce their own factor-specific optimizations.

4.2. MFCHF with HOTP (mfchf-hotp6)

Our first specific MFCHF construction uses HOTP, a
factor that is illustrative of the general approach described
in §4.1. The mfchf-hotp6 construction requires two un-
derlying hash functions: H1 is an adaptive password hash
function such as Argon2, and H2 is a standard crypto-
graphic hash function such as SHA-256. We assume that
a salt and HOTP key have been randomly chosen ahead of
time. HOTP(k, n) denotes the nth HOTP code under key
k per RFC 4226 [38]. Throughout this paper, ⊕ denotes
bitwise XOR and ⊙ denotes concatenation. The SETUP
function for mfchf-hotp6 then proceeds as follows:

1) Select a random target value in [0, 106)
2) Determine the first HOTP code: first = HOTP(key, 1)
3) Find the modular offset: diff = (target− first) % 106

4) Compute 1st hash: inner = H1(password⊙target⊙salt)
5) Blind HOTP key using 1st hash: blind = key ⊕ inner
6) Compute 2nd hash: outer = H2(inner)
7) Store {counter = 1, diff, blind, salt, outer}
Upon login, the user obtains an otp code from their HOTP
application, which is provided to the server and used along
with their password within the VERIFY function like so:

1) Recover target value: target = (diff + otp) % 106

2) Compute 1st hash: inner = H1(password⊙target⊙salt)
3) Output reject if H2(inner) ̸= outer, else continue
4) Increment counter value
5) Unblind HOTP key using 1st hash: key = blind⊕ inner
6) Determine the next OTP: next = HOTP(key, counter)
7) Find the modular offset: diff = (target− next) % 106

8) Output accept , store {counter, diff, blind, salt, outer}
Because the original target value is recovered only if the
otp value is correct, the correct password and OTP must be
provided in order for the server to output accept . Thus, the
MFCHF hash has the effect of simultaneously validating
the password and HOTP factors. See Alg. 2 of §E for a
pseudocode implementation of this method.

4.2.1. HOTP Validation Window. A common usability
feature in HOTP-based systems is the use of a “valida-
tion window” to recover from counter desynchronization.
This functionality can easily be added onto the above
HOTP construction by storing multiple offset (diff) values
corresponding to multiple acceptable counter values, and
iteratively trying each of the stored offsets upon login.
For example, if a validation window of size 2 is desired,
the offsets corresponding to ctr and ctr + 1 are stored at
all times. Because each offset must be used independently,
including additional offsets does not reduce the security of
the scheme, and instead simply increases the verification
time if multiple attempts are required. For instance, even
if one stored 106 offsets, trying each of them would be
no faster than trying all 106 possible target values.

mfchf-hotp6#0,283102,5f02…85ff#$argon2id$v=19$m=4096,t=150,p=1$50ee…e574$4e39…3a2c

MFCHF Type MFA Parameters (HOTP) Output of Underlying Hash Function

HashSaltDifficultyVersionTypeCounter Offset Padded Secret

Figure 4: Example hash output generated by MFCHF with password and HOTP factors (mfchf-hotp6).



4.3. MFCHF with TOTP (mfchf-totp6)
Per RFC 6239, TOTPK = HOTPK(⌊(T − T0)/TX⌋)

where T is the current UNIX time, T0 is the initial
time, and TX is the time interval [39]. Accordingly, the
above MFCHF construction for HOTP can be modified
to produce a suitable construction for TOTP by storing
an array of offset (diff) values corresponding to the next
w OTPs. Because the underlying HMAC key is available
to the server in plaintext within the SETUP and VERIFY
functions, this calculation can still be performed locally
with no required modifications to the TOTP application.
A full description of mfchf-totp6 is given in Alg. 3 of §E.

4.4. MFCHF with OOBA (mfchf-ooba6)
We next turn our attention to out-of-band authen-

tication (OOBA) factors such as email and SMS. We
assume the use of public key cryptography underlying
each OOBA channel, which can be used to deliver an OTP
only to an intended recipient. Let Enc represent encryption
under a public-key encryption scheme (e.g., RSA) and pk
represent the public key of the OOBA channel. As before,
we assume that a salt has been randomly chosen ahead
of time, but only a single password hash function (H) is
required. The SETUP function is thus as follows:
1) Select a random first OTP and target value in [0, 106)
2) Encrypt the first OTP with pk: ct = Enc(first, pk)
3) Find the modular offset: diff = (target− first) % 106

4) Compute the hash: hash = H(password⊙target⊙salt)
5) Store {ct, pk, diff, salt, hash}
Because our OOBA implementation is not limited by
backward compatibility with existing HOTP/TOTP soft-
ware, it is not restricted to using numeric OTPs. Instead,
base 36 (or even 62) representation can be used to provide
alphanumeric OTPs. Upon login, the server can forward ct
to the OOBA channel. The user then provides the received
otp to the server along with their password, which are used
within the VERIFY function like so:
1) Recover target value: target = (diff + otp) % 106

2) Output reject if H(password⊙ target⊙ salt) ̸= hash
3) Select a random next OTP value in [0, 106)
4) Encrypt the next OTP with pk: ct = Enc(next, pk)
5) Find the modular offset: diff = (target− next) % 106

6) Output accept , store {ct, pk, diff, salt, hash}
Again, the server accepts the authentication request only
if the user provides the correct otp, indicating that they
had access to the OOBA channel. As in MFKDF, the
recommended implementation of the OOBA factor for
email authentication is to use the S/MIME key [33] of
the recipient as pk. This can be extended to SMS authen-
tication using the email-to-SMS gateway service [34] of
each carrier. Alg. 4 of §E further describes mfchf-hotp6.

4.5. MFCHF with YubiKey (mfchf-hsha1)
Finally, we provide an MFCHF construction for

hardware-based MFA devices such as smart cards and
USB security keys. Amongst the most common protocols
supported by these devices are FIDO U2F [2] and ISO
9798 2-Pass Unilateral Authentication over HMAC-SHA1
[11]. Unfortunately, the former is effectively impossible to
incorporate into a multi-factor credential hash due to the

inclusion of a client-side random nonce in all signatures.
However, HMAC-SHA1 is both well supported (including
all YubiKey devices [40]) and relatively straightforward
to implement as an MFCHF factor. Our method requires
a single password hash function (H) and HMAC-SHA1
(HS1). Assuming a key and salt have already been chosen,
the SETUP function for mfchf-hsha1 is as follows:
1) Select a random challenge in [0, 2160)
2) Find the response: response = HS1(key, challenge)
3) Compute the hash: hash = H(password⊙ key ⊙ salt)
4) Blind key using response: blind = key ⊕ response
5) Store {blind, challenge, salt, hash}
Upon login, the challenge can be sent to the user’s hard-
ware device to generate a response, which is used along
with their password within the VERIFY function like so:
1) Unblind key using response: key = blind⊕ response
2) Output reject if H(password⊙ key ⊙ salt) ̸= hash
3) Select a random challenge in [0, 2160)
4) Find the response: response = HS1(key, challenge)
5) Blind key using response: blind = key ⊕ response
6) Output accept , store {blind, challenge, salt, hash}
The authentication request is accepted only if the user
is in possession of the hardware MFA device containing
the shared key and is thus able to produce the correct
response. The full specification is given in Alg. 1 of §E.

4.6. Use of SHA-1
Because SHA-1 has been deprecated since 2011 due

to its lack of collision resistance [26], it may be seen as
a red flag to recommend its use in new cryptographic
deployments. However, the security of HMAC is not
dependent upon collision resistance, and HMAC-SHA1
has been proven to remain secure without it [4].

Moreover, our hand is forced by the exclusive use of
SHA-1 in popular MFA methods. For instance, HMAC-
SHA1 remains the only deterministic challenge-response
mechanism supported by YubiKeys. Furthermore, while
HOTP and TOTP support the use of other hash functions,
Google Authenticator still only supports HMAC-SHA1.

4.7. Post-Breach Security
Each of the four MFCHF constructions introduced in

this section has the primary goal of increasing the brute-
force resistance of stored password hashes by leveraging
the entropy of MFA within stored hashes. For example,
the HOTP, TOTP, and OOBA variants require the attackers
to search the entire space of {password⊙ target} instead
of just {password}. This aspect of MFCHF’s security is
evaluated in detail in §7. However, the MFCHF techniques
presented herein have the additional advantage of not
storing factor-specific secrets in plaintext. As a result,
the underlying authentication factors have the potential
to remain operational in the event of a data breach. For
example, a typical HOTP/TOTP-based system would store
the HMAC key in plaintext on the server to verify OTPs,
thus leaking the key in the event of a data breach and
allowing the attacker to bypass the HOTP/TOTP factor
entirely. On the other hand, MFCHF allows the server to
verify OTPs without storing the HMAC key in plaintext,
thus potentially leaving the factor operational in the period
between the occurrence of a data breach and its detection.



5. Authentication Features

A major focus of our discussion thus far has been
on the backward compatibility of MFCHF with exist-
ing authentication hardware and software, so as to em-
phasize that MFCHF requires modifications to neither
third-party applications nor learned user behaviors. Sim-
ilarly, in §4.2.1, we demonstrated that HOTP validation
windows, a commonly-implemented feature designed to
improve usability, are fully compatible with the mfchf-
hotp6 construction. In general, a significant goal of this
paper is to reduce the friction of implementing MFCHF
to minimize the drawbacks accompanying its significant
security advantages and thereby satisfy the balance of
considerations preceding its implementation.

To that end, there are two additional usability features
that an authentication scheme must support to avoid a
heavy usability penalty: factor persistence and factor re-
covery. The aim of this section is to illustrate that these
features can easily be implemented in conjunction with
the proposed MFCHF methods while not reducing the se-
curity or brute-force resistance of the underlying schemes.
In the following section, these features are implemented
together with the mfchf-hotp6 scheme to produce a proof-
of-concept application that realizes the security benefits of
MFCHF while retaining all popular usability features.

5.1. Factor Persistence

Factor persistence is a common usability feature that
allows users to bypass multi-factor authentication when
using a familiar trusted device. A standard method of
implementing factor persistence is by storing a browser
cookie containing a pseudorandom token value on devices
the user indicates are trusted. Login requests containing
the cookie with the correct value are only required to sup-
ply the primary authentication factor, bypassing any multi-
factor authentication that may be in use. Because each
factor is typically validated by an entirely independent
mechanism, implementing factor persistence usually re-
quires fairly limited additional server-side logic. However,
when using MFCHF, implementing factor persistence in
the usual manner would require separate storage of a
password-only hash to facilitate primary authentication,
thereby defeating the brute-force resistance of MFCHF.

Fortunately, each of the presented MFCHF construc-
tions contains a built-in token that can be used to achieve
factor persistence, namely the hmackey in the case of
mfchf-hsha1, and the target value in the case of HOTP,
TOTP, and OOBA. While these values are never stored in
plaintext, they become temporarily available within each
of the VERIFY functions upon login. Thus, when a user
successfully authenticates using a new device, they can
be prompted to bypass MFA on that device, storing their
hmackey or target value as a cookie in the process. On
subsequent logins, that value can be used together with
their password to authenticate their request without ne-
cessitating the use of multi-factor authentication. Because
only a multi-factor hash is stored, this solution allows the
use of factor persistence with MFCHF with no loss in
security or brute-force resistance as long as the trusted
device is secure (which is the assumption fundamentally
made by allowing a given device to bypass MFA).

5.2. Factor Recovery

Factor recovery is another usability feature that is vital
to support, with nearly 80% of users requiring a password
reset on a regular basis [20]. Typically, factor recovery is
implemented by establishing a tertiary factor, such as a
recovery code or email OOBA, specifically for the purpose
of recovering a lost primary or secondary factor. For
example, in a password plus HOTP scheme, the password
and recovery code may be used together to recover a
lost HOTP device. Once again, a naive implementation of
this setup may involve storing a separate password hash,
thereby defeating the security of MFCHF.

Here, we suggest an alternative solution that involves
storing a separate MFCHF hash for each combination
of factors an application wishes to support. We will
specifically follow the example of password and HOTP
authentication with a recovery code, but stress that any
supported factor can be used for recovery via this method.
Implementing HOTP device recovery in this scheme is
easily achieved by storing a hash of the password and
recovery code. Password recovery, however, is non-trivial
to implement, and can be achieved as follows:

Setup. During the setup process, a password recovery
hash is created by applying a password hash function to
a recovery code concatenated with the target value of the
primary mfchf-hotp6 authentication hash. The hotpsecret
should be stored padded with the output of this recovery
hash in addition to the primary hash. As with the primary
hash, a standard cryptographic hash function like SHA256
should then be applied before storing the resulting value.

Verify. The counter and offset values from the primary
mfchf-hotp6 hash should be synchronized with the
recovery hashes upon each successful login to ensure the
same HOTP factor used for primary authentication can be
used to recover the account password if required.

Recovery. During an account recovery process, the HOTP
code can be combined with the offset value to recover
the target as usual, which in turn can be verified together
with the supplied recovery code against the recovery hash.
Because the hotpsecret is stored padded with the recovery
hash, it can be found when the recovery hash is computed.

Reconstitution. Finally, the known hotpsecret and target
values can be combined with a new password to create
a new mfchf-hotp6 hash for primary authentication while
leaving the HOTP factor and recovery hash intact.

The proposed method for factor recovery averts storing
an independent hash for each authentication factor and
instead only stores multi-factor hashes for allowable factor
combinations. As such, it implements factor recovery via
tertiary factors without reducing the security of the overall
scheme. Specifically, it reduces the overall brute-force dif-
ficulty only to the weakest combination of factors allowed
to authenticate, which is the strongest possible security
a multi-factor credential hashing scheme can hope to
achieve. This principle is further discussed in §6.3, which
evaluates the overall brute-force entropy of an MFCHF
demo application with three MFCHF hashes.



6. Proof-of-Concept Implementation

To demonstrate the immediate practical utility of
MFCHF and provide a blueprint for its deployment, we
implemented a fully-featured MFCHF JavaScript library,
and produced a proof-of-concept application implement-
ing MFCHF as a replacement for password hashing. The
demo application is modeled as a template, built using
a React.js frontend and serverless JavaScript backend,
with full authentication functionality (registration, login,
recovery, etc.) but no substantive application content.

6.1. MFCHF Deployment

In our proof-of-concept application, passwords are
used as a primary authentication factor with HOTP as a
secondary factor. Therefore, the primary hash used for au-
thentication reflects the mfchf-hotp6 algorithm described
in §4.2, with PBKDF2 used as the underlying password
hash in this instance. We verified that the resulting ap-
plication was fully backward-compatible with the latest
versions of the Google Authenticator and Microsoft Au-
thenticator applications from the Google Play store. As
such, the use of MFCHF for hashing on the backend
should have no discernible impact on users who already
use HOTP, other than requiring all factors to be entered
simultaneously rather than sequentially as seen in Fig. 7a.

6.2. Authentication Features

To emphasize the limited usability impact of MFCHF,
we implemented a number of common usability and
convenience features within the proof of concept app,
demonstrating their practical compatibility with MFCHF.
In particular, the application supports the use of a HOTP
validation window (i.e., a look-ahead window) using the
method of §4.2.1, allowing users to recover from the
desynchronization of their HOTP device. Further, the ap-
plication supports factor persistence per §5.1 as shown in
Fig. 7b, allowing users to bypass MFA on trusted devices
with no reduction in the brute-force resistance of stored
MFCHF hashes if those trusted devices are secure.

(a) Login (b) Persistence

Figure 7: Login screens from proof of concept application.

Finally, the demo application includes two secondary
hashes for the purpose of factor recovery, as described in
§5.2. Specifically, a HOTP + recovery code hash is stored
for password recovery, and a password + recovery code
hash is stored for HOTP recovery. Images depicting these
features of the demo application are provided in §A.

6.3. Entropy & Security

To summarize, the demo application uses three distinct
multi-factor credential hashes to achieve the desired func-
tionality: a password + HOTP hash for standard logins, a
HOTP + recovery code hash for password recovery, and
a password + recovery code hash for HOTP recovery. All
three of these MFCHF hashes greatly exceed the entropy
of a standard password hash (≈ 40 bits [10]), as shown in
Fig. 8. Therefore, the weakest link in this application is the
password-plus-HOTP hash used for normal authentication,
which is still 220 (or about one million) times harder to
brute-force attack than a standard password hash.
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Figure 8: Average brute-force entropy of hashes used in
MFCHF proof-of-concept application.

In addition to providing greater asymmetric resistance
to brute-force attacks, the absence of HOTP secrets (or
recovery codes) stored in plaintext anywhere in the appli-
cation greatly increases the probability of these secondary
factors remaining operational and secure in the interim pe-
riod between the occurrence of a breach and its detection.

6.4. Summary

We present the fully-featured web application demo of
this section to illustrate that MFCHF is concretely practi-
cal and suitable for real-world deployment. As described
above, the scheme used in this proof of concept provides
a 1,000,000x increase in asymmetric brute-force attack
difficulty and increased post-breach security. Furthermore,
these security advantages implicate very little impact on
usability if MFA was already in use, with full backward
compatibility with existing HOTP applications. As we
have demonstrated, common usability features such as
factor persistence, factor recovery, and HOTP validation
windows are compatible with MFCHF without reducing
its added security. What follows is a general evaluation of
the performance and security of the proposed schemes.



7. Evaluation
Although the demo application of §6 abstractly ad-

dresses the practicality of MFCHF in a realistic setting,
we further performed experiments to evaluate the per-
formance of MFCHF in three important aspects. First,
we benchmarked the computational and storage overhead
of MFCHF over existing password hash functions to
highlight its efficiency. Next, we evaluated the theoretical
increase in brute-force search space provided by each
MFCHF construction. Finally, we performed real brute-
force attacks against a variety of schemes to demonstrate
the security of MFCHF against a realistic adversary.

7.1. Performance
To benchmark the performance of MFCHF, we ran

the JavaScript library used for the proof-of-concept appli-
cation of §6 using Chrome v106.0.5249.103 on the same
benchmarking machine used for all other experiments (see
§B). The SETUP and VERIFY functions for mfchf-hotp6,
mfchf-totp6, mfchf-ooba6, and mfchf-hsha1 were run 100
times each to measure the mean overhead of each function.
To isolate the computational overhead of MFCHF from
that of the underlying hashing mechanism, SHA256 was
used as the hash function in all cases. For TOTP, a window
of 2,920 was used. The results are shown in Fig. 9.
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   x = 105.6 µs
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Figure 9: Overhead of MFCHF functions (box plot).

Another aspect worth evaluating is the space required
to store each hash. A standard Argon2 hash requires about
77 bytes. By comparison, the space required increases
to 131 bytes for mfchf-hotp6 and mfchf-hsha1 and 353
bytes for mfchf-ooba6. The absolute size of these hashes
remains small enough to likely not pose a barrier to
adoption, particularly in consideration of the fact that they
replace the need to separately store an HMAC secret.
However, the space required for mfchf-totp6 could vary
from 7 to 219 kb depending on the size of window used.

7.2. Entropy
Next, we briefly evaluate the theoretical increase in

input entropy (i.e., brute-force search space) of MFCHF
over standard password hashes. For the HOTP and TOTP
variants of MFCHF, adversaries must evaluate all 106 pos-
sible target values for each attempted password. Because

OOBA can use an alphanumeric OTP, adversaries must
evaluate all 366 possible target values for each attempted
password. Finally, for the HMAC-SHA1 (i.e., YubiKey)
variant, the HMAC key is included in the hash, which can
have 2160 possible values. Overall, the theoretical entropy
gained by mfchf-hotp6, mfchf-totp6, mfchf-ooba6, and
mfchf-hsha1 is 20, 20, 31, and 160 bits, respectively.

7.3. Brute-Force Resistance

While the theoretical increase in search space of
MFCHF strongly indicates an improvement in brute-force
difficulty, we also performed an experiment to validate the
increased brute-force resistance of MFCHF. We first cre-
ated 100 salted password hashes for each of several stan-
dard (MD5, SHA1, SHA256, and SHA512) and adaptive
(PBKDF2, bcrypt, scrypt, and Argon2) hashing schemes.
The hashes were chosen from a dictionary of the 10,000
most common passwords, and cost parameters for adaptive
hashes were configured to take 200 ms to compute. Next,
we used John the Ripper (for Argon2) or Hashcat (for all
others) to crack each password via an exhaustive search
of the dictionary. The hash and crack times for each hash
type are shown in Fig. 10, with the full results in §D.
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Figure 10: Hash and crack time for various hash types.

Next, we evaluated the brute force time of four types
of MFCHF hashes (mfchf-hotp6, mfchf-totp6, mfchf-
ooba6, and mfchf-hsha1) with Argon2id as the underlying
hash function. Given that each of these hashes would take
well over a year to crack using the above method, we
instead let John the Ripper run for exactly 24 hours for
each of the four hashes and examined the percentage of the
search space exhausted in that time. We found that 0.016%
and 0.019% of the search space were exhausted after
24 hours for mfchf-hotp6 and mfchf-totp6, respectively.
Given that cracking a hash would require attempting 50%
of the search space on average, we expect the average
crack times for mfchf-hotp6 and mfchf-totp6 to be about
8.6 years and 7.2 years, respectively. For mfchf-ooba6 and
mfchf-hsha1, John the Ripper reported 0.000% progress
after 24 hours. Based on the relative entropy, we expect
these hashes would take thousands of years to crack. These
MFCHF results are also included in Fig. 10 and in §D.



7.4. Discussion

In §2.1, we introduced the notions of symmetric
resistance, where brute-force attack difficulty increases
proportionally with an increase in verification time, and
asymmetric resistance, where brute-force attack difficulty
is disproportionately improved relative to verification time
for legitimate users. As demonstrated by our evaluation,
MFCHF provides a robust improvement in asymmetric
brute-force attack resistance: with the same 200 ms tar-
get as bcrypt, scrypt, PBKDF2, and Argon2, MFCHF
provides a 106 to 1048 times increase in the difficulty
of cracking hashed credentials. It does so by leveraging
the entropy of passwords and multi-factor authentication
together within a single multi-factor credential hash, rather
than simply increasing the computational difficulty of the
hash function, as is seen in most adaptive schemes.

Indeed, the practical effect of even the weakest
MFCHF variants (HOTP/TOTP) far exceeds what one
might intuitively expect given the seemingly small amount
of added entropy (20 bits). While the average crack time
for this setup without MFCHF was just 4.5 minutes, using
MFCHF would increase the time to crack such a hash to
over 7 years with no impact on the verification time for a
legitimate user. This indicates that the current landscape of
adaptive password hashing, with about 40 bits of entropy
in the average password and 200 ms of latency tolerance,
exists precisely at an optimality point for MFCHF to have
a dramatic impact on the feasibility of a brute-force attack.

Interestingly, our empirical results do not represent a
simple linear improvement in brute-force resistance rela-
tive to the added entropy. For example, most adaptive hash
functions were susceptible to highly-parallel GPU-based
attacks, significantly reducing their security in practice. In-
deed, our chosen dictionary size of 10,000 was sufficiently
large that almost all 10,496 GPU cores could be deployed
in parallel to attack adaptive hashes (while still being
small enough to feasibly evaluate within a short period of
time). Increasing the dictionary size further could increase
the attack difficulty across all hash types, but should not
affect the relative advantage of MFCHF.

Finally, the computational overhead of some MFCHF
variants required a reduction in underlying cost parameters
to maintain a 200 ms latency target, which could reduce
the added resistance in practice. For instance, while the
overhead of all MFCHF functions was relatively small
in relation to the 200 ms target, the higher overhead of
mfchf-totp6 compared to mfchf-hotp6 resulted in mfchf-
hotp6 providing more brute-force resistance than mfchf-
totp6, despite both functions theoretically providing the
same amount (20 bits) of additional entropy.

8. Security Analysis

Having now empirically demonstrated the asymmetric
resistance of MFCHF, we next provide brief arguments for
why the schemes of §4 satisfy the security properties of
correctness, safety, and asymmetric resistance, as defined
in §3.5. While a formal proof framework for multi-factor
key derivation exists [18], [25], there is no suitable equiva-
lent for multi-factor credential hashing. Our arguments are
instead based on a semi-formal reduction to the security
properties of the underlying hash functions.

8.1. Primitives

The MFCHF constructions of §4 use an adaptive pass-
word hash function such as Argon2 (H1), and a standard
cryptographic hash function such as SHA-256 (H2). For
both hash functions, the following properties are required:
• Determinism – For a given input value m, H(m) must

always generate the same hash value h with p = 1.
• Total Pre-Image Resistance – Given only an arbitrary

hash value h, it is hard for an adversary to find any bit of
input m such that H(m) = h except with p = 0.5+negl.

• Second Pre-Image Resistance – Given an input m1, it is
hard for an adversary to find another input m2 such that
H(m1) = H(m2) and m1 ̸= m2 except with p = negl.

• Uniformly Pseudorandom – Given an arbitrary m and
H(m) = h, each bit of h is 1 with p = 0.5.

• Strict Avalanche Criterion – Given H(m) = h, changing
one bit of m should change each bit of h with p = 0.5.

8.2. Correctness

The correctness property of MFCHF requires that
when provided with valid witnesses corresponding to a
user’s established authentication factors and hash, the
server outputs accept with p = 1. For a given login
request, there is exactly one valid password and witness.
In each MFCHF construction, the server outputs accept if
H(password⊙ target⊙ salt) matches a stored hash of the
correct values. It directly follows from the determinism
property of H that if the correct password and target are
provided, H will generate the same value h (and therefore,
the server will output accept) with p = 1.

What remains to be shown is that target will match
the expected value if the correct OTP is provided. In the
case of the HMAC-SHA1 construction, this is true because
bitwise XOR with one parameter fixed is an involution
(A⊕B ⊕B = A): key⊕ response⊕ response = key. For
all other constructions, this instead holds because of the
congruence relation ((A−B) % N+B) % N ≡ A, which
suggests ((A−B) % N+B) % N = A when A ∈ [0, N).
Thus, ((target− otp) % 106 + otp) % 106 = target.

8.3. Safety

The safety property of MFCHF posits that when at
least one of a user’s factor witnesses is invalid, the server
outputs reject except with p = negl. In each MFCHF
construction, the server outputs reject if H(password ⊙
target⊙ salt) does not match a stored hash of the correct
values. If an adversary can violate the safety of MFCHF
by finding an invalid password or target value that causes
H to generate the same value h as the correct credentials
(and therefore, the server to output accept), then they have
also violated the second pre-image resistance of H by
finding m1 ̸= m2 such that H(m1) = H(m2).

It remains to be shown that target will not match
the expected value if the incorrect OTP is provided. To
illustrate this, we simply invert the proofs given in §8.2:
A⊕B⊕B′ ̸= A if B ̸= B′ (thus key is wrong if response
is wrong), and ((A−B) % N+B′) % N ̸≡ A if B ̸≡ B′

(thus target is wrong if otp is wrong).



8.4. Asymmetric Resistance

Finally, the asymmetric resistance property of MFCHF
suggests that an MFCHF hash should be significantly
harder to crack than an adaptive password hash with the
same fixed verification time. Specifically, the brute-force
difficulty is exponential with respect to the total entropy
of the input space, so an MFCHF hash with a password
and a 6-digit OTP should be 106 times harder to crack
than a comparable password hash.

Given H(m) = h, the avalanche effect of H suggests
that if m is changed slightly (e.g, flipping a single bit), h
changes significantly (e.g., half the bits flip). Now given
H(password ⊙ target ⊙ salt) = h, the asymmetric resis-
tance of the MFCHF hash h derives from the avalanche
effect of H, as any incorrect bit of {password ⊙ target}
will cause h to be completely incorrect. Furthermore, the
total pre-image resistance of H precludes an adversary
from reversing any part of h to determine which bits
are incorrect. Given λ1 bits of entropy in password and
λ2 bits of entropy in target, all 2λ1+λ2 possible values
must be exhaustively searched. The effect of adding a 6-
digit (≈ 20-bit) OTP is thus to increase the brute-force
difficulty of h by a factor ≈ 220 or 106 for the same
verification time, resulting in asymmetric resistance.

Lastly, it remains to be argued that the values stored
alongside the hash and salt in MFCHF do not weaken or
reveal secret information about the underlying factors:
• For the blind value, this is the case because assuming

the output of H is uniformly pseudorandom, it can be
used as a one-time pad (Vernam cipher) to hide the
value of key with information-theoretic security.

• For the diff value, this holds because of the security of
modular arithmetic (rings); a pseudorandom otp can be
used to hide target with information-theoretic security.

• For HMAC-SHA1, the challenge value is chosen uni-
formly randomly in [0, 2160). If HMAC-SHA1 is secure,
challenge does not reveal key or response.

• For OOBA, the values of ct and pk do not reveal otp if
the public-key encryption method is IND-CCA secure.

9. Limitations

The first and most obvious limitation of MFCHF is
that it requires the use of one of the supported multi-
factor authentication methods. While MFA is increasingly
widely supported by a variety of online services, the rate
of voluntary adoption by end users has remained slow.
Thus, it must be emphasized that our solution is chiefly
targeted at services that already implement one of the
supported authentication factors, and will still only benefit
the subset of users who choose to enable MFA.

The above limitation is further evident in the recovery
setup of §5.2, which requires three independent factors. It
is already often the case that an online service supporting
one MFA factor (e.g., TOTP) will also allow for a lost
password to be recovered via another factor (e.g., Email
OOBA). Still, the need to establish multiple factors for
recovery may pose a barrier to the adoption of this method.

Another limitation is the need for a PKI in the OOBA
variant. For email, S/MIME [33] is a widely accepted
protocol that provides a PKI that can be used for this
purpose and is supported by the majority of modern email

software. This can be extended to SMS via the email-
to-SMS gateway services offered by most major phone
carriers [34]. However, not all email providers support
S/MIME, and not all phone carriers provide an email-
to-SMS gateway. Therefore, OOBA is the only MFCHF
variant that relies on features without universal support,
and some users, such as those using legacy mail clients,
will not be able to benefit from the OOBA construction.

With respect to the TOTP construction, one limitation
is the need to choose a large enough window of offsets
that a user does not lose access to their account if inactive
for long periods. The need to calculate a large number
of offset values is the reason TOTP has a higher setup
overhead than all other MFCHF variants in §7.1. As a
mitigating factor, we note that the calculation of offsets
in the TOTP construction occurs after the accept or reject
determination has already been made (see Alg. 3 in §E).
Thus, a service could opt to update offset values asyn-
chronously in the background after authenticating a user.

Finally, MFCHF fundamentally requires that all au-
thentication factors be verified simultaneously, rather than
being verified sequentially, as is often currently the case.
While this provides a marked security improvement by
preventing each factor from being individually attacked, it
could prove frustrating for a user who fails to authenticate
and is unsure which factor is incorrect. In the future, a
method that statistically determines which factor is wrong
could be used without losing much entropy in the process.

10. Failure Modes

Per our threat model (§3.4), the failure of an MFCHF
hash occurs if an adversary is able to reverse the hash
to obtain any of the underlying authentication factors.
Our security analysis argues that the only ways to defeat
an MFCHF hash are (1) to compromise the underlying
factors or (2) to perform a brute-force attack. Still, there
are several scenarios in which either may occur, even if
MFCHF is correctly implemented with secure primitives.

Clearly, if a combination of factors with insufficient
total entropy (such as a 6-digit OOBA factor and a 6-digit
HOTP factor) is chosen, brute-force attacks against the en-
tire input space may still be feasible. What is perhaps less
obvious is that even if a single factor is weak, the entire
hash may be attacked. For example, though an MFCHF
hash combining a password and HOTP factor may itself
be infeasible to crack, the compromise of the password
factor may allow the remaining factor to be defeated by
brute force. However, in such a scenario, the marginal
value of compromising the second factor is limited, as
HMAC secrets, unlike passwords, are rarely shared across
accounts. Still, the use of password strength requirements
and compromised credential checking remains essential.

Additionally, the “total data breach” threat model de-
scribed in §3.4 does not consider the risk of an ongo-
ing threat like undetected malware on the authentication
server. In the scenario where the server remains actively
compromised for long periods of time, authentication se-
crets can be stolen during the ephemeral period in which
they are decrypted upon user login. While still an improve-
ment over the typical method of storing HMAC, HOTP,
and TOTP keys in plaintext, this constitutes another poten-
tial failure mode in which factors become compromised.



Finally, it is expected that a system implementing
MFCHF is still only as secure as its underlying factors,
and these factors must be properly managed and protected.
For example, if an SMS device is vulnerable to a SIM-
swapping attack, then an mfchf-ooba6 hash utilizing that
device would be susceptible to compromise.

11. Related Work

Within the field of password hashing, there are no
known works describing hash functions that incorporate
common authentication factors like HOTP, TOTP, or Yu-
biKey (HMAC-SHA1) into the hashing process so as
to form a multi-factor credential hash. Instead, the vast
majority of research into attack-resistant password hashing
has focused on symmetric brute-force resistance, includ-
ing works such as PBKDF2 [17], bcrypt [32], scrypt
[28], yescrypt [29], and Argon2 [5] that provide vari-
ous degrees of hardware resistance. Other works, such
as Catena [12] and Lyra2 [35], emphasize resistance to
side-channel attacks. Finally, delegable password hashing
functions like Makwa [31] are designed to allow clients
to outsource computation power for password hashing to
untrusted third parties, thereby potentially increasing the
computational power available to the client.

The relative resistance of password hashing functions
to various hardware-enabled adversaries (e.g., CPU, GPU,
or ASIC-based threats) has been the subject of benchmark-
ing experiments [14]. However, we did not find any other
studies surveying the effect of these functions on the actual
rate of password disclosure across real data breaches.

With respect to multi-factor credential hashing, the
“factor constructions” of MFKDF [25] were the main
inspiration for the techniques of this paper. In MFKDF,
these techniques are applied on the client side to derive
a key for the purpose of end-to-end encryption, rather
than being used on the server side for credential hashing.
In particular, the authentication technique suggested by
MFKDF requires the establishment of a shared key, which,
unlike the techniques of this paper, would immediately
fail to provide secure authentication after a data breach
(although stored secrets would remain secure). Further-
more, the three-part scheme of MFKDF (SETUP, DERIVE,
and UPDATE) are simplified into a more efficient two-part
scheme (SETUP and VERIFY) in this work.

Prior to MFKDF, several works have proposed two-
factor key derivation based specifically on a password
and a YubiKey hardware token [8], [27]. Once again,
these works focus on client-side deployment for an end-
to-end encryption use case. Other than MFKDF, there are
no known prior works utilizing HOTP or TOTP for key
derivation, let alone credential hashing. While other works
have addressed using these factors for the related problem
of Multi-Factor Authenticated Key Exchange (MFAKE)
[21], [23], [30], this approach aims to establish a shared
key in the presence of man-in-the-middle adversaries
and does not provide brute-force resistance or protection
against a compromised server.

12. Future Work

12.1. Factors

Our focus in this paper was on those factors for which
constructions were provided in MFKDF, namely static fac-
tors (e.g., passwords and recovery codes), HOTP, TOTP,
HMAC-SHA1 (YubiKey), and out-of-band authentication
(OOBA) factors such as SMS and email. While support
for arbitrary factors based on MPC and trusted hardware
are possible, they were not included in this paper due
complicating the security model, but can be included in
future work. With respect to TOTP, future work should
emphasize reducing the size of data stored from the 219 kb
currently required. Finally, future research should investi-
gate the incorporation of factors not currently supported
by MFKDF, such as biometrics, geolocation, device fin-
gerprinting, behavioral authentication, and OIDC.

12.2. Features

Although the account recovery feature described in
this paper provides sufficient functionality for the vast
majority of systems, future work could take advantage of
the threshold and policy-based MFKDF variants for use
in systems with more advanced authentication policies.
Furthermore, future iterations of MFCHF should ideally
facilitate progressive deployment on systems that currently
use password hashing without requiring all passwords to
be reset. Lastly, future research could analyze the usability
impact of MFCHF, specifically with regard to the require-
ment to provide and validate all authentication factors
simultaneously. Mechanisms for mitigating this impact are
also worth investigating, though this requirement may, in
fact, be an inevitable trade-off of the MFCHF approach.
Specifically, as mentioned in §9, we would love to see
a feature that relinquishes a small amount of entropy to
probabilistically “hint” the user which factor is wrong in
the event that a login attempt fails to validate.

12.3. Applications

While we focus on the server-side use of MFCHF in
the client-server setting, future work should explore the
use of MFCHF in other applications, such as for user
authentication within operating systems. Crypt, the prede-
cessor to Bcrypt, was originally developed for password
hashing in Unix, so as to enable password-based authenti-
cation without storing passwords in plaintext. While using
authentication factors like HOTP within operating systems
would typically not have been feasible due to the need to
store an HMAC key, MFCHF can enable the secure use
of such factors for operating system authentication. The
potential use of MFCHF for authentication in networks
and decentralized systems should also be investigated.



13. Conclusion

With both the volume and severity of major informa-
tion security incidents continuing to experience exponen-
tial growth, password hashing has played an important
role in reducing the rate of credential disclosure (and thus
potential liability) resulting from a data breach. Indeed,
our analysis of over 4,000 actual data breaches containing
hashed credentials clearly demonstrates that the use of
salted and adaptive password hashing has a significant
effect on the rate of password disclosure not just in theory,
but also in practice. Still, while the majority of research
in this area has emphasized the use of adaptive hash
functions for symmetric brute-force attack resistance, the
low tolerance of users for added latency places an upper
limit on the applicability of this technique in practice.

Coinciding with the rise in large-scale data breaches is
the increased use of multi-factor authentication to combat
the threat of credential stuffing. We thus set out to create
a multi-factor credential hashing function that utilizes
the additional entropy provided by multi-factor authen-
tication to provide asymmetric resistance to brute-force
attacks. Our scheme emphasizes usability by supporting
common features like account recovery, desynchronization
windows, and factor persistence, while maintaining com-
patibility with popular, unmodified authentication factors
like HOTP, TOTP, and YubiKey that are already in use.

To demonstrate the practicality of MFCHF as a drop-
in replacement for password hashing, we produced a full
implementation of MFCHF using HOTP and evaluated its
deployment within a typical full-stack web application.
Our evaluation shows MFCHF to be dramatically harder
to brute-force attack, while having a low computational
overhead with negligible impact on setup and verification
time for a legitimate user. Overall, in systems where
MFA is already in use, MFCHF provides a compelling
value proposition over traditional password hashing by
improving brute-force resistance and post-breach security
with limited impact on usability or performance.

Availability

Our GitHub repository, which contains the source code
and data used to produce the results presented in this
paper, is available here: https://github.com/mfchf/paper
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Figure 11: Authentication screens for demo application.
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B. Specifications
For reproducibility, we include here the exact specifications of the device used for all benchmarking and evaluation
throughout this paper. We expect the general trends observed in the results to hold regardless of the hardware used.
• CPU: AMD Ryzen 9 5950X (16-core, 3.40 GHz)
• GPU: NVIDIA GeForce RTX 3090 (10496-core, 24.0 GB)
• RAM: 64.0 GB (2x32, 3200 MHz)
• SSD: 2.0 TB NVMe M.2 (PCIe Gen3x4, 3400 MB/s)

C. Hashmob Results

Hash Type Hashcat Mode # of Data Breaches % of Hashes Cracked Mean Crack Time
MD5 0 1553 71.13% (σ=35.57%) 7.6d (σ=36.1d)
vBulletin <v3.8.5 2611 406 63.54% (σ=27.65%) 8.0d (σ=38.5d)
vBulletin >= v3.8.5 2711 379 57.49% (σ=27.67%) 0.1d (σ=48.9d)
bcrypt 3200 283 12.37% (σ=19.86%) 71.2d (σ=89.3d)
phpass 400 214 32.52% (σ=30.02%) 1205.2d (σ=15189.7d)
SHA1 100 198 74.01% (σ=36.47%) 7.5d (σ=37.7d)
MyBB 1.2+ IPB2+ 2811 162 63.96% (σ=23.72%) 5.3d (σ=38.5d)
AuthMe sha256 20711 158 83.35% (σ=16.20%) 8.1d (σ=17.1d)
Django (PBKDF2-SHA256) 10000 85 15.84% (σ=18.67%) 54.5d (σ=74.0d)
md5(md5($pass)) 2600 81 71.24% (σ=30.94%) 4.2d (σ=20.4d)
osCommerce xt:Commerce 21 74 73.21% (σ=32.59%) 13.1d (σ=44.5d)
MySQL4.1/MySQL5 300 73 76.82% (σ=37.97%) 2.3d (σ=17.9d)
bcrypt(md5($pass)) 25600 54 24.46% (σ=20.51%) 351.9d (σ=72.7d)
md5(salt.pass) 20 48 67.73% (σ=29.34%) 10.9d (σ=80.3d)
WPA-PBKDF2-PMKID+EAPOL 22000 45 5.48% (σ=13.96%) 75.7d (σ=85.6d)
SHA2-256 1400 40 56.37% (σ=39.57%) 16.5d (σ=34.3d)
md5crypt 500 38 33.09% (σ=29.45%) 14.0d (σ=37.1d)
md5(pass.salt) 10 36 61.83% (σ=28.35%) 25.6d (σ=53.6d)
Joomla <2.5.18 11 32 60.54% (σ=36.14%) 36.5d (σ=47.6d)
NTLM 1000 31 36.94% (σ=36.45%) 23.2d (σ=51.1d)
SMF >v1.1 121 27 57.49% (σ=30.67%) 59.4d (σ=82.0d)
MySQL323 200 26 82.18% (σ=30.85%) 13.8d (σ=39.5d)
OpenCart 13900 25 37.61% (σ=21.86%) 36.9d (σ=56.7d)
sha1(salt.pass) 120 24 63.74% (σ=25.05%) 42.0d (σ=70.3d)
nsldaps SSHA-1(Base64) 111 22 16.32% (σ=7.30%) 143.0d (σ=38.4d)
Drupal7 7900 20 15.43% (σ=29.53%) 144.3d (σ=162.3d)
Django (SHA-1) 124 19 76.37% (σ=20.46%) 17.6d (σ=10.9d)
sha256(salt.pass) 1420 18 58.60% (σ=27.83%) 33.9d (σ=32.2d)
SHA2-512 1700 18 51.91% (σ=35.59%) 28.2d (σ=68.4d)
sha512(salt.pass) 1720 17 31.82% (σ=26.60%) 82.9d (σ=15.5d)
descrypt 1500 15 56.91% (σ=40.26%) 20.9d (σ=56.7d)
Ruby on Rails Restful Auth 27200 14 67.07% (σ=23.94%) 57.6d (σ=71.1d)
sha1(pass.salt) 110 12 40.88% (σ=39.77%) 40.8d (σ=106.7d)
sha256(pass.salt) 1410 12 40.00% (σ=31.05%) 38.8d (σ=58.0d)

TABLE 1: Summary of 4,259 data breaches on HashMob, excluding formats with ≤ 10 data breaches or 0 cracks.

D. Evaluation Results

Hash Type Attack Mode Cost Parameters Mean Verification Time Mean Crack Time
MD5 Hashcat 10 n/a 16.9 µs 26.91 ms
SHA1 Hashcat 110 n/a 21.1 µs 41.07 ms
SHA256 Hashcat 1410 n/a 10.6 µs 41.85 ms
SHA512 Hashcat 1710 n/a 10.2 µs 40.93 ms
PBKDF2-SHA2 Hashcat 20300 n=1000000 192.4 ms 5552.75 ms (≈ 5.5 s)
Bcrypt Hashcat 3200 c=12 190.3 ms 10071.5 ms (≈ 10 s)
Scrypt Hashcat 8900 n=32768, r=24, p=1 202.4 ms 35378.8 ms (≈ 35 s)
Argon2id John (argon2) m=4096, t=150, p=1 199.7 ms 2.69× 105 ms (≈ 4.5 min)
MFCHF-HOTP6 John (argon2) m=4096, t=150, p=1 201.6 ms 2.7× 1011 ms (≈ 8.6 yr)
MFCHF-TOTP6 John (argon2) m=4096, t=125, p=1 199.6 ms 2.3× 1011 ms (≈ 7.2 yr)
MFCHF-OOBA6 John (argon2) m=4096, t=135, p=1 200.9 ms ≈ ∞ (>10,000 yr)
MFCHF-HSHA1 John (argon2) m=4096, t=150, p=1 199.8 ms ≈ ∞ (>10,000 yr)

TABLE 2: Average verification and crack time for a variety of hash functions including MFCHF.



E. Algorithms

Algorithm 1 MFCHF with YubiKey (mfchf-hmacsha1)

Require: HS1 is HMAC-SHA1 per RFC 2014 [19]
Require: H is a password hash function (e.g., argon2)

1: function SETUP(password)
2: hmackey← Random(0, 2160)
3: challenge← Random(0, 2160)
4: salt← Random(0, 2256)
5: response← HS1(hmackey, challenge)
6: digest← H(password⊙ hmackey ⊙ salt)
7: paddedkey← hmackey ⊕ response
8: hash← {paddedkey, challenge, salt, digest}
9: return hash, hmackey

10: end function
11: function VERIFY(password, response, hash)
12: {paddedkey, salt, digest} ← hash
13: hmackey← paddedkey ⊕ response
14: expected← H(password⊙ hmackey ⊙ salt)
15: if digest ̸= expected then
16: return reject
17: end if
18: challenge← Random(0, 2160)
19: response← HS1(hmackey, challenge)
20: paddedkey← hmackey ⊕ response
21: hash← {paddedkey, challenge, salt, digest}
22: return accept , hash
23: end function

Algorithm 2 MFCHF with HOTP (mfchf-hotp6)

Require: HOTP is HOTP per RFC 4226 [38]
Require: H1 is a password hash function (e.g., argon2)
Require: H2 is a standard hash function (e.g., sha256)

1: function SETUP(password)
2: target← Random(0, 106)
3: hotpkey← Random(0, 2256)
4: salt← Random(0, 2256)
5: counter← 1
6: firstotp← HOTP(hotpkey, counter) % 106

7: offset← (target− firstotp) % 106

8: pad← H1(password⊙ target⊙ salt)
9: paddedkey← hotpkey ⊕ pad

10: digest← H2(pad)
11: hash← {counter, offset, paddedkey, salt, digest}
12: return hash, hotpkey
13: end function
14: function VERIFY(password, otp, hash)
15: {counter, offset, paddedkey, salt, digest} ← hash
16: target← (offset+ otp) % 106

17: pad← H1(password⊙ target⊙ salt)
18: if H2(pad) ̸= digest then
19: return reject
20: end if
21: counter← counter + 1
22: hotpkey← paddedkey ⊕ pad
23: nextotp← HOTP(hotpkey, counter) % 106

24: offset← (target− nextotp) % 106

25: hash← {counter, offset, paddedkey, salt, digest}
26: return accept , hash
27: end function

Algorithm 3 MFCHF with TOTP (mfchf-totp6)

Require: HOTP is HOTP per RFC 4226 [38]
Require: T, T0, TX are TOTP times per RFC 6238 [39]
Require: H1 is a password hash function (e.g., argon2)
Require: H2 is a standard hash function (e.g., sha256)

1: function SETUP(password,w)
2: target← Random(0, 106)
3: totpkey← Random(0, 2256)
4: salt← Random(0, 2256)
5: counter← ⌊(T − T0)/TX⌋
6: for j in [0 . . .w] do
7: otp← HOTP(totpkey, counter + j) % 10d

8: offsets[j]← (target− otp) % 10d

9: end for
10: pad← H1(password⊙ target⊙ salt)
11: paddedkey← totpkey ⊕ pad
12: digest← H2(pad)
13: hash← {counter, offsets, paddedkey, salt, digest}
14: return hash, totpkey
15: end function
16: function VERIFY(password, otp, hash)
17: {counter, offsets, paddedkey, salt, digest} ← hash
18: index← ⌊(T − T0)/TX⌋ − counter
19: target← (offsets[index] + otp) % 106

20: pad← H1(password⊙ target⊙ salt)
21: if H2(pad) ̸= digest then return reject
22: end if
23: counter← ⌊(T − T0)/TX⌋
24: totpkey← paddedkey ⊕ pad
25: for j in [0 . . .w] do
26: otp← HOTP(totpkey, counter + j) % 10d

27: offsets[j]← (target− otp) % 10d

28: end for
29: hash← {counter, offsets, paddedkey, salt, digest}
30: return accept , hash
31: end function

Algorithm 4 MFCHF with OOBA (mfchf-ooba6)

Require: (Enc,Dec) is public-key encryption
Require: H is a password hash function (e.g., argon2)

1: function SETUP(password, pk)
2: target← Random(0, 366)
3: firstotp← Random(0, 366)
4: offset← (target− firstotp) % 366

5: salt← Random(0, 2256)
6: digest← H(password⊙ target⊙ salt)
7: ct← Enc(firstotp, pk)
8: hash← {ct, pk, offset, salt, digest}
9: return hash

10: end function
11: function VERIFY(password, otp, hash)
12: {pk, offset, salt, digest} ← hash
13: target← (offset+ otp) % 106

14: expected← H(password⊙ target⊙ salt)
15: if digest ̸= expected then return reject
16: end if
17: nextotp← Random(0, 366)
18: offset← (target− nextotp) % 366

19: ct← Enc(nextotp, pk)
20: hash← {ct, pk, offset, salt, digest}
21: return accept , hash
22: end function
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