
An Unbiased Transformer Source Code Learning with
Semantic Vulnerability Graph

Nafis Tanveer Islam1, Gonzalo De La Torre Parra2, Dylan Manuel1

Elias Bou-Harb1, Peyman Najafirad1, *

1University of Texas at San Antonio, 2University of the Incarnate Word
1nafistanveer.islam@utsa.edu, 2gdparra@uiwtx.edu, 1dylan.manuel@my.utsa.edu,

1elias.bouharb@utsa.edu, 1peyman.najafirad@utsa.edu

Abstract—Over the years, open-source software systems have
become prey to threat actors. Even highly-adopted software
has been crippled by unforeseeable attacks, leaving millions
of devices exposed. Even as open-source communities act
quickly to patch the breach, code vulnerability screening
should be an integral part of agile software development
from the beginning. Unfortunately, current vulnerability
screening techniques are ineffective at identifying novel vul-
nerabilities or providing developers with code vulnerability
and classification. Furthermore, the datasets used for vul-
nerability learning often exhibit distribution shifts from the
real-world testing distribution due to novel attack strategies
deployed by adversaries and as a result, the machine learning
model’s performance may be hindered or biased. To address
these issues, we propose a joint interpolated multitasked
unbiased vulnerability classifier comprising a transformer
”RoBERTa” and graph convolution neural network (GCN).
We present a training process utilizing a semantic vul-
nerability graph (SVG) representation from source code,
created by integrating edges from a sequential flow, con-
trol flow, and data flow, as well as a novel flow dubbed
Poacher Flow (PF). Poacher flow edges reduce the gap
between dynamic and static program analysis and handle
complex long-range dependencies. Moreover, our approach
reduces biases of classifiers regarding unbalanced datasets by
integrating Focal Loss objective function along with SVG.
Remarkably, experimental results show that our classifier
outperforms state-of-the-art results on vulnerability detec-
tion with fewer false negatives and false positives. After
testing our model across multiple datasets, it shows an
improvement of at least 2.41% and 18.75% in the best-
case scenario. Evaluations using N-day program samples
demonstrate that our proposed approach achieves a 93%
accuracy and was able to detect 4, zero-day vulnerabilities
from popular GitHub repositories. Our code and data are
available at https://github.com/pial08/SemVulDet

1. Introduction

Threat actors exploit source code vulnerabilities us-
ing some of the same sophisticated techniques used in
high-level cyberattack campaigns. In many cases, vul-
nerabilities are introduced by software developers using

. * Corresponding Author

code snippets from open-source solutions, such as Stack
Overflow and GitHub. With insufficient vulnerabilities,
new software releases can be high risk. IBM [1] findings
suggest software vulnerabilities cost businesses an average
of 3.9 million dollars annually; meanwhile, Common Vul-
nerabilities and Exposures (CVE) [2] reported that 6,015
new CVEs were added during the first quarter of 2022,
a 36% increase compared to 4,415 CVEs published in
the first quarter of 2021. These reports demonstrate the
ubiquity of these vulnerabilities and the importance of
detecting and classifying them in large-scale applications.

Detecting vulnerabilities in large-scale programs at an
early stage in software development is both a challenge
and priority for software developers [3]. Most software
developers are experts at writing code, however, they are
not always well-versed in software security [4], [5]. A re-
cent zero-day exploit ”Log4Shell” was announced against
the Apache log4j library [6], the magnitude of which
was unlike any other. Given the large adoption of this
Java logging library, threat actors had ripe opportunity to
take control of web-facing servers, and even services not
connected directly to the internet, by permeating malicious
code to back-end software running Apache Log4j ver-
sions. To prevent such cases, vulnerability classifiers can
be enhanced to support developers, whether or not they are
experts in security. Existing classifiers [7]–[9] have been
proposed for vulnerability detection in code snippets at
an early stage of software development. However, these
detectors only provide information on whether or not a
vulnerability exists in a particular code snippet, but no
information is provided regarding the categories of their
vulnerabilities.

The vulnerability distribution of real-world production
software is imbalanced, as benign source code is released
more frequently than vulnerable source code. According
to Chakaraborty et al. [10], the suboptimal performance
of current deep learning techniques in predicting real-
world software vulnerabilities is attributed to training data
imbalance and models. To address this issue in training
datasets, several techniques such as data augmentation and
syntactic data creation have been employed to mitigate the
training data imbalance problem [11], [12]. Although bal-
anced training datasets through syntactic data generation
are crucial, but they do not typically reflect the distribution
shifts that are likely to cause from real-world. According
to Geirhos, distribution shifts are underrepresented in the

ar
X

iv
:2

30
4.

11
07

2v
1

 [
cs

.C
R

]
 1

7
A

pr
 2

02
3

https://github.com/pial08/SemVulDet

datasets widely used in the ML community today [13].
This impacts the performance of the model in predicting
real-world vulnerabilities such as N-day and zero-day.

Recent graph creation techniques such as AST [14]
and Code Property Graph (CPG) [7], [15], [16] are highly
effective at detecting source code vulnerabilities. Even so,
they have some bottlenecks. For example, neither AST
nor CPG can capture the information when a variable
is used out of its scope (when the variable is freed),
since this is syntactically correct and only produced during
the execution of a program. Similarly, when a divide-by-
zero vulnerability occurs, it is exposed during program
execution and is therefore also syntactically correct. In
addition, current graph generation techniques [7], [14] fail
to capture the long-range dependency of a variable. AST
and CPG generate nodes and edges per statement, thus
ignoring the long-range dependency between two faraway
statements. Simply put, these graph-creation techniques
fail to capture relatively simple yet high-frequency vul-
nerabilities, either because they occur during execution, or
because of a lack of long-range dependency information.

Long-range dependency [17] [18] is a major chal-
lenge in vulnerability detection. A long-range dependency
may be caused by a variable declared at the beginning
of a function, but the vulnerability associated with that
variable may only appear after a few hundred lines of
code. Several transformer-based works were previously
proposed to address the detection of vulnerabilities in
source code [19] [9]. One major bottleneck observed in
transformers is learning these long-range dependencies. A
couple of works –namely, Longformer [20] and Linformer
[21], propose approaches for long-range modeling inputs
beyond this limit. Since a function could sometimes be a
few hundred lines, these models still fail to capture these
long-range dependencies.

In this work, we propose a semantic vulnerability
graph (SVG) featuring a rich set of edges capturing
semantic and syntactic information, including our novel
poacher flow edges to address a variable’s information and
long-range dependencies during execution time. SVG in-
tegrates sequential flow for syntactic understanding of the
program, data flow to capture how data flows among vari-
ables, and a control flow Graph to capture the general flow
of statements. Poacher flow edges allow the integration
of semantic information of source code like long-range
dependencies, out-of-scope use of a variable, and divide-
by-zero vulnerabilities, by generating extra edges between
variables that can potentially bridge the gap between static
and dynamic program analysis.We propose a transformer
and graph neural network-based vulnerability classifier
dubbed Multitask RoBERTa-PFGCN that includes a large-
scale pre-trained RoBERTa [22] on C/C++ source code
and utilized Focal Loss (FL) [23] to handle data imbal-
ance issues.Moreover, we propose our new dataset with
real-world example functions. Then, by jointly training
RoBERTa and GCN modules, our proposed model learns
node embeddings using a large-scale Multitask RoBERTa-
PFGCN by propagating edge influence through a graph
convolution network. The contributions of this paper can
be summed up as follows:

• We propose a unique set of edges dubbed poacher
flow edges, such that each of these edges is asso-

ciated with a set of vulnerabilities. We defined our
semantic vulnerability graph (SVG) representation
of source code by unifying our introduced poacher
flow edges with control, data, and sequential flow
edges for vulnerability classification. To the best of
our knowledge, we are the first to propose poacher
Flow edges, where edges are associated with a
particular set of potential vulnerabilities.

• We propose a joint interpolated multitask unbiased
vulnerability classifier comprising a transformer
”RoBERTa” and graph convolution neural net-
work (GCN) with Poacher Flow (PF) edges called
RoBERTa-PFGCN, trained using the Focal Loss
function to address data imbalance issues. Ad-
ditionally, RoBERTa-PFGCN provides description
and explanation for addressing each vulnerability
category. To complement this, we created a large-
scale dataset called Vulnerability Finder (VulF)
dataset, which contains vulnerability descriptions
related to 40 CWE categories.

• We further investigated the effectiveness of our
vulnerability classifier by utilizing our proposed
dataset VulF and four real-world, large-scale
C/C++ vulnerability datasets, including ReVEAL,
FFMpeg+Qemu, D2A and MVD. Our experimen-
tal results show that our vulnerability classifier
outperforms the state-of-the-art results on vulner-
ability detection with fewer false negatives and
fewer false positives.

2. Related Work

Earlier works on source code vulnerability detection
prominently rely on rule-based systems. Engler et al. [24]
propose a technique to automatically extract rules from
source code without prior system knowledge. One such
rule would be that the declaration of spin lock must be
followed by spin unlock in a C/C++ code to work flaw-
lessly. The simultaneous occurrence of these two state-
ments takes place 99% in non-vulnerable code. If these
statements do not appear in pairs, it is an indication of a
security flaw. Essentially, these systems work by creating
a rule template for a system. Based on this hypothesis,
the authors implemented six checkers, or rules, to identify
bugs in code. Founded on this idea, several static analysis
based tools like Flawfinder [25], RATS [26], Cppcheck
[27], Coverity [28], Infer [29] have been proposed, built
on a set of predefined rules to cover a wide range of
code vulnerabilities. Since these are rule-based, the rules
of these static analyzers need to be updated when a new
vulnerability arises and these tools are affected by high
false-positive and false-negative rates [30].

The work presented by Lin et al. [31] demonstrates
how traditional machine learning (ML) methods offer an
alternative to automated vulnerability discovery. In con-
trast to ML-based vulnerability detection, deep learning-
based techniques [32] offer additional possibilities and
generalizability. VulDeepecker [33] proposed detecting
vulnerabilities using Bi-LSTM and pre-processed source
code by generating Code Gadget. According to the au-
thors, a Code Gadget is a collection of data and control
dependency statements. µVulDeepecker [34] proposed a

2

multiclass vulnerability classification method using Bi-
LSTM. They classified 40 types of vulnerability, with each
type tied to a CWE [35]. Furthermore, Russell et al. [36]
and Li et al. [37] proposed a TextCNN based approach
to detect vulnerabilities from source code. Their proposed
approach considers each token as a word embedded to
feed a Convolutional Neural Network for training and
inference. In recent years, machine learning and deep
learning techniques have also been used to detect vul-
nerabilities in IoT devices [38].

Each of these works considered source code as an
analog to natural language, with some limitations in cap-
turing the correct representation of a source code. Since
source code is more structured and logical, Bilgin et
al. [14] proposed an AST as a representation technique
to detect vulnerability using machine learning. In this
approach, the code is converted to an AST. Afterward,
to keep the structural information of the code intact, the
original AST is converted into a binary AST. The binary
AST is flattened using BFS with a CNN for feature
generation and classification. Several studies [39], [40],
[32] including SySeVR [8], proposed a similar AST based
approach with the use of LSTM, Bi-LSTM, or BGRU
based methods. VulBERTa [41] RoBERTa [42] and [43]
used a transformer-based model to detect vulnerability
from source code.

Although these methods consider using AST to cap-
ture the syntactical information of a programming lan-
guage, these are eventually flattened to feed an encoder
that yields the desired vulnerability semantic features.
Thus, the original graph syntactics are suppressed. To
address this issue, Devign [7] proposed using and preserv-
ing the structure of Code Property Graphs (CPGs) [15] a
combination of AST, data and control flow graph, and
natural code sequence by using a GGNN [44] combined
with a 1d CNN layer to generate the final embeddings
for classification. Chakraborty et al. [10] have proposed
a similar method that makes use of CPGs as an input
for training a GGNN [44]. ReGVD [45] and LineVD
[46] proposed a GCN-based technique for vulnerability
detection by creating a graph representation of the source
code, and GraphCodeBERT [22] as a tokenizer. Moreover,
VELVET [19] proposed an ensemble RoBERTa and Gated
Graph Neural Network to detect vulnerabilities. Each of
these techniques offer vulnerability detection at a function
or file level, which is not ideal from a programmer’s
perspective. To address this issue, [47], [48] and [49]
proposed a method that identifies statements contributing
to a vulnerability in order to achieve finer granularity in
locating vulnerabilities.

Generating a proper graph representation of a program
is significant for program analysis [50]. Other works
found in the literature have proposed an AST-based graph
representation for code [51]–[53]. Allamanis et al. [51]
make use of data flow edges with the original AST graph
representation. Alon et al. [54] and [55] have proposed
using ASTs with an attention-based network to generate
program representation. TYPILUS [56] proposed a graph-
based representation similar to [51], with the addition of
some new edges to predict variable type in a dynamic
language. CodeBERT [57] learns to represent general-
purpose representations for programming languages, while
GraphCodeBERT [22] and UniXcoder [58] proposes AST

1 void host_lookup(char *user_supplied_addr){
2 struct hostent *hp;
3 char hostname[64];
4 hp = gethostbyaddr(addr, sizeof(struct in_addr),
5 AF_INET);
6 strcpy(hostname, hp->h_name);
7 }
Vulnerability: Out-of-bounds Write; The software writes data past the end, or
before the beginning, of the intended buffer.

CWE-787

Figure 1: Example of a vulnerability explanation as part
of an automated code review process to help developers
effectively resolve static software security issues.

graph representation techniques for various programming
language-related tasks like code-clone detection, code
summarizing, and code translation.

To the best of our knowledge, the proposed RoBERTa-
PFGCN is the first attempt for code graph representation
using programming language structure (data flow, control
flow, and sequential flow) combined with Poacher Flow
edges to bridge the gap between dynamic and static
analysis of a code to improve the performance of code
vulnerability understanding.

3. Multitask Vulnerability Definition

Threat Model: We consider two types of software
developers: (1) adversaries as potential developers who
share vulnerable source code or code snippets on online
developer collaboration platforms such as StackOverflow,
GitHub, or SourceForge; and (2) developers who leverage
vulnerable code discovered on online developer collabora-
tion platforms and incorporate it into their software devel-
opment projects with minor changes. The adversaries can
share functions that have possible attack scenarios, such
as Remote Code Execution, Buffer Overflow, and Infor-
mation Leakage to exploit source code vulnerabilities and
take control of the system/application, steal data, or launch
further attacks. We aim to detect these vulnerabilities early
in the development process. Therefore, our approach uses
static code analysis to identify code vulnerabilities before
execution. Since we are doing a static code analysis, our
decision is solely based on the analysis of source code
only. Moreover, our system takes external input into con-
sideration during vulnerability analysis. The attack surface
may include input function validation, access control, code
injection, and configuration management.

A variety of vulnerability detectors, such as the work
presented in [32], perform vulnerability classification at
a file-level granularity. In contrast, other tool-based ap-
proaches, including Cppcheck and Coverity, depend on
a fully compiled or syntactically correct code to run a
vulnerability analysis. Despite the advancements proposed
in these works, they are language-dependent approaches
that cannot be generalized to other programming lan-
guages and most of them need a fully compiled program
to work correctly. We are proposing a generic solution
without imposing any constraints on the input language
programming function. In Figure 1 we present a sample
function with its output at the bottom.

A formal problem definition is presented as follows:
a source code function and its label pair are defined

3

as {(si, vi)|si ∈ S, vi ∈ V } and i ∈ {1, 2, 3, ..., n},
where S denotes the set of functions that may or may
not be compilable as a standalone program, si denotes
each function, n denotes total number of functions, and
V = {0, 1} denotes the set of labels corresponding to each
function, where the subset of vulnerable code is labeled
as V = 1 and the subset of non-vulnerable code is labeled
as V = 0.

We further extended the functionality of our model
to provide a vulnerability classification to the developer.
Thus, we define our function and classification pair as
{(si, ck)} such that ck ∈ C and k ∈ {1, 2, 3, ..., n}.
C = {c1, c2, ...ck} denotes the set of description of
the vulnerable function si, where k is the total number
of descriptions that our vulnerability classifier can pro-
vide.Finally, a pre-processing pipeline converts functions
si into embeddings using a token embedding generator
ÊR such that,

ei = ÊR(si) (1)

Thus, the set of all embedded tokens of a code is
defined as E = {e1, e2, ..., en}. We map embedding E
with vulnerable code samples V , and classification C such
that, h1 : E ⇒ V and h2 : E ⇒ D. Therefore, our
vulnerability classification h1 function with loss function
L1(.) is formally defined as:

L1 =

n∑
i=1

(h1(ÊR(si), vi|si)) (2)

Similarly, we define our vulnerability description func-
tion h2 with loss L2(.) :

L2 =

n∑
i=1

(h2(ÊR(si), ci|si)) (3)

The overall loss function stands as:

L = L1 + L2 + λ
1

2
||wi||2

Our multitask vulnerability detection function learns
to detect and provide vulnerability classification by mini-
mizing the loss L. Here, wi is an adjustable weight learned
during training and λ is a regularization hyperparameter
[59].

In our work, we broadly address the following three
Research Questions (RQs):

RQ1: Based on our proposed SVG representation, can
the classifier learn to identify and provide CWE Numbers
of vulnerabilities in real-world source code?

RQ2: Can our classifier learn vulnerabilities in a
biased setting?

RQ3: Is our classifier generalized enough to detect
vulnerabilities in N-day and zero-day program samples?

4. Methodology

Current graph-based models like CPG and AST gen-
erated by tools such as Joern [60] provide a significant
amount of information to detect vulnerabilities in a pro-
gram. However, runtime vulnerabilities may arise due to
the dynamic behavior of program during execution and

assignments. Figure 1 depicts a declaration of a variable
hostname (line 3) and its usage (line 6). Although CPGs
provide sufficient information regarding the token depen-
dencies of a graph through data flow, there is no guarantee
that the hostname in this case won’t be longer than 64
bytes. Furthermore, training a transformer-based model
with token sequences from source code is limited given
that: 1) code follows a strict syntactic structure compared
to the structures found in natural languages, 2) a code’s
execution time output may produce different behaviors
for different input and memory states, and 3) long-range
dependencies are commonly found in source code.

In order to address these problems, our proposed ar-
chitecture is composed of three main modules, namely: 1)
Semantic Vulnerability Graph of a software program, 2)
SVG Node Embedding using RoBERTa, and 3) Multitask
RoBERTa-PFGCN. Figure 2 provides an overall architec-
ture of all the mentioned components.

4.1. Semantic Vulnerability Graph of a Program

Our proposed graph representation of a program is de-
noted as Semantic Vulnerability Graph (SVG). Our SVG
is produced via an aggregation of sequential flow edges,
control flow edges, data flow edges, and poacher flow
edges, a novel edge representing a vulnerability relation-
ship that provides richer information for capturing vulner-
ability. Each aforementioned element is derived from the
same source code. The remaining parts of this subsection
provide detailed information on each component used to
generate the SVG.

Node Generation Using Tokenizer. A token is a
series of characters separated by spaces or punctuation
marks generated by a tokenizer. Tokens may take the
form of words, integers, real numbers, or a combination
of these. However, tokens differ slightly when they are
used in Programming Language Processing problem. In
programming language, tokens may come in the form
of camelCasing or snake casing. Consider an example
of the token get item. In Natural Language Processing,
the tokenizer will separate the word into two tokens, get
and item. However, this combination is treated as a single
token since the input is a code. Moreover, other symbols
(such as parenthesis, semicolons, etc.) are considered as
a single token. Each of these tokens are used as a node
of our SVG. When we tokenize our code, it generates
three features for each token, the original token itselt, its
position, and the token type.

Adjacency Matrix Definition. Let us consider
that a graph has an adjacency matrix A where m and
n are some arbitrary nodes in the graph and edges are
the connection between two nodes. Thus, our adjacency
matrix is defined as:

Am,n =

{
1 if edge exists

0 Otherwise

where A = 1 indicates an edge exists between two
arbitrary nodes m and n and A = 0 indicates otherwise.

Data Flow Edges. Show the usage and modifica-
tion of a variable [7]. Data flow edges are defined as a
connection between two variables dependent on each other
during value assignment or modification or other usage.

4

Void host_lookup(char *user_supplied_addr)
{

struct hostent *hp ;
char hostname[64] ;

hp = gethostbyaddr();
strcpy(hostname,hp->h_name);

}

Tokenizer
“ET”

Generate
Semantic

Vulnerability
Graph(SVG)

A*

RoBERTa
Encoder

“ER”

t1

t2

tn

T

e1

e2

en

E

Vul.
MLP

Desc.
MLP

GCN Layer 1

GCN Layer 2

+

RoBERTa Node Embedding
Combined with SVG Graph

Vulnerable

Out-of-bounds
Write

Figure 2: Overall Architecture of our Classifier: Our classifier is divided into three parts. Initially, the input source code
is pre-processed by creating an SVG. Then RoBERTa layer generates embedding for each token/node of the graph.
Finally, the GCN layer takes the node embedding and adjacency matrix for feature generation. Focal Loss forces the
model to learn more about the minority class. The MLP layer decides whether a function is vulnerable by leveraging
the Focal Loss Function.

Some other usage of the variable may include variable
definition, initialization, update, or alteration.

Control Flow Edges. Illustrate the statements or
operations executed throughout the program [7]. The al-
ternate execution of statements may be determined by
conditional statements (e.g., if/while/switch).

Sequential Flow Edges. Demonstrate the syntactic
relationship between the tokens of a program inspired
from [61], [62]. Sequential flow edges show the connec-
tion of a token with its neighboring tokens. To generate
this edge, we create an edge from a token with its sub-
sequent neighboring tokens. The number of subsequent
tokens the initial token is connected to is determined
during the experiment.

Poacher Flow (PF) Edges. We defined Poacher
Flow edges to bridge the gap between dynamic and static
analysis of source code. As opposed to programming
language structure (data flow, control flow, and sequential
flow), PF edges are meant to identify program boundaries,
potential corner cases, and external checkpoints. This is
accomplished by considering the external environment
context in which the program operates, including insecure
input handling, the use of unsafe functions, SQL injection,
or unauthorized code execution that have just recently
been discovered by the CWE community in programs of
a similar nature. Our goal is to bridge the gap between
dynamic and static analysis of a program by using PF
edges. Specifically, PF edges serve as a connection be-
tween the knowledge and patterns learned stochastically
from known existing vulnerability patterns using labeled
data by incorporating PF edges into the machine learning
training procedure. We have identified three categories of
PF edges: data processing edges, access control edges,
and resource management edges. Each edge of these
edge categories is discussed in detail in the subsections
below. In addition, Algorithm 1 presents the approach for
generating all the elements of Poacher Flow Edges.

Data Processing Edge: Data processing vulnerabil-
ities are the most common types during the software
development stage. For example, Out-of-Bounds Read is
ranked 1 out of the top 25 vulnerabilities from 2022

[35]. Data flow edges are useful for capturing the flow
of data, but may not be sufficient for capturing com-
plex data operations, such as memory pointer arithmetic.
Additionally, when data manipulation involves APIs such
as (strcpy, read, and write), data flow edges may fail to
capture this information. The data processing edge is an
extension to the existing data flow graph, which estimated
the potential outcome of various mathematical operations,
illegal memory issues, and unsafe API execution, pointer
arithmetic. For instance, estimating divide by zero, using
an uninitialized variable or using unsafe APIs like gets()
in C/C++.

Access Control Edge: According to the Open Web
Application Security Project (OWASP), software and data
integrity failures are ranked among the top ten web appli-
cation security risks [63]. These attacks take advantage
of improper neutralization of special elements in web
page output. While programming language structures (data
flow, control flow, and sequential flow) cannot discover
these vulnerabilities, access control edges can be utilized
to address this issue. These edges correspond to external
program calls, including application configuration settings
that may not be present in the application’s source code,
such as passing untrusted data as arguments. Other edges
include improper control over code generation and im-
proper neutralization of special elements used in SQL
commands. By performing conditional edge checks, it
is possible to prevent malicious actors from passing un-
trusted data as arguments.

Resource Management Edge: Software vulnerability
may occur when resources are not adequately managed
including when a buffer copy is executed without verify-
ing input size, incorrect array index validation, resource
exhaustion, utilization of memory after an uncontrolled
allocation or incomplete cleanup, or incorrect synchro-
nization of resources within an exclusive operation such as
semaphore. These scenarios can be captured by Resource
management edges, which can make the classifier aware
of potential inadequate resource management operation.

Combining the Edges as SVG. Each edge type is
critical for finding vulnerabilities in a function. Data flow

5

void graphedgeCreate

free

;

(

}

()

Graph) {

;

() ;graph

()1 , 2

graph.createGraph

graph.createGraph

Figure 3: Depiction of our SVG. Each gray box shows individual tokens of our SVG. The red line depicts a poacher
flow edge, the black line depicts data flow edges, the blue line depicts control flow edges and the gray line depicts
sequential flow edges.

edges (black edges), shown in Figure 3 identify the flow
of data for each variable; control flow edges (blue edges)
are responsible for the overall flow of programs; sequential
flow edges (gray edges) shows the syntactic relationship
between the tokens of the program; lastly, Poacher Flow
edges (red edges) are meant to bridge the gap between
dynamic and static analysis of code by generating edges
related to program boundaries, corner cases, and external
checks. The SVG is constructed through the combination
of data flow, control flow, sequential flow, and poacher
flow edges. SVG produces richer semantic and syntac-
tic information necessary for vulnerability detection and
classification. Figure 3 presents an example of an SVG
composed of 68 edges in total, including 61 sequential
flow edges (gray edges), 3 data flow edges (black edges),
3 control flow edges (blue edges), and 1 Poacher Flow
edge (red edge).

4.2. SVG Node Embedding using RoBERTa

SVG Node Embeddings. RoBERTa [42] is used
to generate embeddings for each token in our graph.
RoBERTa was built upon BERT [64], in which the system
learns to predict purposefully masked text within unan-
notated language examples. RoBERTa modifies critical
hyperparameters in BERT, such as deleting BERT’s next-
sentence pre-training target and training with significantly
larger minibatch sizes and learning rates. This pre-training
technique allows RoBERTa to outperform BERT in terms
of the masked language modeling objective and improves
the performance of subsequent tasks. However, to tokenize
and initialize the node embeddings, a pre-trained variant
of RoBERTa presented in GraphCodeBERT [22] is used
for source code representation on C/C++. The classifier
makes use of word embeddings generated by RoBERTa
and embeddings generated by a GCN model fed with
heterogeneous SVG. The embeddings E generated by the
pre-trained RoBERTa encoder are as follows:

E = ÊR(T)

Here, the set of tokens T , where ti ∈ T, i = 1, 2, ..., n, is
the set of n tokens in SVG that are used as the input for
the RoBERTa encoder ÊR.

Afterward, an adjacency matrix Am,n is created by
using the set of tokens, T , and the connections observed
between tokens following our SVG. After this step, the
adjacency matrix is converted into a heterogeneous multi-
edged graph G(T,E,A), where E ∈ Rd is the d dimen-
sional embedding or feature vector of each token t in the
graph. While different edge types compose our SVG, only
a single adjacency matrix is used to represent all the edges
where a value of 1 is set if any of the edges exist between
two tokens and 0 if the edges do not exist.

4.3. Multitask RoBERTa-PFGCN

In an SVG, the existence of specific edges could serve
as indicators of the existence of vulnerability. Graph con-
volution networks (GCN) are designed to comprehend the
edge connection between two nodes. GCN is used to cap-
ture the relationship between the elements of G(T,E,A)
that are essential for vulnerability detection. GCN is com-
posed of two layers that aggregate vector representations
of a node from its neighbors with a residual connection.
GCN is formulated as follows:

H (n + 1) = σ

(
WnHnA∗

)
(4)

where Wn represents the weights at n-th layer during
training and Hn is the feature representation of nodes at
n-th layer. Thus, H (0) = E while A∗ is the normalized
adjacency matrix. Matrix multiplication is done on Wn,
Hn, and A∗, which goes through an activation function σ
(e.g., ReLU).

The values in the adjacency matrix A are normalized
to prevent numerical instabilities, such as vanishing or
exploding gradients, that might prevent the model from
converging into an optimal solution. The adjacency matrix
is normalized using the method proposed by Kipf et al.
[65], which performs an inverse dot product operation for
normalization. Let us consider D̂ as the diagonal node

6

Algorithm 1 Generating Poacher Flow Edges

Input: Source Code
Output: Poacher Flow Edges

1: procedure POACHER EDGES(code)
2: tokens← Tokenizer(code)
3: asst operators← [=,+ =,− =, <<=, ...]
4: adj matrix← [][]
5: stack ← []
. Dictionary Initialized

6: scope← {}
7: for token in tokens do
. Data Processing

8: if token.type in asst operators then
9: left← getPrevToken(token)

10: right← getNextTokens(token)
11: adj matrix[left][right]← 1
12: end if
13: if token.type is ”API” then
14: params← getParameters(token)
15: adj matrix[token][params]← 1
16: end if

. Access Control
17: FunParams← getFuncParams()
18: if token.type is ”execution” then
19: if token is not checked before asst then
20: next← getNextToken(token)
21: if next is subset FunParams then
22: adj matrix[token][next]← 1
23: end if
24: end if
25: end if

. Resource Management
26: if scope[token] is end then
27: adj matrix[”free”][token]← 1
28: end if
29: stack.push(token)
30: if pairMatch(token) then
31: pair token← stack.pop()
32: end if
33: if token is ”free” then
34: next token← getNextToken(token)
35: scope[next token]← end
36: end if
37: end for
38: return adj matrix
39: end procedure

degree matrix such that, D̂ij =
∑

j Aij. The degree matrix
of a graph is a diagonal matrix that records the degree
of each vertex or the number of edges that connect each
vertex to another vertex. D̂ also contains information
about the number of edges attached to each vertex. The
normalized adjacency matrix is computed as:

A∗ = D̂-1.A

which is equivalent to:

A∗ = D̂
−1
2 .A.D̂

1
2

According to the authors in [65], the latter formula is used
for better normalization.

Residual Connection. In the work presented by
He et al. [66], a residual connection is used to propagate
feature representation learned from the (Hn) layer to the
next layer (Hn+1) by allowing gradients to pass directly
from one layer to the next without encountering a vanish-
ing or exploding gradient problem. By adding the residual
connection, our model is redefined from Equation 4 as:

H (n + 1) = Hn + σ

(
WnHnA∗

)
(5)

After this, two dense parallel layers are added. The
first layer consists of two neurons that provide the out-
come for vulnerability detection. The second layer con-
sists of 41 neurons that indicated the vulnerability de-
scription associated with the detected vulnerability.

Loss Function. Vulnerability in a real-world set-
ting appears highly imbalanced. As a consequence, non-
vulnerable code highly outnumbers vulnerable code, thus
a classifier is always biased toward the majority class. As a
result, usual loss function like CrossEntropyLoss provides
higher false-positive and false-negatives. We employ Focal
Loss [23] to rectify the class imbalances of our datasets.
Without this approach, our model would learn biases
towards non-vulnerable samples, drastically affecting our
classification performance. The Focal Loss is denoted
based on cross-entropy (CE) loss for binary classification
problems as:

CEp, y =

{
− log(p) if y = 1

− log(1− p) otherwise,

where y = {0, 1} denotes the ground truth provided to
the classifier during the training process and p = {0, 1}
is the models output probability for the class y = 1, for
binary classification. However, we expanded this for mul-
titask classification as well. For convenience, probability
distribution pt is defined as:

pt =

{
p if y = 1

(1− p) otherwise,

Focal Loss integrates a weighing factor α ∈ [0, 1] and
defines the mathematical expression of Focal Loss for a
binary classification problem. Thus, the balanced CE loss
can be rewritten as:

CE(pt) = −α log(pt) (6)

Vulnerability classification without the loss function
shows that the classifier can be confused by the majority
class, which also dominates the gradients. Although α
balances majority and minority examples, it does not
differentiate between easy (positives/negatives samples
that are predicted as positive/negative) and hard exam-
ples (positives/negatives samples that are misclassified as
negative/positive). To overcome this issue, a modulating
factor δ is used with the cross-entropy loss to down-weight
easy examples, which forces the model to be trained
more precisely on hard negatives. By combining weight
balance and Focal Loss, our final Focal Loss function from
Equation 6 is defined as follows:

FocalLoss(pt) = −α(1− pt)δ log(pt) (7)

7

Where, γ is an adjustable parameter and γ ≥ 0.
Figure 3 shows the overall architecture of our proposed
vulnerability classifier.

Complexity analysis. Algorithm 1 provides the
order of logics to create our graph. Given a sample code as
input, RoBERTa Transformer is used to tokenize the code
snippet to generate n tokens. Thus, the time complexity
to generate n tokens is O(n). In order to generate each
Poacher Flow edge, the tokens are iterated once and all
edges are created in a single pass. We generated data flow,
control flow, and sequential flow edges in a single pass
by iterating over n tokens, hence the time complexity is
O(n). As a result, the overall time complexity to generate
our complete SVG is O(n). However, other graph-based
analysis [58] [22] [7] consist of generating an AST, which
can be very time consuming. For example, for the same
program with n tokens, the time complexity to insert a
single token into an AST is O(log n) on an average case
when the tree is balanced. However, when the tree is
imbalanced, the time complexity to insert a single element
is O(n). Thus, the time complexity to generate an AST
by inserting n elements in a balanced tree is O(n log n)
and in an imbalanced tree is O(n2), which is much higher
than our proposed SVG.

5. Experiments And Discussions

Our experiments were conducted using highly bal-
anced, mildly unbalanced, and highly unbalanced datasets,
as well as real-world N-day and zero-day program samples
collected from publicly available resources for evaluation
purposes. Our experiment was designed to evaluate three
metrics in mind: our model’s ability to classify vulnera-
bilities with their corresponding descriptions, our model’s
ability to handle a biased dataset, and the importance of
detecting N-day and zero-day programs.

We tested our model’s vulnerability classification
across various experimental settings in which each ex-
perimental subset was chosen to resolve its respective
Research Question (presented in Section 3). In addition,
we provided an ablation study to observe our model’s
performance by adding sub-components of PF edges to
observe their impact on vulnerability detection. The re-
maining content of this section is divided into the fol-
lowing subsections: Datasets, Data Pre-Processing, Per-
formance Evaluation, Time and Memory analysis, and
Ablation Studies.

5.1. Datasets

We utilized different datasets that included highly
balanced, mildly unbalanced, and highly unbalanced data.
Particularly, we utilized the large-scale MVD [34] dataset
since it includes both vulnerability data and a CWE
number for each source code function. This dataset is
comprised of a huge number of real-world and synthetic
vulnerability samples, and it is mildly unbalanced. FFM-
peg+Qemu [7] and D2A [67] are two more balanced real-
world datasets we have included. We also utilized the
ReVEAL [10] dataset, a highly unbalanced real-world
dataset with a non-vulnerable to vulnerable data sample
ratio of 9:1. Lastly, we created VulF by aggregating pub-
licly accessible source code from GitHub and the National

Vulnerability Database. In addition, we used samples from
other existing datasets to build a wild dataset that accom-
modates the necessary subpopulation shift [13], [68] for
detecting real-world vulnerabilities. Table 2 provides a
brief description of the datasets.

Vulnerability Finder (VulF). We created VulF,
a large-scale dataset comprised of data from multiple
publicly available sources. We started Vulf from data
collected from the National Vulnerability Database [69],
consisting of vulnerable and non-vulnerable code samples.
Each vulnerable source code was mapped to a Common
Weakness Enumeration (CWE) number. A list of the
most prevalent vulnerability categories was built; yet, only
source code samples written in C/C++ were kept in our
dataset. For example, CWE-119, Improper Restriction of
Operations within the Bounds of a Memory Buffer, defines
a software vulnerability that occurs when software reads
or writes data past the specified buffer’s limit or after
its specified size. CWE-020 (Improper Input Validation),
another top vulnerability, refers to a program that accepts
input or data but fails to validate it before use. As a result,
an altered control flow, arbitrary control of a resource, or
execution of arbitrary code may occur. Additionally, we
combined data from µVulDeePecker’s MVD dataset [34].
In order to make our dataset more robust, we implemented
Code Reformatting, Beautification, Dead Code Elimina-
tion, Variable Renaming, Identifier Mangling, and Dead
Code Insertion techniques presented by Jain et al. [70] to
generate synthetic data.

Furthermore, we enhanced our Vulf dataset by gen-
erating descriptions linked to each CWE. To ensure the
usefulness of our descriptions from developers’ perspec-
tive, we engaged a group of junior programmers with
limited knowledge of software security vulnerabilities.
They validated the effectiveness and usefulness of our
CWE descriptions for vulnerability root cause analysis
and code fixes. Their feedback helped us refine our CWE
descriptions to ensure they are useful and effective for
developers seeking to fix source code vulnerabilities. The
collected data was divided into 40 vulnerability categories
and one benign category. Each vulnerable function was
labeled with its corresponding CWE number obtained
from [35] and description. We present further information
regarding our dataset in Table 1.

ReVEAL [10]. The ReVEAL dataset was curated
by Chakraborty et al. [10] by tracking vulnerabilities in
two open-source projects: Chromium and Linux Debian.
Chromium is an open-source project of Chrome. The
authors crawled Bugzilla and Linux Debian Kernel via
the Debian Security Tracker to generate their dataset. This
dataset reflects the 9:1 ratio of vulnerable to benign code
described in Table 2.

FFMpeg+Qemu [7]. The FFMpeg+Qemu dataset
is a collection of real-world source code vulnerability
detection data compiled by Devign. [7]. This dataset con-
tains four repositories, Linux Kernel, Qemu, Wireshark
and FFMpeg, but the authors only share the FFMpeg
and Qemu datasets publicly. Their data annotation was
conducted using the Commit Filtering approach proposed
by [71], and manual verification was completed by four
experienced security researchers for final verification, de-
voting 600 person-hours to the task.

8

TABLE 1: Summary of our VulF dataset with total number of functions for each CWE labels with short description.

CWE Short Description # of Functions CWE Short Description # of Functions
Non-Vulnerable-N/A 115550 467 - Using of null pointer 508
020 - Process data without validation 70 469 - Incorrectly determining pointers size 1701
020, 665, 400 - Consuming resource without control 365 476 - Trying to access a dereferenced pointer 421
074 - Injection of foreign code 1640 506 - Containing malicious code 102
119 - Performing read/write outside buffer 4713 573 - Calling an API incorrectly 221
119, 666, 573 - Operation outside memory buffer 305 662, 573 - Calling API without sync. 331
138 - Unchecked use of special elements 200 573, 666 - Incorrectly following configuration 306
170 - Incorrectly terminating a string 1006 610 - Use of externally controlled resource 309
187 - Incorrect comparison of string 506 662 - Incorrect synchronization of thread 307
190 - Integer overflow by mathematical operation 326 665 - Incorrect initialization of a resource 305
191 - Integer underflow by mathemetical operation 68 666 - Performing operation on resource in wrong lifetime 734
221 - Misinterpret records 60 668 - Exposing resource to incorrect sphere 805
311 - Product does not encrypt critical data 581 670 - Malicious Incorrect Control Flow 601
327 - Use of risky algorithm or protocol 35 673 - Changing control sphere by external party 61
362 - Concurrent execution of shared resources 211 676 - Use of dangerous function 1380
369 - Division ob zero error 289 704 - Incorrectly converting type of a resource 480
400 - Consuming resource without limit 107 706 - Accessing incorrectly resolved resource 206
400, 404 - Release consuming resource 1200 754 - Improper check on unusual exceptions 78
400, 665 - Consuming uninitialized resource 1560 758 - Improperly use of API 59
404 - Release a resource incorrectly 508 834 - Iteration of a loop eccessively 210
668, 404 - Improper use of Resource 2860

Total = 141285

D2A [67]. IBM Research has assembled a real-
world vulnerability dataset, D2A [67]. They included
open-source projects like FFMpeg, OpenSSL, httpd, NG-
INX, libtiff, and libav in this dataset. This dataset was cre-
ated using a differential analysis-based method, wherein
the authors initially filtered the commit messages to sort
out potentially vulnerable commits before using three
static analyzer tools, CppCheck, FlawFinder, Clang Static
Analyzer, and Infer, for a two-way checking.

MVD [34]. MVD curated by Zou et al. [34] is a
multiclass vulnerability dataset of 40 vulnerable classes
and one benign class. The datasets were collected from
NIST [72], and SARD [73]. A significant number of
program samples of this dataset consist of synthetic,
vulnerable, and non-vulnerable code examples. Table 2
briefly describes the number of benign and vulnerable,
their ratio, and the total number of code samples for each
dataset.

5.2. Data Pre-Processing

Graph Data Preparation. After collecting the
datasets, they were converted into an SVG for further
analysis. To convert the program into a graph, we add
a starting 〈s〉 and ending token 〈\s〉 at the beginning

TABLE 2: Overview of datasets utilized for training
and testing, encompassing highly balanced, mildly unbal-
anced, and highly unbalanced sets.

Data Source Benign Vulnerable Total Ratio

D2A [67] 3222 3506 6728 ∼1:1.08
FFMpeg + Qemu [7] 14854 12460 27314 ∼1.19:1
MVD [34] 138522 43119 181641 ∼3.2:1
VulF (Ours) 115550 25735 141285 ∼4.5:1
ReVEAL [10] 20494 2240 22734 ∼9:1

and end of each program. Then we convert the code
into a sequence of tokens using a RoBERTa tokenizer,
pre-trained on C/C++ programs for code representation.
Next, we convert the sequence of tokens into SVG which
a sequential flow, data flow, control flow, and poacher
flow edges are generated. Finally, Algorithm 1 creates
an adjacency matrix of shape n × n, where n is the
total number of tokens in the graph. As a second step in
creating the graph, each node of our SVG was encoded by
generating a word embedding of size 768 using pretrained
RoBERTa.

SVG Analysis. Table 3 presents a comparison
between the number of edges and nodes generated by SVG
to those generated by an AST in three different sample
codes. These code samples were selected randomly from
the VulF dataset. As can be observed, SVG generates more
edges than an AST. During the generation of the AST, we
observed that several intermediate nodes were generated
which removed parentheses. Due to this, the edges coming
in and out of these intermediate nodes of AST contain no
information about the code snippet’s vulnerability, regard-
ing these edges useless. In comparison, our SVG retains
the parentheses, semicolons, and all other symbols of a
programming language as nodes within the graph. Given
this additional relationship between tokens, our classifier

TABLE 3: Three sample codes were randomly selected
from our VulF dataset to show how the number of nodes
and edges of AST compares with our graph.

Code Sample SVG (Our Graph) AST Graph Edge Ratio

Node Edge Node Edge

Example 1 3660 8516 2875 5748 1.5:1
Example 2 3324 6640 2415 4828 1.4:1
Example 3 4056 8114 3909 7816 1:2.5

9

can attain a higher comprehension of the code snippet
semantically and syntactically.

5.3. Performance Evaluation

We randomly split all datasets with a ratio of 80:10:10
for training, validation, and testing. We implemented
RoBERTA-PFGCN with a 12-layer RoBERTa encoder to
generate the token embeddings. We also completed a time
and memory analysis using RoBERTa-AST, in which we
generated an AST instead of SVG for our GCN. To gen-
erate features, the tokens were converted into their equiv-
alent SVG representation. We created a two-layer graph
convolutional neural network with a residual connection
from the first layer’s input to the second layer’s input.
The dimensionality of the hidden layer is set to 128, with
a learning rate of 5e-4 when training a balanced dataset.
When we used ReVEAL, the highly unbalanced dataset,
we used 1e-5 as the learning rate and trained the model for
100 epochs with a batch size of 512, while the maximum
token length was set to 400. We trained our model on 8
DGX-A100 NVIDIA GPU, wherein each model training
and testing session took 4-6 hours to complete due to the
data size.

Evaluation Metrics.. Our work was evaluated us-
ing four metrics: Accuracy, Precision, Recall, and F1. Our
model’s predictions were categorized as True Negative
(TN), True Positive (TP), False Negative (FN), and False
Positive (FP). TP refers to samples correctly classified
as vulnerable, FP to samples incorrectly classified as
vulnerable, TN to samples correctly classified as benign,
and FN to samples incorrectly classified as benign. Using
these statistics, we compute the Precision as P = TP

TP+FP ,
Recall as, Recall = TP

TP+FN , and the F1 score as,

F1 = 2× Precision∗Recall
Precision+Recall .

The remainder of this section will outline experiments
designed and performed to explore each research question.

RQ1: Based on our proposed SVG representation,
can the classifier learn to identify and provide CWE
Numbers of vulnerabilities in real-world source code?

A vulnerability classification system should generate
semantic features to detect vulnerable patterns from source
code and classify vulnerabilities with higher accuracy and
lower false positive and false negative rates. To test the
effectiveness of our classifier, it was trained and evaluated
with the five datasets mentioned earlier.

In order to test how our vulnerability model detect and
classify each type of vulnerability, our model was tasked
with providing a CWE number and a CWE description
for each type of vulnerability. As a result, the software
developer can properly understand the detected type of
vulnerability. For the multiclass vulnerability classification
task, we used our curated dataset VulF and MVD. We also
tested our classifier’s ability to separate vulnerable and
non-vulnerable classes as a binary classification task. We
tested the performance of binary classification using three
datasets; namely, FFMpeg+Qemu [7], ReVEAL [10], and
D2A [67].

Discussion. In order to analyze the performance of
our multitask vulnerability description model, our model
was tasked with classifying 40 categories of vulnerability

TABLE 4: Comparison of our proposed RoBERTa-
PFGCN vulnerability detection model against top recent
models, including µVulDeePecker, BiLSTM, TextCNN,
RoBERTA, CodeBERT, Devign, and VELVET, with a
focus on their respective datasets.

Data Model Acc. Prec Recall F1

VulF

µVulDeePecker 78.35 78.94 78.30 77.10
Devign 84.55 83.94 83.15 84.30
VELVET 84.45 85.12 85.20 84.46
RoBERTa-
PFGCN

96.24 96.18 95.15 95.85

MVD
µVulDeePecker
[34]

- - - 94.22

RoBERTa-
PFGCN(Ours)

98.23 98.28 98.23 98.01

FFMpeg + Qemu

BiLSTM [74] 59.37 - - -
TextCNN [74] 60.69 - - -
RoBERTa [74] 61.05 - - -
CodeBERT [74] 62.08 - - -
Devign [10] 58.57 53.60 62.73 57.18
RoBERTa-
PFGCN(Ours)

63.29 63.08 62.97 62.99

D2A
VELVET [19] 59.3 70.5 50.4 58.8
RoBERTA-
PFGCN(Ours)

61.2 61.97 62.07 61.21

from VulF dataset where each category is associated with
a CWE number and a description. For multiclass vulner-
ability classification, the goal of the classifier initially is
to detect whether vulnerability exists in the code, and if a
vulnerability exists, provide the CWE number as depicted
in Figure 1. This experiment tests our classifier’s ability
to detect and classify vulnerable code samples . Table 4
shows a comparison of the classification performance of
various models against ours when tested with different
datasets. Table 1 shows that our VulF dataset is mildly
imbalanced. For example, the number of vulnerable codes
for CWE-676, CWE-362, and CWE-662 is deficient, less
than 300. On the other hand, there are 4713 code samples
for CWE-119 and 1380 for CWE-704. We prevented
training a biased model by using the Focal Loss function
during the model’s training.

We tested VulF dataset with our proposed RoBERTa-
PFGCN and two other publicly available models, De-
vign and VELVET. Moreover, we also implemented
µVulDeePecker [34] ourselves based on their proposed
architecture since their model is not publicly available.
Our experimental results show that our model achieves
the highest accuracy compared to Devign, VELVET, and
µVulDeePecker. Table 4 shows that our model improved
accuracy, precision, recall, and F1 score by 11.79%,
11.06%, 9.98%, and 11.39%, respectively, which is at least
11% higher than other models.

Our work was also compared with the results from
µVulDeePecker [34], which evaluated 40 classes. Table
4 shows that our model outperforms µVulDeePecker on
their MVD dataset by almost 3.80% on F1 score. We
provide an F1 score comparison for all 40 classes by our
model against µVulDeePecker with the MVD dataset in
Figure 4. This bar chart shows a comparative analysis of
the F1 score with our model vs. µVulDeePecker, and we

10

10
0

10
0

99
.5
6

99
.5
4

10
0

99
.6
4

97
.9
7

97
.9
6

97
.1
8

99
.3
7

10
0

10
0

98
.3 10
0

98
.8
5

10
0

10
0

10
0

94
.5
5

92

97
.4
4 10
0

94

97

95

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

95

10
0

98 98 97 98 99 99
.5

10
0

81

96

90

98

90

98

85

94 95 95 95 95

90

83

94 95 95

93

50

98

85

90

10
0

80

95

93

95

84

95 94 94 95 94

40

50

60

70

80

90

100

CW
E-
40
4

CW
E-
47
6

CW
E-
11
9

CW
E-
70
6

CW
E-
67
0

CW
E-
67
3

CW
E-
11
9,6

66
,5
73

CW
E-
57
3

CW
E-
66
8

CW
E-
40
0,6

65
,0
20

CW
E-
66
2

CW
E-
40
0

CW
E-
66
5

CW
E-
02
0

CW
E-
07
4

CW
E-
36
2

CW
E-
19
1

CW
E-
19
0

CW
E-
61
0

CW
E-
70
4

CW
E-
17
0

CW
E-
67
6

CW
E-
18
7

CW
E-
13
8

CW
E-
36
9

CW
E-
66
2,5

73
CW

E-
83
4

CW
E-
40
0,6

65
CW

E-
40
0,4

04
CW

E-
22
1

CW
E-
75
4

CW
E-
31
1

CW
E-
40
4,6

68
CW

E-
50
6

CW
E-
75
8

CW
E-
66
6

CW
E-
46
7

CW
E-
32
7

CW
E-
66
6,5

73
CW

E-
46
9

Figure 4: CWE class-by-class F1 score comparison on our proposed Model (RoBERTa-PFGCN), vs. µVulDeepecker on
MVD dataset provided by µVulDeePecker including 40 CWE classes. The blue bar corresponds to RoBERTa-PFGCN,
while the orange bar represents µVulDeepecker.

can clearly see our model consistently generates higher
F1 scores for all the 40 CWE classes.

Table 4 demonstrates our model’s performance with
two other datasets. These results also illustrate that base-
line models like BiLSTM and TextCNN significantly un-
derperform compared to the pre-trained programming lan-
guage (PL) models like CodeBERT and RoBERTa, as well
as our proposed model Multitask RoBERTa-PFGCN, with
the FFMpeg+Qemu dataset. Compared to non-PL-based
models, our model shows an improvement of 3.92% and
2.60% over BiLSTM and TextCNN and 2.24%, 1.21%,
and 4.72% compared to RoBERTa, CodeBERT, and De-
vign, respectively.

For the D2A dataset, we compared our work with
VELVET [19], and see an improvement in classification
Accuracy by 1.9%, Recall by 11.67%, and F1 score by
2.41%.

RQ2: Can our classifier learn vulnerability in a
biased setting?

An important limitation of real-world source code
data is its imbalanced nature. Since real-world projects
have very few vulnerable but very many non-vulnerable
programs, vulnerability models suffer from data imbalance
[10]. The imbalance scenario renders the model more
biased towards the non-vulnerable class rendering a higher
accuracy with lower precision and recall scores. Of the
datasets we have discussed thus far, ReVEAL is highly
imbalanced; hence have used it to test against biased
settings. A sound vulnerability system should not have a
poor F1, Precision, and Recall score despite a potentially
high Accuracy, as this would prove bias towards the
majority class. We investigated the usefulness of the Focal
Loss [23] function and how they prevent biases in the
model. For this experiment, we fixed the weight hyper-
parameters α = 0.1 and γ = 2 for ReVEAL dataset with
our RoBERTa-PFGCN model and SVG as input. Since
Focal Loss uses a cross-entropy loss function underneath
its implementation, we set the learning rate to 1e−5 with
a batch size of 256.

Discussion. We used the ReVEAL dataset for this
experiment, which has a 1 to 9 ratio of vulnerable to non-
vulnerable code. Table 5 shows that the works proposed
by Russell et al. [36], VulDeepecker [33] SySeVR [8]
and Devign [7] achieve high accuracy, but their Precision,
Recall, and F1 scores drop significantly.To overcome this
issue, Focal Loss is used to add more weight to the loss
if the model incorrectly predicts the minority class. Thus,
we set the value of weight α by taking an inverse ratio
of vulnerable to non-vulnerable example codes during
training and we set the value of γ to 2 by experimental
analysis. However, γ is used as an exponent in Equation
7, so when we run RoBERTa-GCN w/ WL, γ is set to 0 in
order to ignore its effect. Observing the last two rows in
Table 5, we find that, initially, we tested our model using
Weighted Loss (WL) only, and later we tested with Focal
Loss, which is a combination of weighted loss α with the
hyperparameter γ.

In both cases, we observe that our model has surpassed
previous models in terms of Precision, Recall, and F1
score, indicating lower false positive and false negative
rates with WL and with FL. However, these numbers
improved slightly when compared with performance be-
tween weighted loss and Focal Loss, with the exception
of the precision metric. From the results, it is observed
that with Focal Loss, we achieved an improvement of
11.18% in Precision, 1.06% in Recall, and 0.61% on our
F1 score compared to the weighted loss. Nevertheless,
using either weighted loss or Focal Loss, the accuracy
of our model drops by almost 1% compared to [36],
indicating that these previous models are highly biased
with an assumption of non-vulnerability. Compared to the
next best model [7], our model with Focal Loss shows an
improvement of 22.91% in Precision, 23.53% in Recall,
and 18.04% on F1 score. Thus, Focal Loss improves
precision, recall and F1 on imbalanced data while not
causing a negating impact on a balanced dataset only by
adjusting the parameters α and γ

RQ3: Is our classifier generalized enough to detect
vulnerabilities in N-day and zero-day program sam-

11

TABLE 5: Vulnerability Classification Using Focal Loss.
This table shows the effectiveness of our model using the
Focal Loss function. Since only ReVEAL is imbalanced,
this dataset is used for result comparison. Results are taken
from [10].

Model Input Acc. Prec. Recall F1

Russell et al.
[36]

Token 90.98 24.63 10.91 15.24

VulDeePecker
[33] Slice + Token

89.05 17.68 13.87 15.7

SySeVR [8] 84.22 24.46 40.11 30.25
Devign [7] CPG 88.41 34.61 26.67 29.87
RoBERTa-
PFGCN w/
Weighted Loss

Semantic Vulner-
ability Graph

88.07 46.34 49.14 47.31

RoBERTa-
PFGCN w/
Focal Loss

Semantic Vulner-
ability Graph

89.88 57.52 50.20 47.91

ples?
We evaluated our classifier’s performance based on

its ability to accurately predict vulnerability with 273 N-
day real-world sample programs. These sample programs
are never used during training. We also used 4 zero-day
examples in order to evaluate our classifier on predicting
zero-day vulnerabilities as well. The classifier predicts the
vulnerability classif the vulnerability exists in the code
and predicts non-vulnerable when the vulnerability does
not exist. Out of these 273 N-day and 4, zero-day code
samples, some vulnerability classes exist that are not part
of our VulF dataset from table 1. For example, the VulF
dataset has no code samples for CWE-787 for training.
But a few samples from our VulF dataset have code sam-
ples for CWE-787. So when we evaluated our classifier on
273, N-day and 4, zero-day code samples,our model could
not predict the vulnerability classification of that particular
case. Table 6 provides a more in-depth analysis of our
work with the recent models like µVulDeepecker [34],
Devign [7] and VELVET [19]. We can see that our model
was able to detect most N-day and zero-day vulnerabilities
compared to previous works.

Discussion. In this experiment, we observed that
our model achieves an accuracy of 93.00% when trained
with our VulF dataset and tested against N-day sample
programs of 273 examples. Out of the three datasets that
we have used for different experiments, the VulF dataset
shows the best performance when we trained our model
with SVG. Out of the 273, N-day code samples our model
can successfully predict 255 as vulnerable, achieving an
accuracy of 93%. Moreover, for zero-day analysis, we
tested the same model for 4, zero-day examples, and out
of those, our model was able to predict all examples
correctly. Furthermore, we provide four case studies, 3,
N-day and 1, zero-day program samples, with a critical
analysis and the reasoning behind our classifier’s outcome.

Case Study 1. We collected this N-day sam-
ple program from International Components for Unicode
(ICU) repository. In this example, the program in Figure 5
attempts to get the value of fDecimalQuantity without
checking the possible integer limit. As a result, a potential
buffer overflow could potentially crash the program when

TABLE 6: N-day and zero-day comparison of our work
with previous works.

Model N-day
Correctly
Predicted

zero-day
Correctly
Predicted

Devign
273

202
4

1
VELVET 208 1
RoBERTa-PFGCN 255 4

the abs function is called. The red edge in Figure 5 shows
the Data Processing Edge, which hints to the classifier that
a vulnerability may exist. Thus, the classifier emphasized
the information provided by this edge, detected the code as
vulnerable, and classified the vulnerability as CWE-190.

Case Study 2. We collected this N-day sample
program from the FFMpeg repository from GitHub. Here
the method avformat new stream is called without
checking the possible value of the output. The output can
potentially trigger a null pointer dereference error causing
the application to crash. When this code goes through our
classifier, the classifier observes the PF edge, observed in
red in Figure 6 (Data Processing edge), and classifies this
code as vulnerable (CWE-476).

Case Study 3. This zero-day vulnerable example
is also part of the TensorFlow C repository. Figure 7
shows a fraction of a large function used during eval-
uation. In line 4, the code tries to create a mutex lock
by invoking mutex lock session. However, till the end
of the function, there was no call to unlock the resource
it.first− > mu. As a result, this resource is locked
indefinitely, causing a resource management issue. Since
a Resource Management edge exists for this situation,
our classifier detects the vulnerability and classifies it as
CWE-404, which eventually creates a deadlock situation.

Case Study 4. We collected this N-day, sample
program from Linux repository. From GitHub commit
messages, we learned that this vulnerability occurs when
the function attempts to write data expanded into a page
but fails to set up the inode, which serves as a unique
identifier for information on a specific filesystem. Con-
sequently, a null pointer dereferencing error could occur
during writeback if the inode is not created. Figure 8
shows that the statement writepage attempts to write a
page using the parameters page and udf wbc. Neverthe-
less, a checking statement (line 5) already exists before
assigning a value in line 7. Our classifier identifies the
code snippet as non-vulnerable as it is aware that the

1 if (fDecimalQuantity->isZero()) {
2 fDecimalStr->append("0", -1, status);
3 } else if (std::abs(fDecimalQuantity->getMagnitude()) < 5) {
4 fDecimalStr->appendInvariantChars(fDecimalQuantity-
4 >toPlainString(), status);
5 }
Vulnerability: The software performs a calculation that can produce an integer overflow or wraparound,
when the logic assumes that the resulting value will always be larger than the original value. This can
introduce other weaknesses when the calculation is used for resource management or execution control.

CWE-190

Figure 5: An example code for CWE-190, which our clas-
sifier predicted accurately. The red edge shows a Poacher
Flow edge that captures the Data Processing of the code.
Hence, our classifier was able to detect the vulnerability
with a description.

12

1 if (!nut->stream) {
2 ret = AVERROR(ENOMEM);
3 goto fail;
2 }
4 for (i = 0; i < stream_count; i++)
5 avformat_new_stream(s, NULL);
Vulnerability: A NULL pointer dereference occurs when the application dereferences a pointer that it
expects to be valid, but is NULL, typically causing a crash or exit.

CWE-476

Figure 6: A sample code for CWE-476, which our clas-
sifier accurately predicted. The red edge shows a Poacher
Flow edge that captures the Access Control of the code.
Thus, our classifier was able to detect the vulnerability
with a description.

parameters are not null. However, a different API call
(filemap fdatawrite) generates this vulnerability (CWE-
476) as a result of an inappropriate request for the overall
task. Since no logical Poacher edge could be identified for
this vulnerability and the other edge do not contribute to
detecting vulnerabilities from the implementation of API
writepage, our model incorrectly classifies this code as
non-vulnerable.

5.4. Time and Memory Analysis

In this section, we analyze model complexity in terms
of memory consumption and processing time. We assessed
our classifier using AST and SVG. We generated an AST
using a tool called TreeSitter [75]. Table 7 demonstrates
that AST generation incurs significant time and memory
overhead. It takes approximately 18 minutes to construct
the AST of 141285 functions but only 2 minutes and 32
seconds to generate our SVG for the same VulF dataset.
We observe a similar case for the ReVEAL and the D2A
datasets. In the ReVEAL dataset, the AST input pre-
processing time is 13 times higher than the creation time
of our SVG. In the D2A dataset, the AST pre-processing
time is 16 times higher. Finally, for the MVD dataset, the
AST pre-processing time is 11 times higher.

Furthermore, we discovered high memory overhead
issues during the creation of the ASTs. For their gen-
eration, a process must traverse the tree recursively in
order to build it. As a result, the internal stack expands
exponentially as the size of the program increases. In
comparison, our SVG doesn’t rely on a recursive program
for its generation. We perform our analysis in Python and
Pytorch. Python’s standard stack size is 1,000. However,
the stack size had to be increased to 3,000 to build ASTs

1 void RecordMutation(TF_Graph* graph, const TF_Operation& op,
2 const char* mutation_type) {
3 for (auto it : graph->sessions) {
4 mutex_lock session_lock(it.first->mu);
5 if (it.first->last_num_graph_nodes > op.node.id()) {
6 it.second = strings::StrCat(
7
8. }
Vulnerability: The product does not release or incorrectly releases a resource before it is made
available for re-use.

CWE-404

Figure 7: A sample code for CWE-404, which our clas-
sifier accurately predicted. The red edge shows a Poacher
Flow edge that captures the Resource Management of the
code. Thus, our classifier was able to detect the vulnera-
bility with a description.

1 int expand_file(struct inode *inode) {
2 struct page *page;
3 struct udf_wbc = getWriteBackControl();
4 page = create_page (inode);
5 if (!page) {
6 return -ENOMEM;
7 err = inode -> writepage(page, &udf_wbc);
8 }
9 }
Vulnerability: Non-Vulnerable

Figure 8: An example code for CWE-476 that our classi-
fier could not predict accurately. No poacher edges exist
for this code. Hence our model predicted it as Non-
Vulnerable

for all the functions presented in the different datasets we
used. A larger stack size causes at least three times more
memory consumption when the function grows too large.

5.5. Ablation Studies

We evaluated our model’s performance with and with-
out the influence of Poacher Flow (PF) edges. As observed
in Table 8, we trained and evaluated the performance of
our classifier on four datasets to ensure that the observed
performance improvement was not a coincidental occur-
rence. The experimental hyperparameters were similar
across the experiments we performed with the exception
of the hyperparameters tailored for RQ2. Initially, we
trained and evaluated two models, RoBERTa-PFGCN and
RoBERTa-GCN, with and without PF edges, respectively.
Afterwards, we trained new versions of the RoBERTa-
GCN model by adding each component of our PF edges,
such as the Data Processing (DP) Edge, Access Control
(AC) Edge, and Resource Management (RM Edge to un-
derstand the contribution that each PF component had on
the model’s performance. As seen in Table 8, our proposed
RoBERTa-PFGCN vulnerability detection model achieves
better performance when trained with PF edges resulting
in an 8.74% improvement in accuracy and 8.62% in F1
score when trained and tested using the VulF dataset.

TABLE 7: Comparing the execution times of Generating
SVG and AST Graph

Training Data Graph Execution
Time

VulF
SVG 2m 32s
AST 18m

MVD
SVG 28m 53s
AST 3m 18

FFMpeg+Qemu
SVG 38s
AST 7m 20s

D2A
SVG 11s
AST 2m 52s

ReVEAL
SVG 20s
AST 4m 15s

13

TABLE 8: In-depth ablation study for each component of
our proposed PF Edges

Dataset Model Acc. Prec. Recall F1

VulF

GCN 87.50 87.36 87.94 87.23
GCN w/ AC 91.23 91.75 91.56 91.23
GCN w/ DP 90.40 89.65 90.95 90.50
GCN w/ RM 89.54 90.28 90.61 90.83
RoBERTa-PFGCN 96.24 96.18 95.15 95.85

MVD

GCN 86.10 85.75 85.24 86.50
GCN w/ AC 92.16 91.90 91.10 91.70
GCN w/ DP 91.70 90.15 91.57 90.30
GCN w/ RM 91.46 92.40 91.43 91.33
RoBERTa-PFGCN 98.23 98.28 98.23 98.01

FFMpeg +
Qemu

GCN 56.34 57.47 57.28 56.57
GCN w/ AC 60.94 60.12 60.35 60.48
GCN w/ DP 61.50 60.51 61.23 60.80
GCN w/ RM 61.90 61.08 61.40 61.74
RoBERTa-PFGCN 63.29 63.08 62.97 62.99

D2A

GCN 57.95 58.80 57.69 58.46
GCN w/ AC 61.29 62.50 61.58 62.20
GCN w/ DP 61.65 60.10 61.95 60.28
GCN w/ RM 60.30 59.28 59.10 59.25
RoBERTa-PFGCN 61.20 61.97 62.07 61.21

6. Conclusion and Future Work

This paper employed a unique set of edges, including
novel Poacher Flow edges to generate richer vulnerability
detection and description features. With Poacher Flow
edges, our classifier can detect vulnerability that may
arise due to the dynamic behavior of a program during
execution and assignments. We propose a set of algo-
rithms to generate PF edges from source code.We used
a classification model for detecting and classifying source
code vulnerabilities based on Multitask RoBERTa-GCN
with a Focal Loss and their corresponding classification.
We utilized Focal Loss to rectify our model’s bias toward
the majority class, decreasing our model’s false positives
and false negatives and resulting in state-of-the-art source
code vulnerability detection for real-world projects.We
also provided an in-depth ablation study for evaluating
the performance impact that each component of our PF
edges has on our model. In addition, we performed a
time and memory analysis for the generation of ASTs and
our SVG. Finally, we introduced the VulF dataset which
provides software developers with vulnerability detection
and CWE description, helping them resolve source code
vulnerability issues. Our future work will focus on reason-
ing and counterfactual explanations for code vulnerability
localization and corrections.

Acknowledgements

This research project and the preparation of this pub-
lication were funded in part by the National Science
Foundation under Grant No. 2230086.

References

[1] IBM. Compromised employee accounts led to most expensive
data breaches over past year. https://newsroom.ibm.com/2020-07-
29-IBM-Report-Compromised-Employee-Accounts-Led-to-Most-
Expensive-Data-Breaches-Over-Past-Year, 2020.

[2] Common vulnerabilities and exposures. https://www.cve.org/.

[3] Larissa Braz, Christian Aeberhard, Gül Çalikli, and Alberto Bac-
chelli. Less is more: supporting developers in vulnerability detec-
tion during code review. In Proceedings of the 44th International
Conference on Software Engineering, pages 1317–1329, 2022.

[4] Keke Gai, Meikang Qiu, Bhavani Thuraisingham, and Lixin Tao.
Proactive attribute-based secure data schema for mobile cloud in
financial industry. In 2015 IEEE 17th International Conference on
High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security,
and 2015 IEEE 12th International Conference on Embedded Soft-
ware and Systems, pages 1332–1337. IEEE, 2015.

[5] Kutub Thakur, Meikang Qiu, Keke Gai, and Md Liakat Ali. An
investigation on cyber security threats and security models. In 2015
IEEE 2nd International Conference on Cyber Security and Cloud
Computing, pages 307–311. IEEE, 2015.

[6] Log4j, https://nvd.nist.gov/vuln/detail/CVE-2021-44228.

[7] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective vulnerability identification by learning com-
prehensive program semantics via graph neural networks. Advances
in neural information processing systems, 32, 2019.

[8] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and
Zhaoxuan Chen. Sysevr: A framework for using deep learning to
detect software vulnerabilities. IEEE Transactions on Dependable
and Secure Computing, 2021.

[9] Fujin Hou, Kun Zhou, Longbin Li, Yuan Tian, Jie Li, and Jian Li.
A vulnerability detection algorithm based on transformer model.
In International Conference on Artificial Intelligence and Security,
pages 43–55. Springer, 2022.

[10] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi
Ray. Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 2021.

[11] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep
learning with class imbalance. Journal of Big Data, 6(1):1–54,
2019.

[12] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research, 16:321–357,
2002.

[13] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael
Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro
Yasunaga, Richard Lanas Phillips, Sara Beery, et al. Wilds: A
benchmark of in-the-wild distribution shifts 2021. arXiv preprint
arXiv:2012.07421, 2020.

[14] Zeki Bilgin, Mehmet Akif Ersoy, Elif Ustundag Soykan, Emrah
Tomur, Pinar Çomak, and Leyli Karaçay. Vulnerability prediction
from source code using machine learning. IEEE Access, 8:150672–
150684, 2020.

[15] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
Modeling and discovering vulnerabilities with code property
graphs. In 2014 IEEE Symposium on Security and Privacy, pages
590–604. IEEE, 2014.

[16] Bolun Wu, Futai Zou, et al. Code vulnerability detection based
on deep sequence and graph models: A survey. Security and
Communication Networks, 2022, 2022.

[17] Shigang Liu, Guanjun Lin, Qing-Long Han, Sheng Wen, Jun
Zhang, and Yang Xiang. Deepbalance: Deep-learning and fuzzy
oversampling for vulnerability detection. IEEE Transactions on
Fuzzy Systems, 28(7):1329–1343, 2019.

[18] Na Li, Haoyu Zhang, Zhihui Hu, Guang Kou, and Huadong Dai.
Automated software vulnerability detection via pre-trained context
encoder and self attention. In International Conference on Digital
Forensics and Cyber Crime, pages 248–264. Springer, 2022.

[19] Yangruibo Ding, Sahil Suneja, Yunhui Zheng, Jim Laredo, Alessan-
dro Morari, Gail Kaiser, and Baishakhi Ray. Velvet: a novel
ensemble learning approach to automatically locate vulnerable
statements. arXiv preprint arXiv:2112.10893, 2021.

[20] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer:
The long-document transformer. arXiv preprint arXiv:2004.05150,
2020.

14

[21] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

[22] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang,
Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu
Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.
Graphcodebert: Pre-training code representations with data flow.
CoRR, abs/2009.08366, 2020.

[23] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision, pages 2980–
2988, 2017.

[24] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and
Benjamin Chelf. Bugs as deviant behavior: A general approach to
inferring errors in systems code. ACM SIGOPS Operating Systems
Review, 35(5):57–72, 2001.

[25] Flawfinder. https://dwheeler.com/flawfinder/.

[26] Rats. https://security.web.cern.ch.

[27] Cppcheck. https://cppcheck.sourceforge.io/.

[28] Coverity. https://scan.coverity.com/.

[29] Infer. https://fbinfer.com/.

[30] Fabian Yamaguchi. Pattern-based vulnerability discovery. 2015.

[31] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang
Xiang. Software vulnerability detection using deep neural net-
works: a survey. Proceedings of the IEEE, 108(10):1825–1848,
2020.

[32] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng,
John Grundy, and Aditya Ghose. Automatic feature learning for
predicting vulnerable software components. IEEE Transactions on
Software Engineering, 47(1):67–85, 2018.

[33] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan
Wang, Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep
learning-based system for vulnerability detection. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018.

[34] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. µ
vuldeepecker: A deep learning-based system for multiclass vulner-
ability detection. IEEE Transactions on Dependable and Secure
Computing, 18(5):2224–2236, 2019.

[35] Common weakness enumeration. https://cwe.mitre.org/.

[36] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob
Harer, Onur Ozdemir, Paul Ellingwood, and Marc McConley.
Automated vulnerability detection in source code using deep rep-
resentation learning. In 2018 17th IEEE international conference
on machine learning and applications (ICMLA), pages 757–762.
IEEE, 2018.

[37] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software
defect prediction via convolutional neural network. In 2017 IEEE
International Conference on Software Quality, Reliability and Se-
curity (QRS), pages 318–328. IEEE, 2017.

[38] Abdullah Al-Boghdady, Mohammad El-Ramly, and Khaled Wassif.
idetect for vulnerability detection in internet of things operating
systems using machine learning. Scientific Reports, 12(1):1–12,
2022.

[39] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Olivier De Vel, Paul
Montague, and Yang Xiang. Software vulnerability discovery via
learning multi-domain knowledge bases. IEEE Transactions on
Dependable and Secure Computing, 18(5):2469–2485, 2019.

[40] Zhen Li, Jing Tang, Deqing Zou, Qian Chen, Shouhuai Xu,
Chao Zhang, Yichen Li, and Hai Jin. Towards making deep
learning-based vulnerability detectors robust. arXiv preprint
arXiv:2108.00669, 2021.

[41] Hazim Hanif and Sergio Maffeis. Vulberta: Simplified source code
pre-training for vulnerability detection. CoRR, abs/2205.12424,
2022.

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pre-
training approach, 2020.

[43] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit
Camtepe, Josef Pieprzyk, and Surya Nepal. Transformer-based
language models for software vulnerability detection: Performance,
model’s security and platforms. arXiv preprint arXiv:2204.03214,
2022.

[44] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S.
Zemel. Gated graph sequence neural networks. In Yoshua Bengio
and Yann LeCun, editors, 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

[45] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le,
Quan Hung Tran, and Dinh Phung. ReGVD: Revisiting graph
neural networks for vulnerability detection. In Deep Learning for
Code Workshop, 2022.

[46] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. Linevd:
Statement-level vulnerability detection using graph neural net-
works. arXiv preprint arXiv:2203.05181, 2022.

[47] Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John
Grundy, and Dinh Phung. Information-theoretic source code vul-
nerability highlighting. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[48] Michael Fu and Chakkrit Tantithamthavorn. Linevul: A
transformer-based line-level vulnerability prediction. 03 2022.

[49] Yisroel Mirsky, George Macon, Michael Brown, Carter Yagemann,
Matthew Pruett, Evan Downing, Sukarno Mertoguno, and Wenke
Lee. Vulchecker: Graph-based vulnerability localization in source
code.

[50] Miltiadis Allamanis. Graph neural networks in program analysis. In
Graph Neural Networks: Foundations, Frontiers, and Applications,
pages 483–497. Springer, 2022.

[51] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
Learning to represent programs with graphs. In International
Conference on Learning Representations, 2018.

[52] Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao
Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang. Syncobert: Syntax-
guided multi-modal contrastive pre-training for code representa-
tion. arXiv preprint arXiv:2108.04556, 2021.

[53] Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu. Tree-
bert: A tree-based pre-trained model for programming language. In
Uncertainty in Artificial Intelligence, pages 54–63. PMLR, 2021.

[54] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
code2vec: Learning distributed representations of code. Proceed-
ings of the ACM on Programming Languages, 3(POPL):1–29,
2019.

[55] Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating
sequences from structured representations of code. In International
Conference on Learning Representations, 2019.

[56] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao.
Typilus: Neural type hints. In Proceedings of the 41st acm sigplan
conference on programming language design and implementation,
pages 91–105, 2020.

[57] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng
Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang,
and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1536–1547, Online,
November 2020. Association for Computational Linguistics.

[58] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and
Jian Yin. Unixcoder: Unified cross-modal pre-training for code
representation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225, 2022.

[59] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and ro-
tational invariance. In Proceedings of the twenty-first international
conference on Machine learning, page 78, 2004.

15

[60] Joern. https://github.com/ShiftLeftSecurity/.

[61] Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and
Houfeng Wang. Text level graph neural network for text clas-
sification. arXiv preprint arXiv:1910.02356, 2019.

[62] Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen,
and Liang Wang. Every document owns its structure: Inductive text
classification via graph neural networks. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
pages 334–339, 2020.

[63] OWASP. Owasp top ten. Accessed: 2023-03-13.

[64] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.

[65] Thomas N. Kipf and Max Welling. Semi-supervised classification
with graph convolutional networks. In International Conference
on Learning Representations, 2017.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.

[67] Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward
Epstein, Bo Yang, Jim Laredo, Alessandro Morari, and Zhong Su.
D2a: a dataset built for ai-based vulnerability detection methods
using differential analysis. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 111–120. IEEE, 2021.

[68] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry.
Breeds: Benchmarks for subpopulation shift. arXiv preprint
arXiv:2008.04859, 2020.

[69] National vulnerability database. https://nvd.nist.gov/.

[70] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E
Gonzalez, and Ion Stoica. Contrastive code representation learning.
arXiv preprint arXiv:2007.04973, 2020.

[71] Sharma A Zhou Y. Automated identification of security issues
from commit messages and bug reports. In Proceedings of the
2017 11th joint meeting on foundations of software engineering
(pp. 914-919), 2017.

[72] Nist, https://www.nist.gov/.

[73] Sard, https://samate.nist.gov/SRD/.

[74] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svy-
atkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin
Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long
Zhou, Michele Tufano, MING GONG, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU.
CodeXGLUE: A machine learning benchmark dataset for code
understanding and generation. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track
(Round 1), 2021.

[75] Tree-sitter. https://tree-sitter.github.io/tree-sitter.

16

	1 Introduction
	2 Related Work
	3 Multitask Vulnerability Definition
	4 Methodology
	4.1 Semantic Vulnerability Graph of a Program
	4.2 SVG Node Embedding using RoBERTa
	4.3 Multitask RoBERTa-PFGCN

	5 Experiments And Discussions
	5.1 Datasets
	5.2 Data Pre-Processing
	5.3 Performance Evaluation
	5.4 Time and Memory Analysis
	5.5 Ablation Studies

	6 Conclusion and Future Work
	References

