
Systematic Improvement of Access-Stratum Security in Mobile Networks

Rhys Miller, Ioana Boureanu, Stephan Wesemeyer, Zhili Sun
University of Surrey, UK

rhys.miller@surrey.ac.uk, i.boureanu@surrey.ac.uk, s.wesemeyer@surrey.ac.uk & z.sun@surrey.ac.uk

Hemant Zope
Fraunhofer FOKUS, Germany, hemant.zope@fokus.fraunhofer.de

Abstract—In mobile networks, the User Equipment (UE)
secures some of the communication with its serving Radio
Access Network (RAN) node (“base station”) via a set of
keys known as Access Stratum (AS) keys. Unfortunately,
the level of secrecy of these keys varies with the mobile
procedures re-establishing them. To improve the secrecy of
the AS keys, we propose minimal changes to 5G & 4G
handovers, i.e., the main AS-key establishment procedures.
We show the minimality of our changes also via an imple-
mentation of one of our protocols in the 3GPP-compliant
Open5GCore 5G testbed. We also systematically cross-
compare standard handovers with our amended handovers
using MobTrustCom: a framework to quantify especially
trust but also communication complexity in mobile networks.
Moreover, we use Tamarin, a formal security-protocol ver-
ification tool, to prove no loss of “classical” security yet an
increase in AS-keys’ secrecy brought by our improvements
to handovers.

Index Terms—Formal Verification, Security, Mobile Commu-
nications

1. Introduction

Modern 5th Generation Mobile Networks (5G) are
proliferating fast, offering new services as well as promis-
ing better security compared to earlier generation net-
works [1]. One such security aspect deals with the
application-layer traffic (or Access Stratum traffic in 5G
terminology) between the User Equipments (UEs) and
their serving RAN nodes. This AS channel is secured
with a set of keys called AS keys. It is well-known [9]
that, in some instances of the mobile procedures/protocols,
the AS keys do not have backwards security, i.e., under
some conditions, a party knowing the current value of
a specific key might be able to compute another party’s
future AS keys. Not for AS keys, but for the keys that they
are derived from, recent work [27] formally showed that
rogue RAN nodes can make the lack of secrecy persist for
longer, unhindered; no solutions were explored therein.

Access-Stratum Backwards Security. In this vein,
we look at the backwards (in)security specifically of the
AS keys, and, particularly, in the context of a set of
mobile procedures called handovers. Handovers are ini-
tiated whenever the radio node, which has so far provided
service to a user, needs to change, e.g., because the user

is now out of its range. The most common handovers are:
the XN handover procedure (XN) and N2 handover proce-
dure (N2) in 5G, and their corresponding 4th Generation
Mobile Networks (4G) versions: X2 handover procedure
(X2) and S1 handover procedure (S1).

Trust & Communication-Costs Playing into Secu-
rity Gains. We are also interested in two aspects associ-
ated to security: trust and communication costs.

Firstly, with regards to trust, the UEs, i.e., devices
with a Subscriber Identity Module (SIM), are becoming
more complex while at the same time, the RAN-nodes
are more diverse, with, for example, small cells appearing
from various third-party providers [24], most of which run
proprietary software. This arguably increases the number
of potentially untrustworthy “players” present in a mobile
network. Thus, to have better chances to catch and/or stop
possible compromises, key-derivation should be done by a
trusted party, or jointly by several parties: e.g., not just by
a corruptible RAN-node, but rather by the trusted core or
the core together with a RAN-node. It is thus important to
quantify the different levels of trust placed on the many in-
teracting components in mobile networks. In this work, we
define notions of trust in mobile networks; we then apply
these systematically to the handover protocols and other
procedures, as well as our security-driven improvements
of handovers, in order to cross-compare them amongst
themselves while, at the same time, showing how security
and trust attainment vary alongside.

Secondly, intuitively, a procedure with better trust
levels may incur a higher communication costs than one
with lower trust levels. So, especially when leveraging
different trust values, quantifying also the communication
costs in (any amendment of) any procedure is sensible. We
therefore also define certain measures of communication
costs in mobile networks, to evaluate our propositions for
security improvements.

Our definitions of trust and communication measures
in mobile procedures make up a framework which we call
MobTrustCom. In this way, we are able to systematically
look at how varying security gains in access-stratum mo-
bile security require different levels of endowed trust in
various mobile-network entities, as well as imply different
communication costs of mobile procedures.

Contributions.

1. We propose a series of protocols which modify the
XN/X2 handover procedure (X2) handovers in a system-

atic, as well as minimal way w.r.t. the 3GPP specifica-
tions [6, 8], in order to recover the backwards security for
the AS keys.
2. To ascertain the minimality of our changes, we im-
plement our of extensions to the XN/X2 protocol in
the well-known and 3GPP-compliant Open5GCore 5G
network testbed [22]; we show no loss of functionality or
depreciation of efficiency.
3. We carry out formal verification of all our proposed
improvements to XN/X2. We show that XN/X2 does
not have backwards security of the AS keys and that
our protocols gain that, whilst losing no other security
guarantees.
4. We propose the MobTrustCom framework, motivated
by measuring how much trust and what communication
costs are associated to access-stratum security and poten-
tially improvements to it in mobile networks. It provides
fine-grained measures of trust, “split-trust” and explicit
descriptions of communication costs in mobile networks.
We apply MobTrustCom to some of the main protocols
in 5G and 4G (handovers and other key-establishment
protocols such as the Registration procedure (REG)) and
compare our security-improving solutions amongst them-
selves, as well as against existing mobile procedures w.r.t.
the MobTrustCom’s trust and communications cost.

2. Access-Stratum Keys & Handovers in 4G
and 5G Networks

We now provide the background on certain aspects
of mobile networks. First, we present a general overview
of the network and the procedures relevant for this work
(Section 2.1), and then we discuss the establishment and
security of AS-keys (Section 2.2).

The details we provide next are based on the following
3rd Generation Partnership Project (3GPP) specifications:
TS 23.401 [2], TS 33.401 [5], TS 36.423 [3] and TS
36.413 [6] (release 8 for 4G), and TS 23.316 [7], TS
23.501 [8], TS 23.502 [12], and TS 38.423 [10] (release
16 [11], for 5G). Given this enumeration, we do not
always re-cite all specifications throughout the paper.

Glossary. We include below a summary of the most
relevant acronyms and concepts herein:

2.1. The Network

In Figure 1, we give an overview of both the 4G and
5G network architectures.

Users. In 4G/5G networks, a UE receives service from
its operator, whose main backend infrastructure we refer
to as the core network. Each UE’s SIM contains several
long-term cryptographic secrets which it shares with the
core. The ones relevant to this work are the KAMF key (in
5G) and the KASME key (in 4G).

Radio Access Nodes. At any point, a UE is provided
with mobile service through a radio “base-station” denoted
Evolved Node B (eNB)/ Next Generation NodeB (gNB)
in 4G/5G, respectively1. These nodes also communicate
with the core network and other nodes. The combination
of them forms the RAN.

1. We refer to both eNBs and gNBs as RAN-nodes or simply nodes.

eNB “Evolved Node B” = radio node or base-station in late-stages of 4G

gNB “Next Generation NodeB” = radio node base-stations in 5G

RAN “Radio Access Network” = the network of radio nodes or base-stations in mobile
networks

UE “User-equipment” = phones, tablets, cars, etc., i.e., all devices with mobile
service

AS Access-stratum = the protocol-level on which data/voice is exchanged encrypted
between any UE and radio nodes

kgNB A security key shared by any UE and its serving node; re-established at the end
of all handover procedures

kAS “access-stratum key” – key shared between any UE and its serving node used to
encrypt the access-stratum traffic; based directly on kgNB above

XN Handover procedure and communication interface in 5G

X2 The analogue of XN above but in 4G

N2 Handover procedure and communication interface in 5G
S1 The analogue of N2 above but in 4G

AKA “Authentication and Key Agreement” procedure = the main procedure to
authenticate a UE onto a mobile network

REG “Registration” procedure = the main procedure to start/restart serving a UE
onto a mobile network; contains the AKA above as sub-procedure

AMF

Access and Mobility Management Function = authentication server in 5G

RRC “Radio Resource Control” = parameters linked to radio nodes and UE
communicating at radio levels; re-established at the end of Reg, and often at the
end of handovers

NH “next-hop” key – a key that the core generates to inject occasional freshness
into kgNB keys

NCC “Next Chain Counter” – a counter in sync with the number of NH keys generated

UE1 UE2 UE3

UEn

End Points

eNB1 eNB2 eNB3

eNBn

4G Radio Access Network

X2

X2

4G Core

Core

S1

S1
S1

UE1 UE2 UE3

UEn

End Points

gNB1 gNB2 gNB3

gNBn

5G Radio Access Network

XN

XN

5G Core

Core

N3

N2
N1

Figure 1. Telecommunication Network Diagrams

Communication Interfaces. All channels between the
nodes themselves, as well as the nodes and the core are
secure (i.e., confidential, integer and authenticated). This
work is not concerned with this security aspect.

In Figure 1, some connections between entities are
annotated by letters. These stand for communication in-
terfaces: S1 interface (S1), X2 interface (X2), N2 interface
(N2), XN interface (XN), etc. Each such interface largely
corresponds to a mobile procedure being run over it.

Trends in Handover Interfaces/Procedures. We
pause on handover interfaces/procedures, as they are the
subject of this paper.

Firstly, we note that not all RAN-nodes are connected
via an XN/X2 interface in 5G/4G, but all are connected
to the core via an N2/S1 interface in 5G/4G. So, all
nodes can execute N2/S1 “handover” protocols in 5G/4G,
but not all can execute XN/X2 “handover” protocols in
5G/4G.

In fact, 4G’s X2 was introduced to optimise the S1
handover procedure (S1), which involved costly commu-
nication with the core for deriving new cryptographic

keys; instead, in X2, these just requires communication
between the RAN nodes. Hence, in infrastructures updated
after 2014, phones will always use X2 over S1 unless the
involved RAN-nodes have not yet been updated to support
X2. This carries forward similarly from 4G to 5G: that is,
XN which is the new version of 4G’s X2 is supported
only by the newer infrastructures, whereas the N2 – the
new version of 4G’s S1 – is supported by all RAN-nodes.

So, especially since 5G pledged better quality-of-
services, the trend is to move from S1/N2 to X2/XN, with
any infrastructure update, as S1/N2 are disfavoured due to
efficiency loss compared to X2/XN. See more at [13].

Access-Stratum (AS) Level. After any handover, a
UE is served by a single RAN-node, communicating
securely at the AS level: i.e., the interface over which the
mobile-service messages are sent/received. The backward
(in)security of (re-)establishing the keys to secure the AS
level is the subject of this work.

2.2. Securing UE-to-RAN

We will now describe the role of the AS keys, their
derivation and their backwards (in)security.

AS Keys. Actual mobile-service messages or access-
stratum messages are exchanged securely between any one
UE and a RAN-node. The two entities, using the core, first
establish a secure channel by using the Authentication
and Key Agreement (AKA) protocol, which is part of
the Registration (REG) procedure. Messages sent over the
channel between UE and its serving node are, in fact,
secured with the so-called Access Stratum keys, which we
broadly denote as KAS . These AS keys2 are first derived
during REG [9, 5] and refreshed during several procedures
such as handovers [10, 3].

AS Keys & The “Security Key” KxNB . The AS
keys are derived using a so-called “security key” denoted
KgNB in 5G, and KeNB in 4G; we call it KxNB . This
KxNB is (re-)established during a series of procedures
and sub-procedures such as: the AKA procedure, the Han-
dover procedures [10, 3] and the Radio Resource Control
reconfigurations that happen when the UE “wakes” up and
moves from Idle state to Connected state. The AS keys
are computed from the KxNB key as per Equation 1:

KAS = KDF(KxNB , identifiers, constants), (1)

where the “identifiers” generally identify a RAN-
node, KDF stands for “key derivation function” and, in
the current specifications [4], is a HMAC-SHA-256.

Figure 2 gives an overview of KAS keys in the context
of handovers and their secrecy over several parties therein.
Figure 2 also aids with the next descriptions.

AS Keys’ Computation. By Equation 1, a party who
has the current KxNB also knows or can easily retrieve
the associated KAS .

These keys are “ratcheted", meaning that a new
KxNB(a.k.a K∗xNB) will be re-generated from keys per-
taining to KxNB’s session, and K∗xNB will generate the
new KAS (a.k.a. K∗AS). See the “10:16 traffic” in Figure 2.

2. There are several AS keys, which include KRRCINT ,
KRRCENC , KUPINT and KUPENC , used for integrity protection
and encryption of the Radio Resource Control (RRC) and the User Plane
(UP) traffic at the AS-level respectively. The only differences in their
derivation is the key derivation function used (but not the actual seed-
key) and some constants. This work is not concerned with their specific
usage and we refer to them all as the access-stratum key(s) KAS .

To determine which mobile-network parties know the
current KAS and if this entirely desirable or not, we
need to understand better the aspects linked to Figure 2,
described as (a) and (b) below.

(a) Who has the latest KxNB . The security key
KxNB used to generate the latest AS key for a given
UE and its serving RAN-node is known between the UE
and its currently-serving RAN-node. The UE will always
know the materials needed to generate the KxNB and
future versions, as the UE generates this key KxNB itself.
For the currently-serving RAN-node, the acquisition of the
latest and future KxNBs is more involved.

(b) How is the latest KxNB computed. The KxNB

keys are refreshed in the AKA/ REG procedure (see case
(b1) below), in the Handover procedures (see case (b2)
below) and during Radio Resource Control reconfigura-
tions (see case (b3) below).

(b1) AS Keys’ Computations in the Registration
Procedure. The Registration procedure (REG) procedure
is run between a UE and the core, and it is passively
proxied by a RAN-node which will serve the UE there-
after. During REG, the core authenticates the UE and
the procedure refreshes a series of keys at the UE’s and
the core’s end. The “lowest-level key” regenerated at the
end of REG is called KAMF in 5G and KASME in 4G,
which is then used by both the UE and the core to derive
KxNB . The core sends KxNB to the node that proxied the
REG procedure, and this node will then use this shipped
KxNB to generate KAS .

(b2) AS Keys’ Computations in the Handover Pro-
cedures. A handover procedure is executed when a UE is
being served by a node already, and the two share a current
KxNB . Moreover, the node may or may not (depending
on the procedures it ran in the past) have a fresh/unused
Next-Hop key (NH), sent previously to it by the core in
another handover.

We will now look at the different handovers that can
be run amongst a UE, its current serving source node
(sNode), its target node (tNode), i.e., the node that will
next serve the UE, and the core.

10:00

10:15

UE 1 Node 1

Node 2

10:00 traffic
encrypted with
KAS which is
based on KxNB

10:16 traffic encrypted
with K*AS which is
based on K*xNB which
may be based on
the 10:00 KxNB

KAS, KxNB, K*AS, K*xNB KAS, KxNB

K*AS, K*xNB

core

10:13

10:12: Node1 hands over UE1 to
Node2. Node2 will serve UE1 next.

• If the handover is XN, then Node1
knows the next keys, K*AS, K*xNB
which Node2 will use with UE1 !

• If the handover is N2, then the lack
of key-secrecy above is not the
case, but N2 is more costly than
XN, as it actively involves the core
in the actual key derivations.
Newer infrastructures will avoid
using N2, therefore.

Figure 2. Access-Stratum Keys in Handovers: Birds-Eye View

(b2.1). In both the XN/X2 handovers, the sNode will
use its latest KxNB or, if available, NH to compute the
so-called K∗xNB and the sNode will (securely) send the
K∗xNB to the tNode. This K∗xNB now becomes the current
KxNB used to compute the KAS keys between the UE
and the tNode.

At the end of XN/X2, the core sends (securely) a new
NH to the tNode, which will use this NH value to compute

the next KxNB in future runs of the procedures in which
KxNB may be refreshed (cases b1, b2, b3).

In XN/X2 handovers, we speak of vertical key deriva-
tion (vkd) or horizontal key derivation (hkd) respectively,
when K∗xNB is computed from the latest core-issued
NH value or when K∗xNB is simply ratcheted from the
“node-resident” security key KxNB . We summarise this
distinction in the equations below:

K∗
xNB = KDF(KxNB , tNode, const) hkd of K∗

xNB (2)
K∗
xNB = KDF(NH, tNode, const) vkd of K∗

xNB (3)

We use XNvkd, X2vkd and XNhkd, X2hkd to differ-
entiate between handovers using vertical/horizontal key
derivation respectively.

(b2.2). In the N2 and S1 handovers, the derivation of
a new K∗xNB always uses a stronger, core-coordinated in-
stance of vertical key derivation. During these handovers,
the core computes a new NH and sends it (securely) to the
tNode. The tNode uses this NH to compute the KxNB and
then derives the KAS from this KxNB . Similarly, the UE
receives enough information from the core via the sNode
to compute the K∗xNB and the KAS , just as the tNode did.

Note 1. So, at the end of XN/X2 and during N2/S1
handovers, the tNode has a new NH. This NH will be used
to derive KxNB within the very N2/S1 run, or K∗xNB —
in a future execution by this node of XN/X2 or of other
procedures like RRC reconfigurations.

(b3) AS Keys’ Computations in the Idle-to-
Connected UE State-Change. If a UE goes Idle whilst
being served by one RAN-node and “wakes” up3 from this
state onto the same node (e.g., if the UE has not moved),
a new K∗xNBand a new KAS will be re-computed by the
UE and the node. In this case, if a fresh NH is present
on the node, it will be used (in a vkd. for K∗xNB) to
generate the security key (see Note 1 above).

Note 2. In the Registration procedure and in variants4

of N2/S1 handovers, KAMF /KASME are used by the core
and the UE to generate the new security key K∗xNB . At
that stage, these KAMF /KASME keys, which are shared
between the UE and the core and authenticate the former
to the latter, are also re-generated.

AS Keys’ Backwards Insecurity. Given Equa-
tions (1), (2), (3) and points (b1) - (b3), it is clear that:

1) In XN/X2 handovers, a “detaching” source node can
compute the future AS keys between the UE and the
“attaching” target node (by point b2.1 above).
This is equivalent to saying that the XN/X2 handovers
do not have backwards security/secrecy of the access-
stratum (AS) keys, relating to potentially corrupt
(source) nodes. This is known [9, 5], for both X2
in 4G and XN in 5G.

Note 3. There is generally only a case of “one-hop”
lack of AS keys’ backwards security in XN/X2 handovers,
i.e., this lack can be remedied in two or more hops due to
the target node applying vkd with a fresh NH value when
renewing KxNB .

3. If there is no user-plane activity to/from the UE for a certain time,
the network “moves” the UE to an Idle state – to reduce the UE’s
power consumption. 5G introduced an additional Inactive state, which
also triggers the re-computation of the AS keys.

4. These variants are “N2/S1” with “KAMF /KASME” re-keying.

2) The N2 and S1 handovers do have backwards secu-
rity/secrecy of the AS keys, relating to potentially
corrupt (source) nodes, by point b2.2 above.
These two points b2.1 and b2.2 on backwards secu-
rity/secrecy of the AS keys in handovers are captured
at one glance in Figure 2.

3) The REG/AKA procedures do have backwards secu-
rity/secrecy of the access-stratum (AS) keys, relating
to potentially corrupt nodes that served the UE prior
to the current-serving node running the REG/AKA
procedures, by point b1 above.

Note 4: So, up to here, we see that N2/S1 handovers
are more secure compared to XN/X2 w.r.t. the security
of newly derived AS keys. But, due to the involvement
of the core in these key derivations, N2/S1 require in
fact additional as well as more “costly” messages than
XN/X2 do. We explicitly quantify such extra costs in
Section 6, see e.g. Table 3. In other words, the XN/X2
handovers are more efficient than N2/S1 handovers and
hence preferred whenever the RAN-nodes support them,
especially in newer infrastructures; the current trend is to
add XN/X2 support and disfavour N2/S1 executions [13].

2.3. XN and X2 Handovers: Protocol Flows

Figure 3 describes the relevant details of XN/X2 han-
dovers. It covers both horizontal and vertical key deriva-
tions, as per Equation 2 and Equation 3.

UE
(IMSI,ue-ids, ue-other-ids,
KxNB , NH’, NCC’,
KAMF /KASME , . . .)

sNode
(ue-ids, KxNB , NH, . . .)

tNode
(TNID)

Core
(ue-other-ids,

NH, NCC,
KAMF /KASME , . . .)

1. MSR

2. Generate K∗xNB= KDF(KxNB or NH, cellID)

3. HandoverRequest (KxNB , ue-ids, UECaps, . . .)

4. Generate KAS

KAS = KDF(K∗xNB , TNID)

5. HandoverRequest_ACK (ue-ids’, Alg, . . .)

6. RRCReconfiguration enc((ue-ids’,TNID ,Alg); KxNB , . . .)

7. Generate K∗xNB

next NH’, . . .
Generate AS Keys
KAS= KDF(K∗xNB ; ...)

8. RRCReconfigurationComplete enc((ue-ids’,TNID, . . .); K∗
xNB)

9. Packet Switch Request (ue-ids,ue-ids’, . . .)

10. Generate
next-NH, next-NCC
for future KxNB

11. next-NH and next-NCC

12. MRU enc((ue-ids’, . . .); K∗
xNB)

13. Reg-Request

14. Reg-Accept enc((ue-ids’, ue-other-ids’, NCC, . . .);KAMF /KASME)

Decrypt with
KAMF or
KASME...

Optional

Figure 3. The XN/X2 Handover Protocols

We now explain Figure 3. UEs send reports on radio-
signal strength called “measurement reports (MSR)” to
their serving nodes. The XN/X2 procedure starts when a
UE-serving sNode decides, usually based on these MSRs,
to hand the UE over to a tNode. The sNode then generates

the security key K∗xNB using either a horizontal or vertical
key derivation (Equation 2 or Equation 3) and, in message
3 of Figure 3, this new security key is sent to the tNode.
At this stage, the tNode generates the new KAS keys; this
is as per equation Equation 1 with “identifiers” therein
being the tNodeID. In message 5, the tNode sends to the
sNode the acknowledgment of the handover request which
contains ue-ids’: i.e., tNode generates new ephemeral IDs
for the UE to use after the handover5. In message 6, the
sNode sends the “Radio Resource Control (RRC) recon-
figuration message” to the UE containing details related
to the tNode, UE’s updated IDs, and the algorithms to
use in order to do the right (type of) key-derivations. This
message is encrypted with the current KxNB that the UE
and the sNode (still) share. The UE now generates the new
security key K∗xNB ; it will also regenerates other keys and
counters, e.g., NH and Next Chain Counter (NCC). The
UE then sends a “RRC reconfiguration complete” message
(message 8 in Figure 3), encrypted with the new K∗xNB
key, to the tNode. This also serves as a key-confirmation
step between the UE and the tNode, and it ensures they
have computed/received the same K∗xNB and will use the
right IDs and (RRC) parameters. At this stage, the UE
and the tNode effective share a new KAS key, and could
start communicating securely.

Yet, asynchronously, another part of the protocol con-
tinues, mainly between the tNode and the core. The tNode
sends a “packet switch request” to the core signalling
a handover is taking place and providing the necessary
details (e.g., the IDs of the UE). Upon receipt, the core re-
generates a series of parameters including counters, such
as NCC and the NH key6 labelled “next-NH”. The core
then sends the new NH and NCC to the tNode to use in
the future computation of KxNB by vkd. (see message 11
on Figure 3). At this stage, the tNode is confirmed by the
core as the node to serve the UE now and the handover
to the tNode by the sNode can be considered finished.

The Phase of Mobile Registration Updates
(MRU): “XN/X2_noMRU”. vs. “XN/X2_MRU”. XN/X2
handovers often continue with messages 12 to 14 as
per Figure 3, i.e., with a “Mobility Registration Update
(MRU)”. According to TS 23.502 [12] (Sections 4.9 and
4.2.2.), a “Mobility Registration Update” is akin to a
shorter re-registration of the UE . It occurs at the end
of a XN/X2 handover, if a) the UE has to be served/au-
thenticated by a different server of the core (e.g., a new-
area 5G Core Access and Mobility Management Function
(AMF)), or b)“the UE needs to update its capabilities or
protocol parameters”, which have been negotiated in the
Registration procedure, as well as in two other cases of
no interest here. In 5G, these capabilities and protocol
parameters include details such as settings and updates
linked to “PDU (Protocol Data Unit)” sessions. These
PDU sessions facilitate the management of complex sub-
scribers’ plans, their billing and quality-of-services related
to UE s getting onto the the data network via all-to-often
specific, local gateways/User Plane Function (UPF)s, to
allow for even preferential treatment for certain services

5. One of these is the C-RNTI, but we abstract this away here.
6. Note that the core and the UE are in sync with respect to the NCC

and Next-Hop key (NH) values, but the UE is one step behind on their
derivation/increment, which is why in our figure we use “NH’ ” and
“NH” for the UE and the core, respectively.

included in the subscribers’ plans, e.g., WhatsApp traffic,
and not for others. So, in 5G (especially in what is
called “SA (standalone) 5G”, i.e., full-capability 5G), this
MRU part (messages 12 to 14 on Figure 3) occurs after
handovers more frequently than in 4G.

In message 14, the core sends to the UE freshly-
generated parameters such as new ephemeral IDs (e.g.,
new 5G-TMSI, 5G-GUTI) by which the core identifies
the UE, denoted ue-other-ids’ in Figure 3. This message
is encrypted with KAMF in 5G and with KASME in 4G.

To consider the protocol finished with respect to cryp-
tographic key-agreement as well as key/parameter con-
firmation not between 2-by-2 parties but between all 3
parties involved (i.e., UE , tNode and core), the MRU
phase would be necessary. In a sense, the extra complexity
added by 5G vs 4G, whereby this MRU phase is more
frequent, improves the multi-party security of XN/X2.

Note that when we explicitly require that an XN/X2
execution includes an MRU phase, we use the shorthand
XN/X2_MRU. Conversely, when an XN/X2 execution is
not followed by an MRU phase, we use the shorthand
XN/X2_noMRU. If we simply write XN/X2, then –as
per the 3GPP specifications– the corresponding XN/X2
execution may or may not contain an MRU phase.

Note 5: Crucial Handover Exchanges for UE-
tNode-core relating to AS Reconfiguration. The AS-
keys’ establishment between the UE, the tNode and core
is the focus of this work. To this end, messages 8, 9, 11,
as well as 14, are the crucial messages that bring these
3 parties (i.e., UE , tNode, core) in agreement over the
AS-channel reconfiguration.

3. Threat & Trust Model

Our new designs are adding provable AS backwards-
security w.r.t. the following realistic threat model:
• the core and UEs are honest;
• the RAN nodes are honest-but-curious, i.e., they fol-

low all the protocols but might use their onboard
implementation/specification to execute legal options
such as to downgrade the security 7;

• we assume a network attacker that listen onto and
inject messages into channels, but all communication
channels that are secure stay secure and attackers do
not subvert cryptography.

This is a realistic level of threat, i.e., we do not assume
fully malicious RAN-nodes, as that is less realistic to
3GPP (to whom we disclosed our findings). Moreover,
for backwards secrecy in handovers, which is the property
we will improve here, honest-but-curious is sufficient, as
Section 2 explained.

In Section 5, this threat model is cast into the well-
known Dolev-Yao (DY) model [21], which is slightly
stronger (e.g., corrupted parties other than the one running
the current protocol-sessions can be executed by the DY
attacker, in parallel with the ones under security scrutiny).
Therefore, all that is proven secure in the DY, formal
model is secure in our threat model as given above.

7. Specifically, the RAN nodes may exploit the lack of backward
security of the AS keys in XN/X2, to keep executing XN/X2 such as to
ensure that future traffic remains readable to them when it should not
be if, e.g., N2/S1 was run instead.

The threat model given above is kept throughout the
paper. In Section 6 alone, we also add elements of trust
measures to it, as follows:
• any UE is less trusted than any RAN node, which in

turn is less trusted than the core;
• these trust measures compose under addition as

would be expected: e.g., the core and a RAN node
running together a procedure are more trustworthy
than the core and UE running a version of that
procedure together, etc.

Our trust model is also realistic: i.e., it is easier to
corrupt a phone than a RAN node, which, in turn, is
easier to corrupt than the core. In fact, in Section 6 we
quantify the endowments/costs needed to gain trust: a lot
is required to trust a UE, less to trust a base-station, while
trust in the core is almost taken for granted.

4. Improving Access-Stratum Keys’ Security
in 4G/5G Handovers

From Note 3 inSection 2.2, XN/X2 protocols (be
it XN/X2vkd or XN/X2hkd, i.e., no matter the key-
derivation options) do not have backwards security of AS
keys: the detaching source node sNode can compute the
AS keys to be shared between the attaching target node
tNode and the UE.

We now propose a series of enhancements to XN/X2
which not only recover this key-secrecy loss, but do so
via minimal changes to XN/X2 (e.g., adding a 32-bit
nonce to one or more existing XN/X2 messages) to be
as backwards-compatible as possible.

Main Idea in All Our Protocols. To recover AS-keys’
backwards security, in principle, the tNode and/or the UE
could generate at most one new secret each, to input into
the AS keys’ computation, and then find a way to share
the newly-generated secret(s), without the sNode being
able to obtain said secret(s). This would clearly break the
chain of backwards insecurity of the AS keys w.r.t. sNode.
Hence, we categorise protocols that achieve this aim of
re-provision of AS-keys’ backwards security into three
classes, depending on which entities (i.e., UE or RAN
node, or both) are actively involved in the augmented AS-
key generation:

1) Enhanced XN/X2 with Added AS Backwards Security
via RAN Operations: The tNode alone determines the
final value of the AS keys via a locally generated
secret and securely sends this secret to the UE across
the network (without the sNode getting it).

2) Enhanced XN/X2 with Added AS Backwards Security
via UE Operations: The UE alone determines the
final value of the AS keys via a locally generated
secret and securely sends this secret to the tNode
across the network (without the sNode getting it).

3) Enhanced XN/X2 with Added AS Backwards Security
via UE-RAN Shared Operations: The tNode and the
UE both contribute with new secrets to the AS keys
and securely exchange their new secrets (without the
sNode getting them).

We give one concrete protocol in each of the classes
above, in such a way that all our concrete protocols require
minimal and backwards-compatible changes to XN/X2,

i.e., we introduce no new messages in XN/X2’s 3GPP
specifications, and we try to leverage existing fields in
these messages.

In Section 5, we formally verify that all our proposed
protocols do indeed provide backwards security of AS
keys. In Section 6, we systematically quantify the differ-
ent efficiency and complexity trade-offs of our XN/X2
protocols vs. existing comparable protocols, using our
MobTrustCom framework. In Section 7, we show a
5G implementation of our protocol realising “ Enhanced
XN/X2 with Added AS Backwards Security via RAN
Operations ”, called XN/X2RANc . In this way, we also
concretely re-ascertain how close it runs to the current
XN/X2 5G-standard: i.e., in the implementation, we only
use existing 5G messages and fields.

4.1. A Realistic, Enhanced XN/X2 with Added AS
Backwards Security via RAN Operations

UE
(IMSI,ue-ids, ue-other-ids,
KxNB , NH’, NCC’,
KAMF /KASME , . . .)

sNode
(ue-ids, KxNB , NH, . . .)

tNode
(TNID)

Core
(ue-other-ids,

NH, NCC,
KAMF /KASME , . . .)

1. MSR

2. Generate K∗xNB= KDF(KxNB or NH, cellID)

3. Handover Request(KxNB , UECaps, . . .)

4. Generate a timestamped nonce T1
KAS = KDF(K∗xNB , TNID, T1)

5. Handover Request ACK(ue-ids’, Alg, . . .)

6. RRCReconfiguration enc((ue-ids’,TNID ,Alg, . . .); KxNB)

7. Generate K∗xNB

8. RRCReconfigurationComplete enc((ue-ids’,TNID , . . .); K∗
xNB)

9. Packet Switch Request (ue-id,ue-ids’,T1,K∗
xNB , . . .)

10. Generate next-NH and
next-NCC for next KxNB

11. next-NH and next-NCC

12. MRU enc((ue-ids’, . . .); K∗
xNB)

13. Reg-Request

14. Reg-Accept enc((ue-ids’, ue-other-ids’, K∗
xNB , TNID , T1, . . .;KAMF)

Decrypt using KAMF /KASME

Generate AS Keys based on T1
KAS= KDF(K∗xNB ; ..., T1)

Figure 4. XN/X2RANc – a New Enhanced XN/X2 with Added AS
Backwards Security via RAN Operations

Our XN/X2RANc Protocol. We now present our
first enhancement of the XN/X2 protocol, XN/X2RANc .
Again, the main idea is to provide backwards security of
AS Keys by adding at least one extra ingredient to the
AS-keys’ derivation, which is and remains secret to the
sNode during the XN/X2execution, and –if possible– to
do so in a manner which is as aligned with the current
XN/X2 specifications as possible.

Figure 4 shows our XN/X2RANc protocol, in which
this secret ingredient, a 4-byte nonce T1, is generated by
the tNode. This nonce T1 is then input into the AS-keys’
computation, as per step 4 on Figure 4.

Compared to XN/X2 (see Figure 3), just two messages
(message 9 and message 14) are changed to send this
nonce across from the tNode to the UE . Clearly, for the

UE to be able to compute the AS keys –now based on the
T1 nonce– as well, T1 needs to be sent from the tNode to
the UE, but not via the sNode to prevent the sNode from
computing the AS keys. Given the communication links
in handovers, T1 can therefore only go from the tNode
to the UE via the core, which can encrypt it with a key
shared just between the core and the UE. Figure 4 reflects
this in messages 9 and message 14, which now contain
T1 as described here.

Note that XN/X2RANc enhances XN/X2in the same
uniform way irrespective of whether horizontal or vertical
key derivations are used inside XN/X2.

XN/X2RANc : Proposition & Adoption. If our pro-
tocol were to be adopted, then a new, bespoke field for T1
will need to be added to the 3GPP specifications, ideally
inside the “security capabilities” and/or “security context”
of the UE (see Section 4.2.2 of [12]), as the nonce carried
within is an element contributing to the AS-keys’ security.

4.1.1. XN/X2RANc : Security.
XN/X2RANc ’s Threat Model. In all our premises and

designs, we distrust sNodes: they may/will act on their
ability to compute the AS keys between UE and tNode
to decrypt the AS traffic between UE and the new-serving
tNode. In XN/X2RANc , we trust the core to act honestly;
if the core were malicious, then it could obviously send
T1 to the sNode thus breaking the security of our protocol.

XN/X2RANc – Provable AS Backwards-Secrecy. In
Section 5, we formally show (in the Tamarin prover [26])
that XN/X2RANc does add backwards security of AS
keys to XN/X2 by just adding a 4-byte nonce to only
two existing XN/X2 messages.

4.1.2. XN/X2RANc : Efficiency w.r.t. 3GPP Messages.

XN/X2RANc - Low Communication Impact. Note 5
in Section 2.2 indicates messages 8, 9 and 14 in Figure 3
are the best candidates for implementing XN/X2RANc

efficiently and sending T1 from the tNode to the UE. As
seen in Figure 4, XN/X2RANc overloads only messages
9 and 14 of the XN/X2 handover, adding just one 4-byte
field to each of these two messages.

However, note that since we use message 14 to deliver
T1 to the UE in order for it to compute the AS-keys,
our XN/X2RANc makes the MRU phase of XN/X2
obligatory after each handover execution. That is, a run
of XN/X2RANc is always a run of XN/X2_MRU. Thus,
in practice, our XN/X2 would lead to MRUs happening
more frequently in the mobile network.

The average increase in communication complexity
w.r.t. mobile-network relevant procedures will be dis-
cussed systematically and in depth in Section 6.

XN/X2RANc – Cost w.r.t. 3GPP Messages. When
comparing XN/X2_MRU in Figure 3 with XN/X2RANc

in Figure 4, we see that –apart from the generation of
T1 inside the AS-key generation and from messages 9
and 14 containing this extra nonce– the XN/X2RANc

protocol is identical to the XN/X2_MRU protocols.
Only to evaluate communication complexity, we now

describe where inside message 9 (“Path Switch Request”)
and message 14 (“MRU.Registration Accept”) our added
nonce T1 could be inserted in a way in-keeping with
the 3GPP XN/X2 standard [12]. For these matters, we

understandably focus on XN (not X2), i.e., on 5G and not
on 4G specifications.

Firstly, we chose this T1 nonce to be a 32-bit string,
since this size is in line with many other 3GPP fields [12].

Secondly, we note that neither the “Path Switch
Request” nor the “Registration Accept” in the 3GPP
specifications [12] have any “reserved for future use”
fields. Thus, to send T1 in a way in-line with the standard,
one would be extending and using fields in the “Path
Switch Request” and in the “MRU.Registration Accept”
of the XN protocol.
• In the “Path Switch Request”, two sets of UE-related
items, which are always sent, are the UE’s “security
capabilities” and the UE’s “user-location information”
(see Section 4.2.2 of [12]). Sending T1 in our of
these fields is akin complexity-wise to “overloading” a
“not-yet-filled-in” field/sub-field of these items, of 32
bit length or more, inside the “Path Switch Request”
(message 9). For a given UE, there is always more than
one such field not yet filled-in: e.g., unused algorithms in
“security capabilities”, timestamps inside “user-location
information”, etc.
• In the “MRU.Registration Accept”, two possible
sets of UE-related items are the UE’s “PDU sessions
list” and the UE’s “user-location information” (see
Section 4.2.2 of [12]). Again, to measure complexity in
the absence of a bespoke field for our T1, one could
simulate this sending by using any “not-yet-filled-in”
field/sub-field of these items, of 32 bit length or more,
inside the “MRU.Registration Accept” (message 14). For
a given UE, there is always more than one such field
not yet filled-in: e.g., data in an unused PDU sessions, etc.

XN/X2RANc – Negligible Impact on Mobile Traffic.
The above discussions show that our lift of XN/X2 to
XN/X2RANc via the addition of a 4-byte nonce would
impact very little on the overall communication costs of
a general XN/X2 (or XN/X2_MRU) run executing with
a number of normal fields (e.g., timestamps, algorithms,
PDU sessions) which varies from UE to UE. In other
words, an XN/X2-capable UE with several security
features, or with several PDU sessions (which likely
already runs MRUs after each handover) costs the
network in terms of communication complexity hardly
any less than a XN/X2RANc -capable UE, which just
sends an additional nonce in one such sub-field.

The above arguably makes XN/X2RANc a realistic
enhancement of XN/X2.

In Section 7, we show a concrete implementation
of our XN/X2RANc protocol on top of the XN 5G-
procedure.

4.2. Enhanced XN/X2 with Added AS Backwards
Security via UE Operations

Our XN/X2UEc Protocol. Figure 7, in Appendix A,
shows our protocol, XN/X2UEc , which provides back-
wards security of AS keys in XN/X2 by using the UE
to provide the required secret ingredient for the AS key
generation.

The Idea of XN/X2UEc . This time the UE generates
the new 4-byte nonce, T2, shown in red in Step 1 of
Figure 7), to be “injected” into the AS keys’ computation.

The UE needs to send T2 to the tNode, without the sNode
learning its value. This is achieved by encrypting T2 with
the UE’s KAMF /KASME key and sending it to the tNode
which then forwards it to the core for decryption as the
core shares the KAMF /KASME key with the UE.

Concretely, in XN/X2UEc , message 8 (RRC-
Reconfiguration-Complete) is used to send the encrypted
secret, T2, to the tNode. So, while the sNode can, in
theory, intercept and read this message, it cannot decrypt
the secret as it is encrypted with the KAMF /KASME

key, which is only shared between the UE and the core.
The tNode cannot decrypt it, either, but it can pass the
encrypted T2 on to the core for decryption, adding it to
message 9 (Packet-Switch-Request). The core decrypts T2
and sends it together with the new NH and NCC back to
the tNode (in message 11). The tNode can now compute
the new AS keys.

XN/X2UEc : Proposition & Adoption. If our proto-
col were to be adopted, then a new, bespoke field for T2
will need to be added to the 3GPP specifications, ideally
inside the “security capabilities” and/or “security context”
of the UE (see Section 4.2.2 of [12]), as the nonce carried
within is an element contributing to the AS-keys’ security.

4.2.1. XN/X2UEc : Security. The main discussions
on the AS keys’ security of XN/X2UEc is as for
XN/X2RANc , in Section 4.1.1.

Advantages of XN/X2UEc over XN/X2RANc . As
we will see formally in Section 6, XN/X2UEc has a better
level of “joint/global” trust than XN/X2RANc . Intuitively,
this is because in XN/X2RANc the responsibility of
AS-keys’ generation remains with the RAN (like in
XN/X2, we start from the premise of dis-trusting certain
RAN nodes); meanwhile, in XN/X2UEc , the UE also
has its “say” in the AS-keys’ generation, so RAN node
cannot control the AS-keys’ secrecy, even if they were to
collude à la [27].

XN/X2UEc – Cost w.r.t. 3GPP-Specified Messages.
To measure communication complexity, the way could
override existing fields in XN/X2’s 3GPP specifications is
largely identical to the discussions above, in Section 4.1.2.
Computation-wise, an extra encryption by the UE (i.e.,
enc(T2;KAMF /KASME)) and decryption by the core
(of the same enc(T2;KAMF /KASME))) are implied.

Advantages of XN/X2UEc over XN/X2RANc . Two
things are worth noting w.r.t. the advantages of
XN/X2UEc over XN/X2RANc in the context of both
being extensions of XN/X2. Firstly, whilst XN/X2RANc

imposes that each execution be followed by an MRU
phase (i.e., XN/X2RANc is a type of XN/X2_MRU), the
XN/X2UEc protocol does not do so: XN/X2UEc is a ex-
tension of XN/X2 preserving the optionality of the MRU
phase, i.e., when XN/X2 executes as XN/X2_noMRU,
XN/X2UEc executes as XN/X2_noMRUUEc , and when
XN/X2 executes as XN/X2_MRU, XN/X2UEc executes
as XN/X2_MRUUEc . This means that, on average, w.r.t.
mobile procedure executing, XN/X2UEc adds no over-
heads coming from extra MRUs. This will be discussed
systematically in depth in Section 6. Secondly, note that
the UE and the tNode get to share a new AS-key earlier
on in the handover execution, compared to XN/X2RANc .
This is also in line with the normal XN/X2.

4.3. Additional New Handovers with Backwards
Security of AS Keys

Enhanced XN/X2 with Added AS Backwards
Security via UE-RAN Shared Operations – Our
XN/X2RANc−UEc Protocol. Our final protocol is shown
in Figure 8 in Appendix A. It improves XN/X2 to have
AS keys’ backwards security by having both the UE and
the tNode generate new secrets to be “injected” into the
AS keys’ computation in such a way that the sNode does
not learn these secrets.

The Idea of XN/X2RANc−UEc . Simply put,
XN/X2RANc−UEc combines both XN/X2RANc and
XN/X2UEc into one protocol. Two 4-byte nonces, T2 and
T1, are generated by the UE and the tNode in Step 1 and
Step 5 (shown in red and blue in Figure 8), respectively.
As before, both nonces need to be moved to the other
party in such a way that the sNode does not learn their
values. As in XN/X2UEc , the RRCReconfigurationCom-
plete request (message 9 in Figure 8) carries the encrypted
T2 while the PacketSwitch request (message 10), which
is sent by tNode to the core, contains both T1 and the
encrypted T2. The core decrypts T2 and sends it back to
the tNode as part of message 11, at which point the tNode
can compute its AS keys. The core also sends T1 as part
of the Registration-Accept (message 14) to the UE, so that
the UE can compute the same AS keys as the tNode.

4.3.1. XN/X2RANc−UEc : Security & Efficiency. The
arguments here follow as per the cases of XN/X2RANc

and XN/X2UEc above.
The communication costs of XN/X2RANc−UEc are

clearly the highest of our proposed protocols, as it includes
all the changes from both XN/X2RANc and XN/X2UEc .
However, the changes to XN/X2 are still fairly minimal,
and can be made by overriding current field in 3GPP-
specified messages of XN/X2.

XN/X2RANc−UEc arguably provides an even better
trust-level than either XN/X2RANc or XN/X2UEc (as
even more parties get to know how to compute the AS
keys), albeit at a slightly increased communication costs.
Again, this will be discussed in detail in Section 6.

Note 6. It is important to mention our protocols
XN/X2RANc , XN/X2UEc and XN/X2RANc−UEc only
aim to improve the backwards security of the AS keys and
are not meant to achieve better multi-party key-agreement
for the AS keys. Whilst this latter strengthening is not
our aim, it is, nevertheless, trivial to implement: e.g., in
XN/X2RANc−UEc , the core would need to send not only
T1, but also T2 back to the UE thus allowing the UE to
verify the various secrets used in the computation of the
AS keys. Consequently, this incurs therefore even further
(yet still negligible) communication complexity. Please
see Note 9 in Section 6 for more details on this aspect.

5. Formal Verification

In Section 4, we demonstrated that our protocols,
XN/X2RANc , XN/X2UEc and XN/X2RANc−UEc ,
implement minimal “patches” to XN/X2 to provide back-
wards security of the AS keys and without compromis-
ing existing key-establishment security. We now formally

Lemma Meaning Proving Status Time
1 correctness-no-T1 Full executability of our handover model with a single handover. Proved 17.34s
2 correctness-with-T1 Full executability of XN/X2RANc with a single handover. Proved 16.49s
3 secrecy-of-ASKey-no-T1 in XN, backwards secrecy of AS keys w.r.t. tNode. Falsified 24.27s
4 secrecy-of-ASKey-with-T1 in XN/X2RANc , backwards secrecy of AS keys w.r.t. tNode. Proved 57.88s
5 secrecy-of-K∗

xNB-no-T1 in XN, backwards secrecy of K∗
xNB w.r.t. tNode. Falsified 28.43s

6 secrecy-of-K∗
xNB-with-T1 in XN/X2RANc , backwards secrecy of K∗

xNB w.r.t. tNode. Falsified 33.84s
7 injective-agreement-ASkey-

UE-tNode-no-T1
in XN, the UE and the tNode compute the same AS key in all sessions
run together.

Proved 43.87s

8 injective-agreement-ASkey-
UE-tNode-with-T1

in XN/X2RANc , the UE and the tNode compute the same AS key in all
sessions run together.

Proved 48.96s

9 injective-agreement-K∗
xNB-

tNode-sNode
in both protocols, the sNode and the tNode compute the same K∗

xNB in
all sessions run together.

Proved 13.64s

10 injective-agreement-K∗
xNB-

sNode-UE
in both protocols, the sNode and the UE compute the same K∗

xNB in all
sessions run together.

Proved 17.73s

TABLE 1. MAIN VERIFICATION RESULTS

demonstrate these security statements, via formal verifi-
cation in the Tamarin prover [26], a popular verification
tool for security protocols in the DY model [21].

Threat Model. We follow the threat model presented
in Section 3. That is, we assume honest UEs and honest
core, but honest-but-curious RAN-nodes, i.e., all nodes
follow the protocols but might use their “knowledge” to
exploit the lack of backward security of the AS keys.

Recall that a honest-but-curious source node running
XN/X2 will get to unwarrantedly know a next AS key
because this source node just computed the KgNB for
the target node. We model these unwarranted AS-keys’
computations by honest-but-curious RAN-nodes, as an
“out of band” leakage to the DY attacker of a computed
KgNB key, and we show that the corresponding KAS is
indeed computable by the attacker: i.e., all the remaining
parts of this computation are also derivable.

We do not model any other long-term key leakage,
e.g., leaking KAMF /KASME from the UE or the core,
as this is not part of the honest-but-curious threat model.

Models for the XN/X2 Handover and our Ex-
tensions. We modelled the standard XN/X2 handover
in Tamarin as well as all our protocols, XN/X2RANc ,
XN/X2UEc and XN/X2RANc−UEc , all including the
MRU phase.

In this section, we will focus on the modelling of
XN/X2RANc and refer the reader to our models for the
other variants.

All our Tamarin files are available at https://fmsec.
github.io/5gtechsec.github.io/.

Entities & Channels. Our models do not restrict the
number of UEs, sNodes or tNodes, but we only allow one
core which is a reasonable abstraction for our purposes.
Communication between the sNode, tNode and core is
via a secure channel, i.e., the DY attacker cannot interfere
with message on the core network.

The channel between the UE and the other parties is
not modelled as secure a priori, but, where required, mes-
sages to and from the UE will be sent encrypted using the
appropriate keys, e.g., KxNB , K∗xNB and KAMF /KASME .

Modelling XN/X2 & XN/X2RANc . Our
XN/X2RANc model encodes both the original, “standard”
XN/X2 protocol as well as our “enhancements” in one
single model. The variant executed during a proof
is determined by setting a "flag" in the statement of
the lemma to be proven: (T1=’no_T1’ indicates the
standard protocol while not(T1=’no_T1’) is used for

XN/X2RANc . Specifying this flag forces Tamarin –using
pattern matching or explicit equality checks– to include
those rules that provide the state transitions for the
relevant protocol while, at the same time, explicitly
excluding rules that provide support for the other
respective variant.

Modelling “one-hop” backwards (in)security of the
AS key. Unlike other prior handover models, we model
and focus on the key derivation of AS keys and their
security. We thus made the following modelling choices:

1) Recall that the AS keys only differ by some constants
passed to the KDF. We thus model just one AS key
derivation as this is representative of all the other
derived keys;

2) As we wish to investigate “one-hop” backwards
(in)security of the AS key, we only need to model
one single handover;

3) The nature of the handover (vkd or hkd), is unim-
portant for “one-hop” backwards security as the
K∗xNBwill be known to both sNode and tNode using
either method. So, given the AS derivation mecha-
nism in XN/X2, the sNode can obtain the next AS
key that the tNode will compute8.

Modelling sNode’s Knowledge of AS Keys. As stated
in Section 3, we consider honest-but-curious sNodes. We
model that by allowing a sNode to leak its current KxNB .
Tamarin’s built-in DY attacker will try and compute all
possible meaningful messages derivable from the leaked
KxNB , including the AS keys, thus effectively emulating
the behaviour of an honest-but-curious sNode.

In the XN/X2 protocol, the attacker can calculate
K∗xNB from the leaked KxNB , andthen compute the AS
keys, too. However, the DY attacker cannot do the the lat-
ter in XN/X2RANc , XN/X2UEc and XN/X2RANc−UEc ,
since the computation of the AS keys therein includes at
least one nonce unknown to the attacker.

We prove both these statements and several others
formally in Tamarin, as the next subsection explains.

Properties Verified. For both XN/X2 and
XN/X2RANc , the main lemmas of interest are given
in Table 1. They show that XN/X2 has no backwards
security of the AS keys, while XN/X2RANc does
without compromising any of XN/X2’s other security

8. Only a subsequent “second-hop” vertical key derivation handover
by the tNode will prevent the sNode from learning future traffic. For
this paper, we are not interested in the backwards (in)security of the AS
keys of “second-hop” handovers.

(e.g., key agreement) properties. We now explain this in
more detail.

• Lemmas 1 & 2 formally show correctness of the ex-
ecution, i.e., without an attacker both protocols ex-
ecute the protocol and derive the required keys cor-
rectly;

• Lemmas 3 & 7 formally show that XN/X2 has no
backward security of the AS keys, but it does achieve
injective key-agreement between the tNode and the
UE;

• Lemmas 4 & 8 formally show our protocol,
XN/X2RANc , achieves backward security of
the AS keys while all expected key-agreement
properties still hold;

• Lemmas 5 & 6 formally show neither XN/X2 nor
XN/X2RANc have backward-security w.r.t. the
tNodes when it comes to K∗xNB ; indeed, these
tNodes are given the next K∗xNBs by the sNodes.

• Lemmas 9 & 10 formally show that both XN/X2 and
XN/X2RANc achieve injective agreement with re-
spect to K∗xNB , between the relevant parties, in two
by two fashion.

XN/X2UEc & XN/X2RANc−UEc Verification. The
Tamarin models for XN/X2UEc & XN/X2RANc−UEc

contain the same set of aforesaid lemmas for the
XN/X2RANc model. So, we also formally show that
XN/X2UEc & XN/X2RANc−UEc provide backwards se-
curity of the AS keys as well, also without compromising
on any of the existing XN/X2 properties.

Verification Statistics. The XN/X2RANc model
is ≈ 850 lines of code (LoC): 500 of which implement the
XN/X2 and XN/X2RANc protocols, while 350 LoC en-
code the various lemmas to prove or falsify. The Tamarin
files for XN/X2UEc and XN/X2RANc−UEc are slightly
shorter at ≈ 750 LoC, as they only model their own
variant. All protocol-relevant lemmas “autoprove” using
the standard Tamarin heuristic [29]. The proofs of the two
source lemmas – needed to remove partial deconstructions
in Tamarin [29] – need the provided oracle (see .py file
within our shared files). The code was executed on a
laptop with 16GB of RAM and a 4-core (8 threads)
Intel Core®i7-1065G7 CPU running at 1.30GHz (3.9GHz
maximum Turbo frequency) and timings of the relevant
lemmas are included in Table 1. We used Tamarin 1.6.1
for our analysis.

6. A Trust & Communication Metric for
Key-Establishment in Mobile Networks

We now present a new framework, MobTrustCom,
which quantifies the level of trust and communication
complexity in mobile networks from the viewpoint of
key-establishment procedures in mobile communications
(full Registrations and Mobile Registration Updates, Han-
dovers, RRC Reconfigurations). It captures the core, the
RAN and the UE involved in computing a new session-
key, and quantifies (1) the trust level needed in the key-
establishment procedure, and (2) the communication cost
involved for the newly established key, e.g., how much
traffic is incurred by the need to communicate with the
core or just with the RAN.

6.1. Motivating the MobTrustCom Framework

In mobile procedures, the channel-securing keys can
be computing by a RAN node alone, as is the case in
XN/X2 handovers. Or, it can be computed by the core, as
it is the case in N2/S1 handovers. Clearly, the former case
requires more caution, as the RAN nodes run proprietary
software. But, the latter case is computationally more
expensive, as the core needs to get involved to compute a
key that is only RAN-facing.

One would ideally like to catch possible compro-
mises/misbehaviour by RAN nodes or compromised UEs
in key-derivations or channel-securing settings. But that
therefore means that such untrustworthy parties cannot
compute said keys alone, but should do so jointly, under
the proviso that not all entities are corrupted at once. In
extremis, one could involve a trusted party such as the core
in all key derivations, thus reducing the concerns caused
by, e.g., compromisible RAN nodes. However, if for the
sake of added trust, certain key-derivation procedures
were to be jointly executed by more parties than usually
or even with added involvement of the core, then the
communication complexity of such adapted key-derivation
procedures would clearly increase. In order words, there is
an easy-to-see inversely proportional relation between the
level of trust required and the communication complexity
of these procedures. What is not clear is how to measure
the variation of this relation over different mobile-network
parties and different procedures in mobile-networks. This
is where MobTrustCom comes in.

To be able to systematically as well as exhaus-
tively quantify how measures of trust and communica-
tion complexity vary with the security of the access-
stratum (i.e., channel) in mobile networks, we introduce
MobTrustCom. Concretely, MobTrustCom quantifies
trust-communication tradeoffs, primarily by associating
trust “values” to mobile-network parties, i.e., core, node,
UE, and communication-costs to mobile-networks links,
i.e., UE-RAN, RAN-RAN, RAN-CORE.

6.2. MobTrustCom: a Framework for Quantifi-
able Trust & Communication Complexity in Mo-
bile Key-Establishment

In what follows, we exemplify MobTrustCom mainly
on handovers, but what we also explain how it applies to
the REG, and RRC reconfigurations as well. This wide-
application is also visible in the summative Figure 5.

Access Stratum Trust Scale. To assess the level
of trust needed in the access-stratum-securing procedures,
we introduce the notion of Access Stratum trust scale.

Definition 1 (Access Stratum Trust Scale.). The AS trust
scale is a set {n1, . . . , n6} of increasing positives integers,
i.e., n1 < n2 < . . . < n6, called AS trust levels:
• AS trust level n6: if the UE were to compute the AS

keys by itself and securely send its ingredients into
the network.
A procedure with AS trust level n6 is said to have
UE controlled AS keys’ computation.

• AS trust level n5: when the RAN alone effectively
determines the value of the AS keys, and securely
sends its ingredients into the network.

A procedure with AS trust level n5 is said to have
RAN controlled AS keys’ computation.

• AS trust level n4: if the RAN and the UE were to
compute together the AS keys, and securely send its
ingredients into the network.
A procedure with AS trust level n4 is said to have
RAN-UE- controlled AS keys’ computation.

• AS trust level n3: if the core and the UE were to
compute together the AS keys, and securely send its
ingredients into the network.
A procedure with AS trust level n3 is said to have
core-UE- controlled AS keys’ computation.

• AS trust level n2: when the core effectively deter-
mines the AS keys, and securely sends its ingredients
into the network.
A procedure with AS trust level n2 is said to have
core controlled AS keys’ computation.

• AS trust level n1: if the core, the RAN, and the UE
together were to compute the AS keys.
A procedure with AS trust level n1 is said to have
core-RAN-UE controlled AS keys’ computation.

The monotonicity of the access-stratum trust scale is as
follows: AS trust level n1 represents the least trust needed,
and AS trust level n6 represents the highest trust needed:

Clearly, riskier aspects require more trust be invested.

CORE + RAN
+ UE compute

AS keys

trust n1

= e.g., 0

RAN + UE
compute AS

keys and send
them to CORE

split-trust
m1 = e.g., 1

CORE
computes
AS keys

trust n2

= e.g., 2

RAN
computes

AS keys sends
them to CORE

split-trust
m3 = e.g., 3

CORE +
UE compute

AS keys

trust n3

= e.g., 4

UE computes
AS keys sends

to CORE

split-trust
m5 = e.g., 5

RAN + UE
compute
AS keys

split-trust
m2 = trust
n4 = e.g., 6

RAN
computes
AS keys

split-trust
m4 = trust
n5 = e.g., 8

UE computes
AS keys

split-trust
m6 = trust

n6 = e.g., 10

@ @ N2/Reg XNV KD @ @ @ XNHKD @

Figure 5. MobTrustCom’s AS (Split)-Trust Levels

level. Yet, we see that some trust-levels are associated
to a split-trust level by Definition 2. Simply put, there
is no way to lower the trust/risk needed in those cases.
An example is the case of trust-level n2. In this case,
the core effectively determines the value of the AS keys,
by calculating the KxNB key, and it already has to send
this (or its elements) to the RAN and to the UE, as these
keys are for the AS communication between the latter two
entities; so, all entities already share the key material, so
we cannot do anything to split the trust further.

Which Integers Can be (Split-)trust Levels.
For Definition 2 and Definition 1, we have the following
system of simultaneous equations:

8
>>><
>>>:

n1 < n2 < . . . < n6; m1 < m2 < . . . < m6

m6 = n6; m4 = n5; m2 = n4

m5 < n6; m3 < n5; m1 < n4

n1 < m1; n2 < m3; n2 < m3

For instance, the numbers 0 to 10 exhibit the full AS
trust and split-trust scale as per the below Table 2:

TABLE 2. EXAMPLES OF AS TRUST & SPLIT-TRUST LEVELS

example value 0 1 2 3 4 5 6 - 8 - 10
trust level n1 - n2 - n3 - n4 - n5 - n6

split-trust level - m1 - m3 - m5 m2 - m4 - m6

Table 2 shows in bold the points where the AS trust
and split-trust coincide. Table 2 aids us to see that trusts
of high levels (e.g., 10, 8, 6) can be lowered by splitting.
This is how the split-trust level appear, i.e., m1, m3, m5.

Note 7: The MobTrustCom framework exhausts all
the combinations of endowing trust over the three main
mobile parties. It is not our remit to justify if all these
trust levels should exist in reality.

MobTrustCom’s trust and split-trust scales relating to
AS-keys’ establishment procedures are given in Figure 5.
This illustration follows from Definitions 1 and 2, Table 2,
as well as point (b) in Section 2.2.

Mobile Networks’ Communication Cost. To cap-
ture communication complexity (albeit in a rather simplis-
tic way), we give Def. 3.

Definition 3. Mobile Networks Communications
Cost. Mobile networks communications cost is a tuple
t=(c1, c2, c3, c4) of four positive digits (c1, c2, c3, c4 2
{1, 2, . . . , 9}), called cost factors. Each cost factor is the
expense of one unit of information (e.g., 1 bit / 1 byte)
being sent in one direction, on a segment of the network.

The cost factors are associated to the network as
follows:

UE
c2��� RAN

c1��� RAN
c3��� CORE

UE
c4��������������� CORE,

and respect the following system of inequalities:
8
>>>>><
>>>>>:

c1 < c2 < c4 (1)

c1 < c3 < c4 (2)

c1 + c3 < c4 (3)

c2 + c3 < c4 (4)

c1 + c2 + c3 > c4 (5)

The system of inequalities for the cost factors to satisfy
are justified as follows. First, it is, in our view, least
expensive to communicate between the nodes in the RAN
(i.e., at a cost factor of c1). The RAN-to-UE exchanges
are radio messages as well as NAS messages, so they
are generally more costly than the former (i.e., c1 < c2).
The core-to-RAN exchanges are on authenticated and
integer pre-established channels and can often be over
different networks/providers, so that is estimated at an
even higher cost (i.e., c3 > c1). Second, the core-to-
UE communication is in fact proxied over the RAN and
it is relatively rare, using authenticated encryption with
renewable keys such as KASME (in 4G) and KAMF

(in 5G), which are re-calculated in different procedures
(e.g., S1/N2, re-registration); so, we deemed this most
expensive (i.e., c4 > c2 and c4 > c3). Thirdly, we chose
the cost factors such that the cumulative cost of a message
travelling over two segments (e.g., core-to-RAN at a cost
of c3 and the intra-RAN at a cost of c1) will be close to
but less than the cost of an exchange over one single but
“longer” segment (e.g., UE-to-core at a cost of c3); this is
captured by inequalities (3) and (4). Finally, inequality

CORE + RAN
+ UE compute

AS keys

trust n1

= e.g., 0

RAN + UE
compute AS

keys and send
them to CORE

split-trust
m1 = e.g., 1

CORE
computes
AS keys

trust n2

= e.g., 2

RAN
computes

AS keys sends
them to CORE

split-trust
m3 = e.g., 3

CORE +
UE compute

AS keys

trust n3

= e.g., 4

UE computes
AS keys sends

to CORE

split-trust
m5 = e.g., 5

RAN + UE
compute
AS keys

split-trust
m2 = trust
n4 = e.g., 6

RAN
computes
AS keys

split-trust
m4 = trust
n5 = e.g., 8

UE computes
AS keys

split-trust
m6 = trust

n6 = e.g., 10

@ @ N2/Reg XNV KD @ @ @ XNHKD @

Figure 5. MobTrustCom’s AS (Split)-Trust Levels

level. Yet, we see that some trust-levels are associated
to a split-trust level by Definition 2. Simply put, there
is no way to lower the trust/risk needed in those cases.
An example is the case of trust-level n2. In this case,
the core effectively determines the value of the AS keys,
by calculating the KxNB key, and it already has to send
this (or its elements) to the RAN and to the UE, as these
keys are for the AS communication between the latter two
entities; so, all entities already share the key material, so
we cannot do anything to split the trust further.

Which Integers Can be (Split-)trust Levels.
For Definition 2 and Definition 1, we have the following
system of simultaneous equations:

8
>>><
>>>:

n1 < n2 < . . . < n6; m1 < m2 < . . . < m6

m6 = n6; m4 = n5; m2 = n4

m5 < n6; m3 < n5; m1 < n4

n1 < m1; n2 < m3; n2 < m3

For instance, the numbers 0 to 10 exhibit the full AS
trust and split-trust scale as per the below Table 2:

TABLE 2. EXAMPLES OF AS TRUST & SPLIT-TRUST LEVELS

example value 0 1 2 3 4 5 6 - 8 - 10
trust level n1 - n2 - n3 - n4 - n5 - n6

split-trust level - m1 - m3 - m5 m2 - m4 - m6

Table 2 shows in bold the points where the AS trust
and split-trust coincide. Table 2 aids us to see that trusts
of high levels (e.g., 10, 8, 6) can be lowered by splitting.
This is how the split-trust level appear, i.e., m1, m3, m5.

Note 7: The MobTrustCom framework exhausts all
the combinations of endowing trust over the three main
mobile parties. It is not our remit to justify if all these
trust levels should exist in reality.

MobTrustCom’s trust and split-trust scales relating to
AS-keys’ establishment procedures are given in Figure 5.
This illustration follows from Definitions 1 and 2, Table 2,
as well as point (b) in Section 2.2.

Mobile Networks’ Communication Cost. To cap-
ture communication complexity (albeit in a rather simplis-
tic way), we give Def. 3.

Definition 3. Mobile Networks Communications
Cost. Mobile networks communications cost is a tuple
t=(c1, c2, c3, c4) of four positive digits (c1, c2, c3, c4 2
{1, 2, . . . , 9}), called cost factors. Each cost factor is the
expense of one unit of information (e.g., 1 bit / 1 byte)
being sent in one direction, on a segment of the network.

The cost factors are associated to the network as
follows:

UE
c2��� RAN

c1��� RAN
c3��� CORE

UE
c4��������������� CORE,

and respect the following system of inequalities:
8
>>>>><
>>>>>:

c1 < c2 < c4 (1)

c1 < c3 < c4 (2)

c1 + c3 < c4 (3)

c2 + c3 < c4 (4)

c1 + c2 + c3 > c4 (5)

The system of inequalities for the cost factors to satisfy
are justified as follows. First, it is, in our view, least
expensive to communicate between the nodes in the RAN
(i.e., at a cost factor of c1). The RAN-to-UE exchanges
are radio messages as well as NAS messages, so they
are generally more costly than the former (i.e., c1 < c2).
The core-to-RAN exchanges are on authenticated and
integer pre-established channels and can often be over
different networks/providers, so that is estimated at an
even higher cost (i.e., c3 > c1). Second, the core-to-
UE communication is in fact proxied over the RAN and
it is relatively rare, using authenticated encryption with
renewable keys such as KASME (in 4G) and KAMF

(in 5G), which are re-calculated in different procedures
(e.g., S1/N2, re-registration); so, we deemed this most
expensive (i.e., c4 > c2 and c4 > c3). Thirdly, we chose
the cost factors such that the cumulative cost of a message
travelling over two segments (e.g., core-to-RAN at a cost
of c3 and the intra-RAN at a cost of c1) will be close to
but less than the cost of an exchange over one single but
“longer” segment (e.g., UE-to-core at a cost of c3); this is
captured by inequalities (3) and (4). Finally, inequality

CORE + RAN
+ UE compute

AS keys

trust n1

= e.g., 0

RAN + UE
compute AS

keys and send
them to CORE

split-trust
m1 = e.g., 1

CORE
computes
AS keys

trust n2

= e.g., 2

RAN
computes

AS keys sends
them to CORE

split-trust
m3 = e.g., 3

CORE +
UE compute

AS keys

trust n3

= e.g., 4

UE computes
AS keys sends

to CORE

split-trust
m5 = e.g., 5

RAN + UE
compute
AS keys

split-trust
m2 = trust
n4 = e.g., 6

RAN
computes
AS keys

split-trust
m4 = trust
n5 = e.g., 8

UE computes
AS keys

split-trust
m6 = trust

n6 = e.g., 10

@ @ N2/Reg XNV KD @ @ @ XNHKD @

Figure 5. MobTrustCom’s AS (Split)-Trust Levels

level. Yet, we see that some trust-levels are associated
to a split-trust level by Definition 2. Simply put, there
is no way to lower the trust/risk needed in those cases.
An example is the case of trust-level n2. In this case,
the core effectively determines the value of the AS keys,
by calculating the KxNB key, and it already has to send
this (or its elements) to the RAN and to the UE, as these
keys are for the AS communication between the latter two
entities; so, all entities already share the key material, so
we cannot do anything to split the trust further.

Which Integers Can be (Split-)trust Levels.
For Definition 2 and Definition 1, we have the following
system of simultaneous equations:

8
>>><
>>>:

n1 < n2 < . . . < n6; m1 < m2 < . . . < m6

m6 = n6; m4 = n5; m2 = n4

m5 < n6; m3 < n5; m1 < n4

n1 < m1; n2 < m3; n2 < m3

For instance, the numbers 0 to 10 exhibit the full AS
trust and split-trust scale as per the below Table 2:

TABLE 2. EXAMPLES OF AS TRUST & SPLIT-TRUST LEVELS

example value 0 1 2 3 4 5 6 - 8 - 10
trust level n1 - n2 - n3 - n4 - n5 - n6

split-trust level - m1 - m3 - m5 m2 - m4 - m6

Table 2 shows in bold the points where the AS trust
and split-trust coincide. Table 2 aids us to see that trusts
of high levels (e.g., 10, 8, 6) can be lowered by splitting.
This is how the split-trust level appear, i.e., m1, m3, m5.

Note 7: The MobTrustCom framework exhausts all
the combinations of endowing trust over the three main
mobile parties. It is not our remit to justify if all these
trust levels should exist in reality.

MobTrustCom’s trust and split-trust scales relating to
AS-keys’ establishment procedures are given in Figure 5.
This illustration follows from Definitions 1 and 2, Table 2,
as well as point (b) in Section 2.2.

Mobile Networks’ Communication Cost. To cap-
ture communication complexity (albeit in a rather simplis-
tic way), we give Def. 3.

Definition 3. Mobile Networks Communications
Cost. Mobile networks communications cost is a tuple
t=(c1, c2, c3, c4) of four positive digits (c1, c2, c3, c4 2
{1, 2, . . . , 9}), called cost factors. Each cost factor is the
expense of one unit of information (e.g., 1 bit / 1 byte)
being sent in one direction, on a segment of the network.

The cost factors are associated to the network as
follows:

UE
c2��� RAN

c1��� RAN
c3��� CORE

UE
c4��������������� CORE,

and respect the following system of inequalities:
8
>>>>><
>>>>>:

c1 < c2 < c4 (1)

c1 < c3 < c4 (2)

c1 + c3 < c4 (3)

c2 + c3 < c4 (4)

c1 + c2 + c3 > c4 (5)

The system of inequalities for the cost factors to satisfy
are justified as follows. First, it is, in our view, least
expensive to communicate between the nodes in the RAN
(i.e., at a cost factor of c1). The RAN-to-UE exchanges
are radio messages as well as NAS messages, so they
are generally more costly than the former (i.e., c1 < c2).
The core-to-RAN exchanges are on authenticated and
integer pre-established channels and can often be over
different networks/providers, so that is estimated at an
even higher cost (i.e., c3 > c1). Second, the core-to-
UE communication is in fact proxied over the RAN and
it is relatively rare, using authenticated encryption with
renewable keys such as KASME (in 4G) and KAMF

(in 5G), which are re-calculated in different procedures
(e.g., S1/N2, re-registration); so, we deemed this most
expensive (i.e., c4 > c2 and c4 > c3). Thirdly, we chose
the cost factors such that the cumulative cost of a message
travelling over two segments (e.g., core-to-RAN at a cost
of c3 and the intra-RAN at a cost of c1) will be close to
but less than the cost of an exchange over one single but
“longer” segment (e.g., UE-to-core at a cost of c3); this is
captured by inequalities (3) and (4). Finally, inequality

Figure 5. MobTrustCom’s AS (Split)-Trust Levels

Our AS Trust Levels “In The Wild”. We
note that only RAN controlled (trust level n5) and core
controlled (trust level n2) exist in real-life AS keys’
calculations in handover procedures: i.e., in XN/X2 and
N2/S1, respectively. The other trust levels correspond to
AS keys’ computations that could exist, but do not at the
moment. Some cases are plausible but extreme:, e.g., UE
controlled at trust level n6, where the UE would calculate
the AS keys of its own accord and send them to a RAN-
node. It could be used, for instance, in emergencies: e.g.,
if the mobile generation of some RAN nodes is too low.

• Definition 1 looks just at which parties decide the
value of an AS-key, i.e., it does not consider to which ex-
act other parties this key –or the materials for it– are sent.
This intuitively says that the AS trust levels n6, n4, n5 can
be refined and this is dealt with in Definition 2.

Definition 2 (Access Stratum Split-Trust Scale.). The
AS split-trust scale is a set {m1, . . . ,m6} of increasing
positive integers, i.e., m1 < m2 < . . . < m6, called AS
trust levels associated to AS trust levels n6, n4, n5 in such
a way that m6= n6, m4= n5, m2= n4 and are as follows:

1) AS split-trust level m6 (= n6): if the UE were to
compute alone the AS keys (i.e., trust-level n6) and
securely send its ingredients just to the RAN.

2) AS split-trust level m5 : if the UE were to compute
alone the AS keys (i.e., trust-level n6) and securely
send its ingredients to the RAN as well as the core.
Thus, we require m5 < n6, to encode that the trust
n6 is split/reduced.

3) AS split-trust level m4 (= n5): when the RAN alone
effectively determines the value of the AS keys (i.e.,
trust-level 8), and it securely sends its ingredients to
the UE, but it does not send its ingredients to the
core as well.

4) AS split-trust level m3: when the RAN alone effec-
tively determines the value of the AS keys (i.e., trust-
level n5), but securely sends its ingredients to the UE
as well as the core.
Thus, we require m3 < n5, to encode that the trust
n5 is split/reduced.

5) AS split-trust level m2 (= n4): if the RAN and the
UE were to compute together the AS keys (i.e., trust-
level 6), and they do not send its ingredients to the
core as well.

6) AS split-trust level m1: if the RAN and the UE were
to compute together the AS keys (i.e., trust-level n4),
and they securely send its ingredients to the core as
well.
Thus, we require m1 < n4, to encode that trust n5
is split/reduced.

Apart from the inequalities in points 2, 4, 6 above, we
also require9 that: n1 < m1, n2 < m3, and n2 < m3.

The monotonicity of the AS split-trust scale is as
follows: access-stratum split-trust level m1 represents the
least split-trust needed, and access-stratum split-trust level
m6 represents the highest split-trust needed.

Clearly, the smaller the amount of split-trust level
needed, the lower the risk.

The inequalities in Definition 2 between the ms and ns
show how some trust level can be lowered to split-trust
level. Yet, we see that some trust-levels are associated
to a split-trust level by Definition 2. Simply put, there
is no way to lower the trust/risk needed in those cases.
An example is the case of trust-level n2. In this case,
the core effectively determines the value of the AS keys,
by calculating the KxNB key, and it already has to send
this (or its elements) to the RAN and to the UE, as these
keys are for the AS communication between the latter two
entities; so, all entities already share the key material, so
we cannot do anything to split the trust further.

Which Integers Can be (Split-)trust Levels.
For Definition 2 and Definition 1, we have the following
system of simultaneous equations:





n1 < n2 < . . . < n6;m1 < m2 < . . . < m6

m6 = n6;m4 = n5;m2 = n4

m5 < n6;m3 < n5;m1 < n4

n1 < m1;n2 < m3;n2 < m3

For instance, the numbers 0 to 10 exhibit the full AS
trust and split-trust scale as per Table 2. Table 2 shows in
bold the points where the AS trust and split-trust coincide.

9. This is based on the meaning associated to each level and the trust
place on the entity directly involved. E.g., in n2 the core generates the
key material, in m3 the RAN generates the key material, but sends to
the core to split the trust.

TABLE 2. EXAMPLES OF AS TRUST & SPLIT-TRUST LEVELS

example value 0 1 2 3 4 5 6 - 8 - 10
trust level n1 - n2 - n3 - n4 - n5 - n6

split-trust level - m1 - m3 - m5 m2 - m4 - m6

Table 2 aids us to see that trusts of high levels (e.g., 10, 8,
6) can be lowered by splitting. This is how the split-trust
level appear, i.e., m1, m3, m5.

Note 7: The MobTrustCom framework exhausts all
the combinations of endowing trust over the three main
mobile parties. It is not our remit to justify if all these
trust levels should exist in reality.

MobTrustCom ’s trust and split-trust scales relating
to AS-keys’ establishment procedures are given in Fig-
ure 5.

Mobile Networks’ Communication Cost. To cap-
ture aspects of communication costs, we give Definition 3.

Definition 3. Mobile Networks Communications
Cost. Mobile networks communications cost is a tuple
t=(c1, c2, c3, c4) of four positive digits (c1, c2, c3, c4 ∈
{1, 2, . . . , 9}), called cost factors. Each cost factor is the
expense of one unit of information (e.g., 1 bit / 1 byte)
being sent in one direction, on a segment of the network.
The cost factors are associated to the network as follows

UE
c2−−− RAN

c1−−− RAN
c3−−− CORE

UE
c4−−−−−−−−−−−−−−− CORE,

and respect the following system of inequalities:




c1 < c2 < c4 (1)

c1 < c3 < c4 (2)

c1 + c3 < c4 (3)

c2 + c3 < c4 (4)

c1 + c2 + c3 > c4 (5)

The system of inequalities for the cost factors to satisfy
are justified as follows. First, it is, in our view, least
expensive to communicate between the nodes in the RAN
(i.e., at a cost factor of c1). The RAN-to-UE exchanges
are radio messages as well as NAS messages, so they
are generally more costly than the former (i.e., c1 < c2).
The core-to-RAN exchanges are on authenticated and
integer pre-established channels and can often be over
different networks/providers, so that is estimated at an
even higher cost (i.e., c3 > c1). Second, the core-to-
UE communication is in fact proxied over the RAN and
it is relatively rare, using authenticated encryption with
renewable keys such as KASME (in 4G) and KAMF

(in 5G), which are re-calculated in different procedures
(e.g., S1/N2, re-registration); so, we deemed this most
expensive (i.e., c4 > c2 and c4 > c3). Thirdly, we chose
the cost factors such that the cumulative cost of a message
travelling over two segments (e.g., core-to-RAN at a cost
of c3 and the intra-RAN at a cost of c1) will be close to
but less than the cost of an exchange over one single but
“longer” segment (e.g., UE-to-core at a cost of c3); this
is captured by inequalities (3) and (4). Finally, inequality
(5), together with the fact that all cost factors are all digits,
express that the cost factors are numbers of the same
magnitude (i.e., similar number of bits), close together.

Example 6.1. Example of A Mobile Communication
Cost. A tuple that satisfies Definition 3 is (2, 3, 4, 8), given
visually as:

UE
c2=3
−−− RAN

c1=2
−−− RAN

c3=4
−−− CORE

UE
c4=8

−−−−−−−−−−−−−−− CORE
Note 8. A Goal: AS Keys’ Establishment with

Lower Trust at Reasonable Communication Costs? In
Figure 5, we see that XNhkd has the same trust level n5
and split-trust level m5, which –as per Table 2– could be
8. At the same time, we see that XNvkd does lower the
trust level of n5 to the split-trust level of m3, which –as
per Table 2– could be 3. And, we see that N2 has a low
trust level of n2 (e.g., 2). By looking at the specifications,
we see that XNhkd and XNvkd come at comparable
total communication cost of, say, α. And, N2 comes at
a total communication cost of, say, β, where β > α +
4 bytes× (c3 + c4).

So, can one improve the trust level of XNhkd, possi-
bly to as much as that of XNvkd, but with a communica-
tion cost lower than N2? In the process, can we also better
the backwards’ security of the AS keys? This is what we
pursued in our protocols presented in the previous section,
particularly XN/X2RANc .

MobTrustCom Framework, (Backwards) Key-
Secrecy vs. Key -agreement Properties. MobTrustCom
focuses on (splitting) trust and not on key-agreement.
Simply put, to lower trust levels, we ask that the “secret
ingredients” produced by one party A be sent to party B,
but we do not ask these be returned by party B to party A
for confirmed agreement amongst the two. In that sense,
it is clear that the trust and especially split-trust scales in
Definition 2 can be made finer if we wished to consider
the extra case where the information sent by A to B is –
additionally– either returned to A or not. If we did that,
then MobTrustCom would cater for split trust in a way
aligned to multi-party key-agreement properties.

6.3. MobTrustCom Comparison of the “Old”
and New Handovers

In Table 3, we cross-compare XN/X2 handovers
vs. their improvements XN/X2RANc , XN/X2UEc ,
XN/X2RANc−UEc , relating to AS keys’ backwards secu-
rity and the MobTrustCom’s cost and trust notions. The
value of 4 corresponds to the byte-length of T1 and T2 in
XN/X2RANc , XN/X2UEc , and/or XN/X2RANc−UEc ,
and 16 is the byte-length of the encryption of T2 with
KASME (for X2) or KAMF (for XN) in their XN/X2UEc

and XN/X2RANc−UEc improvements.
We say XN/X2 has a communication cost of “α” and

N2 of “β” (with β > α as stated above).
The communication complexity of XN/X2RANc is

that of XN/X2 plus, first, the cost of ferrying T1 over 2
specific messages; that gives an addition of 4 bytes×(c3+
c4). On top, XN/X2RANc makes MRU phases obligatory
with every execution, whereas XN/X2 does not impose
that with every execution. The cost of an MRU phase is
x bytes × (c2 + c1 + c4). for some fixed x > 16. All is
divided by some “positive integer” because these small-
number-of-bytes additions would not be in placse for ev-
ery UE, as some have already more options set than these

procedure AS-key

generation
controlled by

AS-
backwards
security
w.r.t
RAN

example
trust
level

example
split-
trust
level

communication complexity

XN/X2hkd
RAN

no 8 8 
XN/X2vkd no 8 3 
XN/X2RANc

(new/ours)
yes 8 3  :=𝛼 +

4 𝑏𝑦𝑡𝑒𝑠 × (𝑐3+𝑐4)

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
+

𝑀𝑅𝑈 𝑐𝑜𝑚𝑚. 𝑐𝑜𝑠𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

XN/X2UEc

(new/ours)
UE yes 10 1 ’ :=𝛼 +

16 𝑏𝑦𝑡𝑒𝑠 × (𝑐2+𝑐3)

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
+

4 𝑏𝑦𝑡𝑒𝑠 × 𝑐3

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

XN/X2RANc-UEc

(new/ours)
RAN+UE yes 6 1 ’’:=  + ’ -

N2 core yes 2 2 , where  <  < ’< ’’ < 

TABLE 3. COST VS. TRUST IN HANDOVERS WITH ENHANCED AS KEYS’ BACKWARDS SECURITY (WHERE
MRU_COMM. COST=x× (c2 + c1 + c4), WITH x>16)

few extra bytes. This leads to the final communication
complexity of XN/X2RANc , denoted by “γ” in Table 3.

In XN/X2UEc , the 4-byte value T2 needs to be sent
in an encryption of 16 bytes from the UE to the core,
and decrypted from the core to the tNode. This gives γ′.
Note again that XN/X2UEc does not force obligatory
MRUs so, there is no added overhead from that, unlike in
XN/X2RANc . So, in reality, γ′ may be smaller on average
than γ. i.e., XN/X2RANc less efficient than XN/X2UEc .

As we said, XN/X2RANc−UEc is XN/X2 augmented
with the enhancements of both XN/X2RANc and
XN/X2UEc resulting in the communication cost of γ′′.

We note β > γ′′: i.e., even our most communication-
expensive protocol, XN/X2RANc−UEc , is cheaper com-
munication-wise than N2 handovers. And, as we can see,
the split-trust of our protocols XN/X2RANc−UEc and
XN/X2UEc is also better than that of N2.

The MobTrustCom (split-)trust levels for the “old”
handovers in Table 3 were explained via Figure 5. For our
new XN/X2RANc , XN/X2UEc and XN/X2RANc−UEc

handovers, these levels follow immediately from their
constructions plus Definition 1 and Definition 2. For in-
stance, in XN/X2RANc , the RAN generates the T1 secret
ingredient for KAS and does not just share it with the UE,
but also with the core (hence, trust-level of n5, e.g., 8 and
split-trust level of m3, e.g., 3). In XN/X2UEc , the UE
alone generates T2 (hence, trust-level n6, e.g., 10), but all
3 parties get to know this value (hence, split-trust level as
low as m1, e.g., 1). Finally, in XN/X2RANc−UEc , the UE
and the RAN both generate KAS-relevant secrets (hence,
trust-level of n4, e.g., 6), but the core gets to know these
too (hence, the lowest split-trust level m1, e.g., 1).

7. Implementing our Modified XN

We implemented an emulation of XN/X2RANc in a 5G
network. We used the well-known and 3GPP-compliant
Open5GCore toolkit [22], developed by the Fraunhofer
Society. Since we focused on 5G (not 4G), we refer to
the implemented version of XN/X2RANc as XNRANc .

We chose to implement XN/X2RANc as opposed to,
e.g., XN/X2UEc , due to limitations of the Open5GCore
toolkit, which currently does not have a full UE-capability
for 5G messages inside the Open5GCore toolkit.

7.1. Fraunhofer’s Toolkit

Open5GCore is a research-grade testbed for 5G
networks w.r.t. the latest 3GPP specifications. The
Open5GCore toolkit offers several features of the core,
most 5G interfaces (N1, N2, N3, XN), and some 5G NAS
(non access-stratum) protocols partly or fully developed
on this interfaces, including XN. Meanwhile, some of the
UE’s and the core’s features, as well as certain (parts of)
procedures are still under development.

The source code of the Fraunhofer toolkit is written in
C. As per our XNRANc design (see Section 4), we modified
this C implementation of the gNB and the AMF parts of
the Fraunhofer setup w.r.t. the XN interface.

7.2. A Backwards-compatible Implementation of
XNRANc onto the Open5G Toolkit

First, recall the discussions in Section 4.1.2: compared
to XN, our XNRANc ’s edits are akin to overriding fields
inside the “Path Switch Request” and the “MRU Registra-
tion Accept” messages of the 3GPP specifications [12] and
that candidates for this were the “security capabilities”,
the “user-location information”, etc. (see Section 4.2.2
of [12]). A sensible choice is the “user-location informa-
tion” field, as it appears in both the “Path Switch Request”
and the “MRU Registration Accept” messages. Next, a
good candidate for actual overloading would be a sub-field
able to encode an unformatted 32-bit long bitstring. Thus,
we implemented the sending of our T1 nonce inside the
“timestamp” field within “id-UserLocationInformation”,
inside the “userLocationInformation” item.

An example of this modification, via a Wireshark
trace, is shown on Figure 6.

This addition of the T1 nonce as a timestamp (for now)
was, of course, shown to not hinder functional correctness
of the XN/X2: i.e., the core and the UE continue to
function as expected w.r.t. all XN/X2 functionalities, since
the timestamp field used is part of the 3GPP specification.

We did not implement the addition of the T1 nonce
into the calculation of the AS keys (i.e., KAS), as per our
XNRANc specification, since the Open5GCore toolkit
does not yet support10 the access-stratum functionalities.

10. In the future, we will add the T1 nonce to the AS keys, as the
Fraunhofer toolkits grows to support the AS.

Figure 6. Augmenting XN to XNRANc : Backwards-Compatible Addi-
tion of T1 to Path Switch Request

7.2.1. Efficiency of the implemented XNRANc . In
Section 6, we looked at the communication-complexity
increase of our XNRANc over the XN specification:
i.e., in essence, the addition of 32 bits in one message
(“Packet Switch Request”) and 32 bits added to the pay-
load of another message (“Mobile Registration Update”).
That comparison carries forwarded in the implemented
XNRANc vs. XN in the Open5GCore.

On top, we used the Open5GCore toolkit to
perform handovers, that is normal XN alongside
XNRANc executions, and looked at the Wireshark cap-
tures of these. To estimate the communication-complexity
depreciation, one can look at the times of departure
and arrival of, e.g., a “Packet Switch Request”, in
the Open5GCore’s XN vs those of the correspond-
ing “Packet Switch Request” in the Open5GCore’s
XNRANc . We see no depreciation in these times over
several trials, with different fields filled-in and not filled-
in in the “Packet Switch Request” message; the times
fluctuate both up and down with a deviation either up
or down of approximately 30-50 nanoseconds.

Disclosure. We are working with 3GPP on the lack of
AS-keys’ backwards security in XN.

8. Related Work

Formal Verification of Keys’ Security in 4G Han-
dovers. [15] and [18, 19] verified 4G handover procedures
in the Dolev-Yao model [21], using Proverif [16]: [15]
showed that “classical” (not backwards) secrecy of K∗eNB
holds in X2 and S1, and [18, 19] showed in Proverif,
for 4G alone, that the backward secrecy of KeNB was
lacking. Unlike us, they did not look at the backwards
secrecy/security of AS keys.

Formal Analyses of Keys’ Security in 5G Han-
dovers. [28] proposed a Dolev-Yao models of 5G XN and
N2 handovers (3GPP Release 16 specifications [11]) in
Tamarin [26]. The paper found no confidentiality issues,
as long as honest participants cannot be compromised.
[28] did not consider the forward/backward secrecy of the
K∗gNB or the AS keys.

[27] took the Tamarin models in [28] and lifted them
to more than handovers, e.g., including registration and
handovers executed in series, as well as considering dif-
ferent tiers of dishonest RAN nodes. Unlike us, [27]
does not focus on fixing AS backwards insecurity or on
the AS keys, but rather on the kgNB keys; they show
that if several dishonest RAN nodes are colluding, kgNB

keys’ leakage can be made to persist over a series of

XN executions. This composition of handovers, due to its
inherent complexity, yields sometimes intractable Tamarin
models. Instead, our work (and more-trackable models)
abstracts some of this complexity and focuses specifically
on: key-derivation in handovers and backwards-secrecy as
a security property; so, our Tamarin models of the XN/X2
protocols are simpler than those in [28, 27]. Moreover, we
propose improvements and formally verify them. Lastly,
we provide a backwards-compatible implementation over
Open5GCore. Meanwhile, [27] has no practical study.

Finally, somewhat similarly, but in a computational
model rather than a Dolev-Yao model, [17] looks at the
“duration” of such leakages in handovers before a XN
executions’ chain is interrupted by, e.g., an N2 execution.

Our work can be considered as taking the message of
AS-key backwards insecurity in XN and looking at ways
of providing provably-secure enhancements to the XN/X2
protocols in a measurably efficient way while staying as
close as possible to the 3GPP specifications.

General Analyses of Non-XN/N2 Handovers or
other 5G Procedures. [30] carry out a Dolev-Yao veri-
fication, in the Scyther tool [20], of their “home-made”
protocol called the Lightweight and Secure Handover
Authentication Scheme (LSHA), based on intra-RAN au-
thentication in handovers. Other such ad-hoc extensions
of handovers may exist, but since they are far from
“standard” handovers, we do not cover them further here.
Equally, [23] is on formal verification of 5G procedures,
but it focuses not on security, but on privacy. [14] looked
at X2 not w.r.t. formal security but w.r.t. UE performance;
it showed that certain delays in X2 handovers stem from
synchronisations of the UE and the tNode. We do not
cover further such security-unrelated works either.

Considerations on Trust and Communications in
Mobile Network. Other considerations of communication
complexity in mobile networks (e.g., [30, 25]) are gener-
ally not systematic, not even coarsely so like ours.

9. Conclusions

We proposed a series of protocols that modify the
X2/XN handovers in minimal ways such as to get pro-
cedures which gain AS backwards security. We formally
verified them alongside X2/XN, to show formally this
security gain. To demonstrate the closeness to the 3GPP-
specified X2/XN handovers, we also implemented one
of proposed protocol in Fraunhofer’s 3GPP-compliant
Open5GCore 5G testbed and ascertained no function-
ality loss or efficiency depreciation. We presented a
framework, MobTrustCom, for quantifying trust and
communication cost in mobile networks. We applied the
MobTrustCom to handovers and other key-establishment
protocols (such as REG) and used it to also formally show
that, compared to “classical” handovers, our aforesaid
sensitively-made patches to XN/X2 lower the trust needed
and are very competitive communication-wise.

Acknowledgments

This work was partially supported by the PhD-
studentship “5GTech-Sec” (funded by UK’s NCSC)
and the EP/S024565/1 research grant “ EP/S024565/1”
(funded by UK’s EPSRC).

References

[1] Minimum requirements related to technical perfor-
mance for IMT-2020 radio interface(s). 11 2017.
URL https://www.itu.int/pub/R-REP-M.2410-2017.

[2] 3GPP. General packet radio service (gprs)
enhancements for evolved universal terrestrial
radio access network (e-utran) access. Technical
Specification (TS) 23.401, 3GPP, 09 2014. URL
https://www.etsi.org/deliver/etsi_ts/123400_123499/
123401/12.06.00_60/ts_123401v120600p.pdf.
Version 12.6.0.

[3] 3GPP. X2 application protocol (x2ap). Technical
Specification (TS) 36.423, 3GPP, 09 2014. URL
https://www.etsi.org/deliver/etsi_ts/136400_136499/
136423/12.03.00_60/ts_136423v120300p.pdf.
Version 12.3.0.

[4] 3GPP. Generic authentication architecture
(gaa);generic bootstrapping architecture (gba).
Technical Specification (TS) 33.220, 3GPP, 10 2018.
URL https://www.etsi.org/deliver/etsi_ts/133200_
133299/133220/15.02.00_60/ts_133220v150200p.
pdf. Version 15.0.0.

[5] 3GPP. Digital cellular telecommunications
system (phase 2+) (gsm); universal mobile
telecommunications system (umts); lte. Technical
Specification (TS) 33.401, 3GPP, 07 2018. URL
https://www.etsi.org/deliver/etsi_ts/133400_133499/
133401/15.04.00_60/ts_133401v150400p.pdf.
Version 15.4.0.

[6] 3GPP. S1 application protocol (s1ap). Technical
Specification (TS) 36.413, 3GPP, 09 2018. URL
https://www.etsi.org/deliver/etsi_ts/136400_136499/
136413/15.03.00_60/ts_136413v150300p.pdf.
Version 15.3.0.

[7] 3GPP. Wireless and wireline onvergence access
support for the 5g system (5gs). Technical
Specification (TS) 23.316, 3GPP, 10 2020. URL
https://www.etsi.org/deliver/etsi_ts/123300_123399/
123316/16.04.00_60/ts_123316v160400p.pdf.
Version 16.0.0.

[8] 3GPP. System architecture for the 5G
System (5GS). Technical Specification
(TS) 23.501, 3GPP, 10 2020. URL
https://www.etsi.org/deliver/etsi_ts/123500_123599/
123501/16.06.00_60/ts_123501v160600p.pdf.
Version 16.0.0.

[9] 3GPP. System architecture for the 5G
System (5GS). Technical Specification
(TS) 23.501, 3GPP, 10 2020. URL
https://www.etsi.org/deliver/etsi_ts/123500_123599/
123501/16.06.00_60/ts_123501v160600p.pdf.
Version 16.0.0.

[10] 3GPP. Xn application protocol (xnap). Technical
Specification (TS) 38.423, 3GPP, 07 2020. URL
https://www.etsi.org/deliver/etsi_ts/138400_138499/
138423/16.02.00_60/ts_138423v160200p.pdf.
Version 16.2.0.

[11] 3GPP. Release 16, 2020. URL https://www.3gpp.
org/release-16.

[12] 3GPP. Procedures for the 5g system. Technical
Specification (TS) 23.502, 3GPP, 10 2021. URL
https://www.etsi.org/deliver/etsi_ts/123500_123599/

123502/15.02.00_60/ts_123502v150200p.pdf.
Version 16.7.0.

[13] 3GPP. Becoming 5G-Advanced: the 3GPP
2025 Roadmap. https://www.5gamericas.org/wp-
content/uploads/2022/12/Becoming-5G-Advanced-
the-3GPP-2025-Roadmap-InDesign.pdf, 2022.

[14] Konstantinos Alexandris, Navid Nikaein, Raymond
Knopp, and Christian Bonnet. Analyzing x2 han-
dover in LTE/LTE-a. In 2016 14th International
Symposium on Modeling and Optimization in Mo-
bile, Ad Hoc, and Wireless Networks (WiOpt), pages
1–7. doi: 10.1109/WIOPT.2016.7492906.

[15] Noomene Ben Henda and Karl Norrman. Formal
analysis of security procedures in LTE - a feasibility
study. In RAID ’14, LNCS, pages 341–361. Springer.
ISBN 978-3-319-11379-1.

[16] Bruno Blanchet. An Efficient Cryptographic Proto-
col Verifier Based on Prolog Rules. In CSFW ’14,
pages 82–96. IEEE Computer Society, June 2001.

[17] Olivier Blazy, Ioana Boureanu, Pascal Lafourcade,
Cristina Onete, and Léo Robert. How fast do you
heal? a taxonomy for post-compromise security in
secure-channel establishment. Cryptology ePrint
Archive, Paper 2022/1090, 2022. URL https://eprint.
iacr.org/2022/1090. https://eprint.iacr.org/2022/1090.

[18] Piergiuseppe Bettassa Copet, Guido Marchetto, Ric-
cardo Sisto, and Luciana Costa. Formal verification
of LTE-UMTS handover procedures. In ISCC ’15,
pages 738–744. IEEE, .

[19] Piergiuseppe Bettassa Copet, Guido Marchetto, Ric-
cardo Sisto, and Luciana Costa. Formal verification
of LTE-UMTS and LTE-LTE handover procedures.
50:92–106, . ISSN 0920-5489. doi: 10.1016/j.csi.
2016.08.009. URL http://www.sciencedirect.com/
science/article/pii/S092054891630071X.

[20] C.J.F. Cremers. Scyther : semantics and verification
of security protocols. PhD thesis, Mathematics and
Computer Science, 2006.

[21] D. Dolev and A. Yao. On the Security of Public-Key
Protocols. IEEE Trans. Inf. Theory 29, 29(2), 1983.

[22] Fraunhofer. Open5gcore. URL https://www.
open5gcore.org/.

[23] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz
Karim, Omar Chowdhury, and Elisa Bertino. 5grea-
soner: A property-directed security and privacy anal-
ysis framework for 5g cellular network protocol.
In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’19, page 669–684, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450367479. doi: 10.1145/3319535.3354263.
URL https://doi.org/10.1145/3319535.3354263.

[24] Volker Jungnickel, Konstantinos Manolakis, Wolf-
gang Zirwas, Berthold Panzner, Volker Braun,
Moritz Lossow, Mikael Sternad, Rikke Apelfröjd,
and Tommy Svensson. The role of small cells,
coordinated multipoint, and massive mimo in 5g.
IEEE communications magazine, 52(5):44–51, 2014.

[25] K. Anitha Kumari, G. Sudha Sadasivam, S. Shy-
mala Gowri, Sebastin Arockia Akash, and E.G. Rad-
hika. An approach for end-to-end (e2e) security of
5g applications. In 2018 IEEE 4th International
Conference on Big Data Security on Cloud (Big-

DataSecurity), IEEE International Conference on
High Performance and Smart Computing, (HPSC)
and IEEE International Conference on Intelligent
Data and Security (IDS), pages 133–138, 2018. doi:
10.1109/BDS/HPSC/IDS18.2018.00038.

[26] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In CAV ’13,
LNCS, pages 696–701. Springer. ISBN 978-3-642-
39799-8.

[27] Rhys Miller, Ioana Boureanu, Stephan Wesemeyer,
and Christopher J. P. Newton. The 5g key-
establishment stack: In-depth formal verification and
experimentation. In Proceedings of the 2022 ACM
on Asia Conference on Computer and Communi-
cations Security, ASIA CCS ’22, page 237–251,
New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450391405. doi:
10.1145/3488932.3517421. URL https://doi.org/10.
1145/3488932.3517421.

[28] Aleksi Peltonen, Ralf Sasse, and David Basin. A
comprehensive formal analysis of 5g handover. In
WiSec ’21, WiSec ’21, page 1–12, New York, NY,
USA, 2021. ACM. ISBN 9781450383493.

[29] The Tamarin Team. Tamarin prover manual,
2016. https://tamarin-prover.github.io/manual/tex/
tamarin-manual.pdf [Online: accessed 09-April-
2019].

[30] Xiaobei Yan and Maode Ma. A lightweight and
secure handover authentication scheme for 5g net-
work using neighbour base stations. Journal of
Network and Computer Applications, 193:103204,
2021. ISSN 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2021.103204. URL https://www.sciencedirect.
com/science/article/pii/S1084804521002095.

A. Figure for Two of Our New XN/X2 Pro-
tocols

Due to space constraints, we give the diagrams of two
of our new XN/X2 protocols, below.

UE
(IMSI,ue-ids, ue-other-ids,
KxNB , NH’, NCC’,
KAMF /KASME , . . .)

sNode
(ue-ids, KxNB , NH, . . .)

tNode
(TNID)

Core
(ue-other-ids,

NH, NCC,
KAMF /KASME , . . .)

1. Generate a timestamped nonce T2

2. MSR

3. Generate K∗xNB= KDF(KxNB or NH, cellID)

4. Handover Request(K∗xNB , UECaps, . . .)

5. Handover Request ACK(ue-ids’, Alg, . . .)

6. RRCReconfiguration enc((ue-ids’,TNID,Alg, . . .); KxNB)

7. Generate K∗xNB

Generate AS Keys based on T2
KAS= KDF(K∗xNB ; ..., T2)

8. RRCReconfigurationComplete enc((ue-ids’,enc(T2; KAMF /KASME), TNID, . . .); K∗xNB)

9. Packet Switch Req. (ue-id, ue-ids’,enc(T2; KAMF /KASME),K∗xNB , . . .)

10. Decrypt T2 & generate
next-NH and next-NCC
for next KxNB

11. T2, next-NH and next-NCC

Generate AS keys using T2
KAS = KDF(K∗xNB , ..., T2)

12. MRU enc((ue-ids’, . . .); K∗xNB)

13. Reg-Request

14. Reg-Accept enc((ue-ids’, ue-other-ids’, K∗xNB , TNID, . . .);KAMF /KASME)

Decrypt with
KAMF or
KASME...

Optional

Figure 7. A New Enhanced XN/X2 with Added AS Backwards Security
via UE Operations Protocol: XN/X2UEc

UE
(IMSI,ue-ids, ue-other-ids,
KxNB , NH’, NCC’,
KAMF /KASME , . . .)

sNode
(ue-ids, KxNB , NH, . . .)

tNode
(TNID)

Core
(ue-other-ids,

NH, NCC,
KAMF /KASME , . . .)

1. Generate a timestamped nonce T2

2. MSR

3. Generate K∗xNB= KDF(KxNB or NH, cellID)

4. Handover Request(K∗xNB , UECaps, . . .)

5. Generate a timestamped nonce T1

6. Handover Request ACK(ue-ids’, Alg ,. . .)

7. RRCReconfiguration enc((ue-ids’,TNID,Alg, . . .); KxNB)

8. Generate K∗xNB

9. RRCReconfigurationComplete enc((ue-ids’,enc(T2; KAMF /KASME), TNID, . . .); K∗xNB)

10. Packet Switch Req. (ue-ids, ue-ids’, enc(T2; KAMF /KASME), T1, K∗xNB , . . .)

Decrypt T2 & generate
next-NH and next-NCC
for next KxNB

11. T2, next-NH and next-NCC

Generate AS keys using T2 and T1
KAS= KDF(K∗xNB ; ..., T2, T1)

12. MRU enc((ue-ids’, . . .); K∗xNB)

13. Reg-Request

14. Reg-Accept enc((ue-ids’, ue-other-ids’, T1, K∗xNB , TNID, . . .);KAMF /KASME)

Decrypt using KAMF /KASME

Generate AS Keys based on T2 and T1
KAS= KDF(K∗xNB ; ..., T2, T1)

Figure 8. A New Enhanced XN/X2 with Added AS Backwards Security
via UE-RAN Shared OperationsProtocol: XN/X2RANc−UEc

