arXiv:1903.02926v2 [cs.LG] 13 May 2019

Adversarial Out-domain Examples for Generative
Models

1*' Dario Pasquini
Department of Computer Science
Sapienza University
Rome, Italy
pasquini @di.uniromal..it

Abstract—Deep generative models are rapidly becoming a com-
mon tool for researchers and developers. However, as exhaustively
shown for the family of discriminative models, the test-time
inference of deep neural networks cannot be fully controlled
and erroneous behaviors can be induced by an attacker. In
the present work, we show how a malicious user can force
a pre-trained generator to reproduce arbitrary data instances
by feeding it suitable adversarial inputs. Moreover, we show
that these adversarial latent vectors can be shaped so as to be
statistically indistinguishable from the set of genuine inputs. The
proposed attack technique is evaluated with respect to various
GAN images generators using different architectures, training
processes and for both conditional and not-conditional setups.

Index Terms—Generative adversarial models, Attacks against
machine learning, Adversarial input

1. INTRODUCTION

The existence of adversarial inputs has been demonstrated
for a quite large set of deep learning architectures [9], [10],
[35]. An adversarial input is a carefully forged data instance
that aims at leading the model to behave in an incorrect or
unexpected way. Moreover, the adversarial setup requires that
those instances must be indistinguishable from genuine inputs.

In the present work, motivated by the extensive studies
carried out on adversarial inputs for discriminative models,
we extend the adversarial context into the increasingly popular
generative models field. In particular, we focus on the most
promising class of architectures, called Generative Adversarial
Networks (GANs) [8]. GANs perform generative modeling of
a target data distribution by training a deep neural network
architecture. This is composed by two neural networks, a
generator and a discriminator that are trained simultaneously
in a zero-sum game. In the end, the generator learns a
deterministic mapping between a latent representation and an
approximation of the target data distribution. What we show
with the present work is that a pre-trained generator can be
forced to reproduce an arbitrary output if fed by a suitable
adversarial input. In particular, our findings show that the data
space, defined by the generator, contains data instances having
very low probability of lying in the space of the expected
outputs (i.e., the target data distribution). We will refer to those
outputs as out-domain examples and to the relative adversarial
inputs as out-domain latent vectors or OLV in short. Figure
shows a set of out-domain examples for a generator trained

2" Marco Mingione
Department of Statistics
Sapienza University
Rome, Italy
marco.mingione @uniromal .it

37 Massimo Bernaschi
Institute for Applied Computing (IAC)
CNR
Rome, Italy
massimo.bernaschi @cnr.it

Out-domain
Examples

Expected
Outputs

Fig. 1. Comparison between expected generator outputs (left column)
and generated out-domain examples (right column) for a Progressive
GAN generator trained on the CelebA dataset.

by using a Progressive GAN [14]. In that example, we found
a set of inputs capable to force the generative mode to
produce images completely different from those belonging to
the generator training dataset, i.e., the CelebA dataset [22].
Moreover, we show that those OLV can be forged in order to be
statistically indistinguishable from known-to-be trusted inputs.
The existence of such adversarial inputs raises new practical
questions about the use of GAN generators in an untrustworthy
environment, as a web application. The main contributions of
the present paper may be summarized as follows:

1) We show that a generator may be forced to produce
out-domain data instances which are arbitrarily different
from those for which the generator is trained. Our
experiments refer to three common image datasets and
for standard and conditional GAN architectures: Deep
Convolutional GAN (DCGAN) [29]] and Auxiliary Clas-
sifier GAN (ACGAN) [28].

2) We propose a first type of adversarial input for not
encoder-based generative models.

3) We investigate the nature of out-domain examples show-
ing that their quality strongly depends on the dimension
of both the latent and the data space.

' A pre-trained Progressive GAN available at |https:/tfhub.dev/google/
progan-128/1,

https://tfhub.dev/google/progan-128/1
https://tfhub.dev/google/progan-128/1

II. BACKGROUND

The objective of a generative model is to learn a probability

distribution px that approximates a target data probability
distribution px. Actually, in general, px is unknown and it
can only be inferred by a limited set of samples. One of the
most powerful approaches to train a generative model is the
recently proposed Generative Adversarial Networks (GANs)
framework. GANs require the simultaneous training of two
neural networks: a generator G and a discriminator D. D’s
objective is to maximize the probability of discriminating
between px and px, whereas G’s objective is to make px
and px indistinguishable in order to mislead D. This kind of
unsupervised training process is renamed Adversarial Training
in this context.
From the mathematical point of view, both the generator and
the discriminator can be intended as functions: G : Z2 — X
and D : X — [0,1]. In other words, during the training
process, the neural network G receives as input a vector
z = (21,...,2,) and produces x = G(z). Each element
of z is a realization of a random vector Zy,...,Z,, with
Z; "K' p, where py is an arbitrary density function. Then,
the optimization problem can be easily summarized by the
following formulation:

Hé[(i;n n;gx(E[log(D(:E))] +E[log(D(1 — G(2)))]) (1)

where 0c and fp are, respectively, the parameters of the
generator and the discriminator network and x is an instance
from the training set X.

The use of random latent instances as input of G makes
possible to explore the data space by generating new data
instances, not necessarily available in the training set.

Many extensions to the original GAN framework have been
successfully developed [2], [7]], [28], [29]. One of the most
influential work is [29]], in which the DCGAN architecture was
proposed. DCGAN is capable of exploiting the potential of
Convolutional Neural Networks (CNNs) in both the generator
and discriminator perspective. The GAN framework can be
easily extended to train conditional generators [25] using the
ACGAN architecture [28]. In this case, a supervised training
approach is used to the purpose of learning a probability
distribution conditioned to a set of classes Y. During this
training process, the class y is chosen randomly (e.g., with
uniform probability) from the set Y including all the possible
classes. Then, the generator is modeled as a bivariate function
that receives as input an instance of the latent space z labelled
with its related class y € Y. ACGAN architecture improves the
performance of the training process by adding an auxiliary
classification task to the discriminator. The latter outputs two
probability distributions, the first over the source (i.e., the
probability that the instance comes from px) and the second
over the class labels (i.e., the probability that the instance
belongs to class y). In this case, the optimization problem
can be parametrized by extending (I)) as follows:

Lyource = Eflog(D*"**(x))] + Eflog(D*"*(1 — G(2)))]

Letass = Ellog(D™* (y|x))] + E[log(D**(y|G(z,9)))]

Lp = Lclass + Lsource LG = Lclass - Lsource (2)

where Lp and L are the loss functions of the discriminator
and the generator, respectively.

III. RELATED WORKS

Some examples of adversarial inputs for encoder-based
generative models like Variational AutoEncoder (VAE) and
VAE-GAN are analyzed in [16]. In the proposed scenario, given
a data instance z, an attacker aims at producing an instance &
that differs in a limited way from 2 but which is capable of
driving the VAE to reconstruct a & far from the original z. The
reconstructed Z can be an approximation of an arbitrary data
instance chosen from the attacker. All the results described
by the authors refer to & as if it came from the same data
distribution on which the VAE is trained. A similar attack
scenario has been investigated also in [34]]. At the best of our
knowledge no other form of adversarial input targeting GAN
generators has been proposed.

Many works investigate the possibility of finding or exploiting
an inverse mapping from the data space to the latent space of
a pre-trained generator [4]], [20]], [27]. In [27] a pre-trained
generator GG is used to invert a discriminative model C' to
the purpose of synthesizing novel images. It is noteworthy
that the authors report a first case of partial out-domain
example. In particular, a generator trained on ImageNet was
able to reproduce images belonging to classes known to C' but
unknown to G.

Additionally, a technique to map images into a latent repre-
sentation with a pre-trained generator is proposed in [4] and
in [20]. In those works, the authors mention the possibility
of mapping images, which are not present in the training set,
into the generator latent space. That is shown only for images
coming from the same distribution on which the model is
trained. The proposed inversion technique is essentially the
same used in the present work and it is based on the direct
optimization of the generator input by a gradient descent based
approach. In [4] during the optimization process, the latent
vectors are encouraged to be similar to those of the latent
prior distribution by adding a penalty term in the loss function.
This term is a weighted sum of the discrepancy between the
mean and standard deviation of the latent vector and the latent
prior distribution. We exploited the possibility of extending
this penalty term beyond the second moment, given that just
two moments might not be sufficient to correctly identify the
latent vectors.

The same generator inversion technique is used in [31] as
a defense against adversarial examples. In this work, the
adversarial examples are mapped to unperturbed data instances
by inverting a generator trained on the data distribution of clear
data. The proposed model inversion aims at finding the closest
generator codomain element for each input of a discriminative
model f. At the end, these codomain elements are taken as
input by f instead of the original untrusted data.

A similar technique is also used in [21] to perform a data

membership attack against generative models. That kind of
attack aims at inferring the presence of a data instance x in
the training-set used during the training of a generative model
G. In this case, the generator inversion is carried out by a
neural network attacker called A. This attacker is trained as
an encoder for G. Given a data instance z, the latent vector
z = A(x) is used to estimate the chances of z of being in the
G’s dataset by calculating the distance between G(z) and x.

IV. OUT-DOMAIN EXAMPLES

Let X be the set of all possible data that can be generated
by G and let Z be the set of all the possible latent vectors
coming from pz. Then, an out-domain example for a generator
G is defined to be an element & € X" such that:

G(3) =&

px(GEX)<e md prigZ)<e O

where 2 is the OLV used to generate an out-domain example
2 and both €, and €, are negligible probabilities. Hence, the
underlying assumption in (@) is that the probability of & of
belonging to the set of expected outputs is very low. We will
refer to the set of expected outputs of a generator with the
term domain. The domain of a generator can also be intended
as the semantic contents defined by p To the purpose of
finding a suitable out-domain latent vector Z, we choose a
target instance & and then, we look for the Z € Z such that
there is the minimum distance between & and & = G(2).
We refer to this process with the expression latent search.
Coherently with (@), the target instance & is chosen ad hoc to
be out of the generator’s domain. This scenario, is depicted in
Figure [2] where a set of out-domain examples (panel ¢) from
a DCGAN generator trained on CIFARIO is reported. In this
case, 25 target instances have been randomly chosen from five
datasets different from CIFARIO.

In addition, as required by @]) an out-domain latent vector
Z is considered a valid input for the generator G if it lies
in a dense region of the latent space. This implies that 2
must be statistically indistinguishable from a valid latent vector
sampled from the latent probability distribution pz. In the
adversarial perspective, this means that a defender is unable
to tell apart a valid latent vector from an out-domain latent
vector before the generation of Z.

A. Motivating adversarial scenario

The recent success of generative models in the scientific
[5, [6] and in the entertainment field [12], [36], inspired
the development of many GANs based software applications.
These are often in the form of a web service with an interactive
interface by which the user provides direct or indirect input
to the mode Assuming a white-box access to the generator
model, an attacker can find out-domain latent vectors capable
of driving the service to produce inadequate contents such as
pornographic or offensive material. The attacker can use these

2For instance, the domain of the MNIST dataset is the set of digits
representation and the domain of CelebA dataset is a set of human faces.
30ne example can be found here: |https://make.girls.moel

out-domain examples in order to perform a very effective and
straightforward defacing attack direct to the generator owner.
Indeed, this type of web application and software allows to
share and save internal copies of the images created by the
users. This scenario resembles a reflected or stored Cross-site
Scripting (XSS) attack where the attacker is able to arbitrary
modify an image in the web page. The white-box assumption
is supported by the observation that often these applications,
in order to reduce the server load, run the generative model
in the client-side and additionally pre-trained versions of
open-source generator are frequently used.

We assume that the owner (referred as defender) performs a
validation process on Z before the calculation of & = G(2).
This validation can be intended as a function v : Z — {0, 1}.
Therefore, the defender accepts to calculate z if and only if
v(2) is equal to 1. In our attack scenario, this function v
is represented by a distributional hypothesis test. The null
hypothesis (Hp) is that the vector Z is sampled from pg.
Thus, given a test statistic ¢ and for fixed type I error «, the
decision rule can be formalized as follows:

Pr(T > t/Hy) > a=v(2) =1 4)

where T is the distribution of the test statistics under Hj
and Pr(T > t|Hy) corresponds to the classic p-value of
confirmatory data analysis. The same scenario can be easily
extended to conditional generators. In that case, we assume
that the defender is able to arbitrary choose and fix a data
class y € Y. The attacker aims at finding a suitable out-domain
latent vector for the conditioned generator G(-|Y = y).

V. METHODOLOGY

As mentioned in Section out-domain examples can be
found by looking for the closest representation of an arbitrary
chosen target instance in the data space defined by G'. Actually,
by leveraging the differentiable nature of the generator and the
structure of a well formed latent-data mapping [29], we can
transform this searching problem in an efficient optimization
process as follows:

L(z,2) =d(z, G(2)) + p(2)
% = argmin L(z, 2) ®)
z€EZ

Where z is a given target instance, d is a distance function
and p is a penalty term applied to z. The purpose of a
penalty term is to force the solution £ to be consistent with
pz. More precisely, p is defined as the weighted sum of the
squared difference of the first k& sample moments of z and the
theoretical moments of a random variable Z ~ pz.

k
p(2) =Y willnz (i) = a-(0)3 (6)
i=1

Where piz(i) is the i*" moment of Z and fi.(i) is the i"
sample moment of the latent vector z. The parameter w; is the
weight assigned to the i*" moment difference. In the case of
conditional generators, the searching process is performed by

https://make.girls.moe

(@) Generator training-set

(b) Chosen target instances

(c) Out-domain examples

[e)

5%;@5; HEEF - «:z: EI &
“Efgnmas 11 B M-
~HEsa=0n BiIEgoc - BEEo -
~ EREEO NS I v ¥ S~ o
e AR LRSS BEE: J EBREEd J

Fig. 2. Target images (panel b) and reproduced out-domain examples (panel ¢) generated by a DCGAN generator trained on the CIFARIO
dataset (panel a). Target images have been randomly chosen from five common image datasets different from CIFARIO. The generated
out-domain examples are visually close to their respective targets even if there is not intersection between CIFARI0 and the datasets of the

chosen target instances.

fixing a class y as input of the generator function. This implies
that the optimization process acts only on the latent vector z
and cannot modify the class representation y. More formally,
in the conditional case, the problem can be reformulated as:

L, z) = d(&, G(z, y)) + p(2)
%2 = argmin L(z, 2) 7
z€Z

assuming that y is randomly chosen from Y by the defender.

Starting from a random initialization of z, say zy obtained
by sampling from pz, we iteratively update the current latent
vector according to the following rule:

Zi+1 :ZH"UVL(%ZZ)a Z:]-avN (8)

where 7 is the learning rate. At each iteration of the opti-
mization process, the distance function d is computed between
the target & and G(z;) = &;. We tested and compared two
distance functions: the mean squared error (MSE) and the cross
entropy (XE). It is noteworthy that in the cross entropy case,
the softmax function is used in order to ensure the unitary sum
in both & and G(z). However, given its not-bijectivity, we force
the comparison between the target and generated image to
be scale invariant. Nonetheless, although this approach diverts
from the original objective of founding the closest codomain
instance to &, XFE is able to provide a very good approximation
(at least in the visual form) of & with fewer training iterations
than MSE.

The penalty term is used to ensure the indistinguishability
of the out-domain vector from a trusted input. The main
objective is to find a £ such that the probability of v(2) = 1 is
maximized. This can be obtained by forcing the out-domain
latent vector to have moments equal to those of a random
variable distributed as pz. Indeed, in probability theory,
Moment Generating Functions (MGFs) have great practical
relevance not only because they can be used to easily derive
moments, but also because they uniquely identify a probability
distribution function, a feature that makes them a handy tool

to solve several problems. The MGF (if it exists) can be seen
as an alternative specification useful to characterize a random
variable. On one hand, the MGF can be used to compute the
nt® moment of a distribution as the n‘” derivative of the MGF
evaluated in O On the other hand, a MGF is useful to compare
two different random variables, studying their behavior under

limit conditions. Given a random variable X, its MGF is
defined as the expected value of e*X
Mx(t) =E(e™), teR)

If (@) holds, then the n'* moment of X, denoted by px(n),
exists and it is finite for any n € N:

0" Mx(t
() = E(x) = 30 (10)
t=0
VI. RESULTS

In our experiments, we tested and compared two common

prior distributions, i.e., the standard normal and the continuous
uniform distribution in [—1, 1]. Given the constraint imposed
by the latter, we perform a hard clipping on z values in order
to force the latent vector to lie in the allowed hypercube. As
proposed in [20], we tested the stochastic clipping method but
results showed no substantial improvement.
We did not apply any clipping method for the normal prior
distribution. Empirically, it has been observed that the penalty
on the moments is sufficient to guarantee that z assumes values
in an acceptable range.

The quality of the out-domain examples is evaluated on
different DCGAN generators and on conditional generators
trained within an ACGAN framework. For the sake of exposi-
tion, we will refer to each trained generator with the following
compact notation:

[Architecture |-[Training-dataset |-[Latent_prior |-
[Latent_space_dimension]

In particular, a generator is trained for any combination of the
followings:

¢ Architecture: DCGAN, ACGAN

TABLE I
RESULTS CONCERNING THE OUT-DOMAIN GENERATION PROCESS ON THE TEST-SET FOR ALL THE DCGAN GENERATORS. THE COLUMN
TEST SUCC. REPORTS THE PERCENTAGE OF OUT-DOMAIN LATENT VECTORS WHICH SUCCESSFULLY PASSED STATISTICAL TESTS. THE
COLUMN Avg MSE* REPORTS THE AVERAGE MSE IN THE CASE OF COMPLETE RELAXATION OF THE PENALTY TERM p.

| (a) Normal Latent distribution I

(b) Uniform Latent distribution |

Dataset Z dim. | Avg MSE Test Succ. Avg MSE* || Avg MSE Test Succ. Avg MSE* |
CIFAR10 100 0.010646 100% 0.008881 0.012131 100% 0.009354
CIFAR10 256 0.005094 100% 0.003902 0.012131 100% 0.009354
CIFAR10 512 0.003693 100% 0.002710 0.003603 100% 0.002826
SVHN 100 0.018569 100% 0.011541 0.016730 100% 0.011359
SVHN 256 0.011374 100% 0.006970 0.012121 100% 0.007213
SVHN 512 0.009474 100% 0.005314 0.008323 100% 0.005594
C.MNIST 100 0.063097 100% 0.040453 0.059342 100% 0.037457
C.MNIST 256 0.052926 100% 0.029160 0.045851 100% 0.027178
C.MNIST 512 0.043685 100% 0.025855 0.037946 99% 0.022415

o Training Dataset: CIFARIO [17], SVHN [26] and a
simple variation of MNIST [19], called ColorMNIST

« Latent space dimension: {100, 256, 512}

« Latent prior distribution: N(0,1) and U[-1, 1]
For instance, DCGAN-CIFARI0O-Normal-100 defines a DC-
GAN generator trained on CIFARIO with a normal latent
prior distribution and latent space dimension equal to 100.
The ColorMNIST dataset is obtained by applying a random
background color to the original MNIST. The reason of
that modification is to offer to the generator the chance of
representing a larger set of outputs by letting the generator
learn a larger number of RGB triplets, while keeping virtually
unaltered the complexity of MNIST. All the generators and
discriminators’ architectures as well as the hyper-parameters
and the training process are the same proposed in [29]. We
tested three values of the latent space dimension that are
commonly used in literature.
The validation process of the out-domain vectors is performed
by fixing o = 0.05, k = 4 for the normal prior and k£ = 6 for
the uniform prior. We performed three different distributional
tests, i.e., Kolmogorov-Smirnov, Shapiro-Wilk and Anderson-
Darling [32]. Results showed that, given the penalty term p,
all the distributional tests bring to the same decision. The
following results refer to the Anderson-Darling test [1]], which
was finally chosen since its test statistics is based on the
Cumulative Distribution Function CDF [30]] and, compared
to other tests, it places more weight on the values in the tails
of the distribution.
We defined a test-set of target instances to the purpose of
evaluating the capability of different generators to reproduce
out-domain examples. This test-set contains randomly chosen
instances from four image datasets i.e, Omniglot 23], CelebA
[22], UT-Zap50K [37] and Tiny ImageNet [33]. A random
sample of 32 images is selected for each dataset for a total of
128 target instances. In the case of Tiny ImageNet, the images
are sampled from classes which are different from those of
CIFARIO. All images are forced to share the same dimension
of 32 x 32 pixels and to be normalized in the interval [0, 1]. To
simplify the understanding of the results, the target distance
function used for all the experiments is the Mean Squared

Error (MSE). The average Mean Squared Error MSE and the
percentage of successfully passed statistical tests are computed
on the test-set and used as main evaluation scores. In the
latent search process, the Adam [15]] optimizer is used with a
learning rate equal to 0.01. All the experiments are performed
using the TensorFlow framework [3]. The most relevant codes
used for the present work along with an interactive proof
of concept are available on: https://github.com/pasquini-dario/
OutDomainExamples.

A. DCGAN

Table [I] shows the results related to the DCGAN generators.
All the forged OLV pass successfully the distributional test,
regardless of the chosen prior distribution. Several checks
on the biases of the OLV have been carried out providing
pretty good results. In particular, the estimation of the odd
moments for the normal is precise; the second and the fourth
moment are instead slightly overestimated and underestimated,
respectively. For the uniform prior, the bias for the second and
the sixth moment is slightly positive and for the remainings
the estimation is precise, with a quite large variance in the
estimation of the third moment. No evident patterns are worth
to notice when looking at the training dataset or at changes
of the latent space dimension for both the prior distributions.
These results are due to the fact that the penalty term p
strongly constraints the values of the latent vectors in a well
defined range. It is worth to notice that relaxing the moments
penalty during the optimization process (3)) would reduce
further the MSE. In contrast to in-domain inversion [4], we
can state that out-domain examples do not take any significant
advantage from latent vectors statistically close to those used
during the training process.

Figure [3] shows a set of target instances and related out-
domain examples for a total of six generators. The upper panel
reports the out-domain examples produced by three generators
trained on different training sets but with same latent space
dimension and prior. When the training set of the generator
is ColorMNIST, the method fails in finding suitable OLV
capable of reproducing the target images. For the other two,
the generator is able to provide a valid reconstruction for all

https://github.com/pasquini-dario/OutDomainExamples
https://github.com/pasquini-dario/OutDomainExamples

loeadl] e [0 3
Sloadl] e rla :
readle

Targets: [/ o amdd J #5 1 [G
cLopad] o7l q :
s lopad)] e rla :
" loedl] e ra

Fig. 3. Out-domain examples for a set of DCGAN architectures trained with uniform latent prior. The central row shows several different randomly chosen
targets from the test-set. The upper panel shows the variability in the out-domain generation when the latent space dimension is fixed to 512 and the training
dataset of the generator varies. The lower panel shows the variability in the out-domain generation when the training dataset of the generator is fixed to
CIFARIO and the latent space dimension varies.

+ celebA
> omniglot
60 * shoes
% tinylmagenet
Sampled from pz
*
40 . . :
0.06 3 7
FO5 %
0.05 ® C.MNIST 2 o 834 x5 .
+ooE 7
h 0.04 >, 1* UK . "
= o T e LAt e
% 0.03 + R PRATR ST T Fa N
3 A PXSe); * *
2002 -2 B AWEERE Rl L
0.01 SVHN % » ! et
CIFAR1O 3
0.00 P
5.1 5.2 5.3 5.4 5.5 -6
Training-set entropy

Fig. 4. Average MSE compared to the estimated entropy of

each training set.

20 40 60

Fig. 5. Two-dimensional representation of out-domain latent vectors for the DCGAN-
CIFARI0-Uniform-100. Out-domain latent vectors with target instances coming from
the same dataset are represented with the same marker.

the targets. The failure of ColorMNIST may be connected to
the fact that it is less heterogeneous with respect to SVHAN
and CIFARIO. By heterogeneity we intend the actual number
of different pixels which are necessary in order to reproduce
the same heterogeneity of the whole set (i.e., the entropy). It is
reasonable to expect that the larger the variety of images in the
training set, the larger will be the set of potential out-domain
examples reproduced by the generator. As an estimator of that
variety, we computed the Shannon entropy for a sample
of 2'0 images from each training set. Results are depicted in
Figure] and show that there is a strong dependence between
the average MSE (i.e., the reconstruction error) and the entropy
of the training set.

Figure [5] depicts a two-dimensional projection of a set of out-
domain latent vectors and latent vectors directly sampled by
pz. This representation is obtained by applying the dimension
reduction algorithm called ¢-distributed Stochastic Neighbor-
hood Embedding (t-SNE) [24] on vectors of size 100. It is
possible to note how the out-domain latent vectors tend to be
uniformly distributed in the space. In the case of the Omniglot

dataset, the OLV tend to cluster in a specific region and this
may be due to its intrinsic homogeneity.

Even if the entropy is a sort of predictor of the success of
our method, it is still possible, given a target image, a latent
prior and a training set, to enhance the quality of the generated
image by increasing the dimension of the latent space. As a
matter of fact, we can observe, by looking at the lower panel
of Figure [3] that an increase of the latent space dimension
makes the generated image more similar to the target one.
An additional motivation can be that the latent space acts as
an information bottleneck for the target instance during the
latent search process All these possibilities are evaluated in
terms of MSE. Figure [0 shows the average MSE for each
latent space dimension, latent prior and training set confirming
that the more is the entropy of the training set, the higher
the probability of success in the generation and, at the same
time, the larger the dimension of the latent space, the higher
the quality of the reconstruction. Instead, there is no relevant
difference in the quality of the out-domain examples when the
latent prior distribution varies.

Normal

0.05

0.04

0.03

0.02

001 I

000 . . . I ==

100 256 512 100 256 512

Avg. target distance (MSE)
o

Uniform

100 256 512 100 256 512

Datasets:
W C.MNIST
MW SVHN

M CIFARLO

Latent space dlmen5|on

Fig. 6. Average MSE for all the DCGAN generators trained on all combinations of dataset, latent space dimension and latent prior distribution.

) In-domain to In-domain

k@l’;ﬂkﬂjﬁdﬁdﬁdk‘lﬁﬂﬂﬂﬂHH

) In-domain to Out-domai

SEISEIEECEIEIE1E 2] 2] 2] 2

) Out-domain to Out-domain

ool P T2

Fig. 7. Three examples of linear interpolation between two latent vectors for a ProGAN trained on the CelebA dataset. The row (a) depicts the interpolation
process between two randomly chosen latent vectors. Row (b) depicts interpolation from a randomly chosen latent vector and an out-domain latent vector.

Row (c) depicts interpolation between two out-domain latent vectors.

Figure [/| shows three examples of linear interpolation between
latent vectors [29]. The first row depicts a smooth and semantic
meaningful transaction between two random vectors sampled
from pyz, referred as in-domain latent vectors. By semantic
meaningful transaction, we mean that each image between
the two interpolation points remains coherent with px. The
second row depicts the interpolation between an in-domain
vector and an out-domain vector. In contrast with the first
case, the transaction is unbalanced and not particularly smooth.
From the sequence, it can be noticed that the semantic valid
attributes of the starting image, i.e. the black of the hair and
the reflection on the forehead, are deformed to recreate the
final MNIST digit. The last row shows the extreme case of
interpolation between two out-domain latent vectors. In this
case, all the intermediate data instances never cross the in-
domain set.

B. ACGAN

Conditional generators are trained to the purpose of enforc-
ing their outputs to be part of a meaningful, from the semantic
viewpoint, data class. Typically, this implies a better global
coherence and quality in the definition of the generator’s data
space [28]. This is especially true for models trained with the
ACGAN framework in which the generators are encouraged to
produce images that are correctly classified from the discrim-
inator as genuine and belonging to its class. The experiments
described below aim at finding out if the conditional extension
is sufficient to the purpose of preventing the generation of
out-domain examples. We trained different ACGAN generators
using the same set of parameters reported in Section

Also the architecture used for the generator and the discrimi-
nator is the same used for the previous DCGAN experimentsﬂ
Training hyper-parameters are the same proposed in [28]. As
aforementioned, in the conditional setup, the hypothesis is that
the class y is randomly chosen by the defender and the attacker
can not modify its representation during the latent search
process. Tests and validation are performed as in Section
[VI-A] but they are evaluated conditionally to each class y
in the generators’ classes set. All the tested training sets are
composed by 10 classes. In this case, the MSE is calculated
as the average over the classes.

We are able to find an out-domain example for each image
in the test-set, conditionally to each class. We do not report
the results when the training set is ColorMNIST, since it
already failed in the less severe DCGAN experiment. As an
example, Figure [§] shows the generated out-domain examples,
conditionally to each class of CIFARIO, for four randomly
chosen target instances in the test-set. It can be noticed that
the class has no relevant impact on the quality of the out-
domain examples: the attack succeeds regardless of the class.
The same happens when attacking the generators trained on
SVHN. Results in terms of MSE are summarized in Table [[Il It
is possible to observe that the average MSE is uniformly larger
compared to the DCGAN experiments due to the conditional
setup. In Figure [0} we also report the distribution of the MSE,
conditionally to each class, for each training set. No specific
patterns are registered: the MSE distribution is approximately

“4The only difference is the number of neurons in the generator’s input layer
and in the discriminator’s output layer due to the conditional setup

TABLE II
RESULTS FOR ANY ACGAN GENERATOR. SCORES ARE OBTAINED AS THE AVERAGE OVER TEST-SET RESULTS FOR EACH OF THE TEN
CLASSES PRESENT IN THE GENERATOR TRAINING-SET.

| (a) Normal Latent distribution || (b) Uniform Latent distribution |

Dataset Z dim. | Avg MSE Test Succ. || Avg MSE Test Succ. |
CIFAR10 100 0.023457 100% 0.019615 100%
CIFAR10 256 0.013144 100% 0.009547 100%
CIFARI10 512 0.009075 100% 0.005944 99%
SVHN 100 0.026686 100% 0.024732 100%
SVHN 256 0.016879 100% 0.016268 100%
SVHN 512 0.016291 100% 0.013707 99%
Ly ‘/r%
Target A %y %s,. 6%@ o 0.06-
Ll

EREERP ®
i o G G 2 K
l llllllllll

Fig. 8. Comparison between out-domain examples produced by an
ACGAN-CIFARI10-Normal-512. Each (but the first) column depicts the
out-domain example produced by the generator, conditionally to each
class.

ﬂ, oo

the same for each class and training set. However, there is a
slight variability for CIFARIO given the larger heterogeneity
among its classes. The validation of the out-domain latent
vectors is the same described in Section [VIZAl Also in this
case, all the latent vectors pass successfully the Anderson-
Darling test. Moments distributions for each dataset, latent
prior and latent space dimension are also checked. No rel-
evant difference has been observed with respect to the not-
conditional generators experiments.

VII. CONCLUSION AND FURTHER DEVELOPMENTS

We showed how to forge suitable adversarial inputs
capable of driving a trained generator to produce arbitrary
data instances in output. This is possible for both conditional
and not-conditional generators. Additionally, we showed that
an adversarial input can be shaped in order to be statistically
indistinguishable from the set of trusted inputs. We also
showed that the success of our method strongly depends on
two main factors: the heterogeneity of the set on which the
generator is trained and the latent space dimension.

In additional experiments we found a set of generators
showing a greater resilience to the generation of out-domain
examples. In particular, the Non-saturating GANs with ResNet
architecture analyzed in [18] shows an inherent difficulty
to produce out-domain examples even when the generator
is trained on high entropic datasets such as CIFARIO.
We conjecture that this property is strongly related to the
generator architecture.

In the described adversarial scenario, we supposed that an

Dataser B ciranio B svi

++++++#+++

0.04-

MSE

0.02-

0.00-

Airplane ~

Automobile
Bird
Cat
Deer
Dog
Frog
Horse
Ship
Truck

Fig. 9. MSE distribution conditionally to each class for CIFARI0O and SVHN
datasets.

aware defender can just test the validity of the model’s
input in order to evaluate the genuineness of the latent
vectors. However, it is possible to imagine a more powerful
defender able to verify the generator’s output in order to spot
unexpected generation.

As future directions of activity, we expect to i) investigate
the generation of out-domain examples for other GAN
architectures; ii) study the generation of out-domain examples
in contexts other than those of images; iii) investigate the
possibility of training an arbitrary complex generator which
is resilient to the generation of out-domain examples; iv)
evaluate the possibility of extending the attack to a black-box
scenario using an approach inspired by [11]].

REFERENCES
[1] T. W. Anderson and D. A. Darling. A test of goodness of fit. Journal
of the American statistical association, 49(268):765-769, 1954.
M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. ArXiv
e-prints, Jan. 2017.
M. A. at al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.
A. Creswell and A. A. Bharath. Inverting the generator of a generative
adversarial network (ii). arXiv preprint arXiv:1802.05701, 2018.
N. De Cao and T. Kipf. MolGAN: An implicit generative model for
small molecular graphs. ArXiv e-prints, May 2018.
L. de Oliveira, M. Paganini, and B. Nachman. Learning Particle
Physics by Example: Location-Aware Generative Adversarial Networks
for Physics Synthesis. ArXiv e-prints, Jan. 2017.
J. Donahue, P. Krihenbiihl, and T. Darrell. Adversarial feature learning.
arXiv preprint arXiv:1605.09782, 2016.

(2]
(3]
(4]
(5]
(6]

(71

(8]

[9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]
[31]

[32]
(33]
[34]
[35]

[36]

[37]

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672-2680,
2014.

1. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples. ArXiv e-prints, Dec. 2014.

S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and P. Abbeel.
Adversarial attacks on neural network policies. CoRR, abs/1702.02284,
2017.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial
attacks with limited queries and information. CoRR, abs/1804.08598,
2018.

Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang. Towards
the Automatic Anime Characters Creation with Generative Adversarial
Networks. ArXiv e-prints, Aug. 2017.

L. Jost. Entropy and diversity. Oikos, 113(2):363-375, 2006.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans
for improved quality, stability, and variation. CoRR, abs/1710.10196,
2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

J. Kos, I. Fischer, and D. Song. Adversarial examples for generative
models. CoRR, abs/1702.06832, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images.
05 2012.

K. Kurach, M. Lucic, X. Zhai, M. Michalski, and S. Gelly. The
GAN landscape: Losses, architectures, regularization, and normalization.
CoRR, abs/1807.04720, 2018.

Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

Z. C. Lipton and S. Tripathi. Precise recovery of latent vectors from
generative adversarial networks. CoRR, abs/1702.04782, 2017.

K. S. Liu, B. Li, and J. Gao. Generative model: Membership attack,
generalization and diversity. CoRR, abs/1805.09898, 2018.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

B. M Lake, R. Salakhutdinov, and J. B Tenenbaum. Human-level concept
learning through probabilistic program induction. 350:1332-1338, 12
2015.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579-2605, 2008.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski. Plug
& play generative networks: Conditional iterative generation of images
in latent space. In CVPR, page 7, 2017.

A. Odena, C. Olah, and J. Shlens. Conditional Image Synthesis With
Auxiliary Classifier GANs. ArXiv e-prints, Oct. 2016.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. CoRR,
abs/1511.06434, 2015.

S. Ross. A first course in probability. Pearson, 2014.

P. Samangouei, M. Kabkab, and R. Chellappa. Defense-gan: Protecting
classifiers against adversarial attacks using generative models. CoRR,
abs/1805.06605, 2018.

S. S. Shapiro. How to test normality and other distributional assump-
tions, volume 3. ASQC Milwaukee, WI, 1990.

Stanford. Tiny imagenet visual recognition challenge.

P. Tabacof, J. Tavares, and E. Valle. Adversarial images for variational
autoencoders. CoRR, abs/1612.00155, 2016.

C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. L. Yuille. Adversarial
examples for semantic segmentation and object detection. CoRR,
abs/1703.08603, 2017.

L. Yang, S. Chou, and Y. Yang. Midinet: A convolutional generative
adversarial network for symbolic-domain music generation using 1d and
2d conditions. CoRR, abs/1703.10847, 2017.

A. Yu and K. Grauman. Fine-grained visual comparisons with local
learning. In Computer Vision and Pattern Recognition (CVPR), Jun
2014.

	I Introduction
	II Background
	III Related works
	IV Out-domain examples
	IV-A Motivating adversarial scenario

	V Methodology
	VI Results
	VI-A DCGAN
	VI-B ACGAN

	VII Conclusion and further developments
	References

