
Agent-Based Simulations of Blockchain protocols illustrated
via Kadena’s Chainweb

Tarun Chitra1, Monica Quaintance2, Stuart Haber3, and Will Martino4

Abstract—While many distributed consensus protocols
provide robust liveness and consistency guarantees under
the presence of malicious actors, quantitative estimates of
how economic incentives affect security are few and far
between. In this paper, we describe a system for simulat-
ing how adversarial agents, both economically rational
and Byzantine, interact with a blockchain protocol. This
system provides statistical estimates for the economic
difficulty of an attack and how the presence of certain
actors influences protocol-level statistics, such as the
expected time to regain liveness. This simulation system
is influenced by the design of algorithmic trading and
reinforcement learning systems that use explicit modeling
of an agent’s reward mechanism to evaluate and optimize
a fully autonomous agent. We implement and apply
this simulation framework to Kadena’s Chainweb, a
parallelized Proof-of-Work system, that contains com-
plexity in how miner incentive compliance affects security
and censorship resistance. We provide the first formal
description of Chainweb that is in the literature and use
this formal description to motivate our simulation design.
Our simulation results include a phase transition in block
height growth rate as a function of shard connectivity and
empirical evidence that censorship in Chainweb is too
costly for rational miners to engage in. We conclude with
an outlook on how simulation can guide and optimize
protocol development in a variety of contexts, including
Proof-of-Stake parameter optimization and peer-to-peer
networking design.

I. INTRODUCTION

Blockchain systems provide security via the eco-
nomic disincentivization of malicious behaviors, such
as double-spending or long-range attacks. Formally,
this security is established by proving that the system
achieves liveness, consistency, and persistence under
suitable networking conditions (e.g. partial synchrony
or asynchrony) and under the assumption that hon-
est and rational agents are in the majority [1], [2],
[3]. Many of these results give precise quantitative
conditions that prescribe when a protocol will fail

1T. Chitra is at Gauntlet Networks, Inc.
tarun@gauntlet.network

2M. Quaintance is at Kadena LLC
monica@kadena.io

3S. Haber is Stuart Haber Crypto LLC
stuart.haber@acm.org

3W. Martino is at Kadena LLC
will@kadena.io

as a function of parameters, such as the difficulty
adjustment period [1] or epoch length [2]. However,
it becomes exceedingly difficult to provide similarly
strong results when dealing with sharded or paral-
lelized blockchains. There is a marked loss in quan-
titative strength in the existing literature of results,
as accommodating for communication complexity and
resource (e.g. energy, space, or stake) redistribution
leads to significantly worse liveness performance [4],
[5] and weaker tolerances for Byzantine actors. Math-
ematically, the main reason for this loss in statistical
power comes from an inability to apply non-trivial
concentration inequalities to all chains simultaneously,
due to residual correlations that stem from cross-shard
transactions and the overhead of repeated committee
selection. Moreover, the increased communication cost
for cross-shard or cross-chain transactions is only
described asymptotically, which makes it hard to tune
practical peer-to-peer networking algorithms for cross-
shard transactions. Finally, as one increases the number
of shards, there is often a dramatic increase in the
number of parameters, such as timeouts and resource
limits per shard, that a protocol designer must choose.
The choice of these parameters can dramatically im-
pact real-world performance and security of a sharded
or parallelized blockchain. This paper will introduce
agent-based simulation, which is used in a variety
of other fields, as a way for protocol designers and
practitioners to overcome some of these problems.

Agent-based simulation is used by practitioners and
researchers in algorithmic trading [6], artificial intelli-
gence [7], autonomous vehicles [8], cybersecurity [9],
economics [10], energy allocation [11], and by the
US Commodities and Futures Trading Commission to
detect fraudulent market activity [12]. These systems
define a set of agents A1, . . . , An that each have a state
space Si and interact with each other via a prescribed
set of actions A. Each agent receives updates to
their state, caused either by the choice of actions of
other agents or due to exogenous signals (e.g. external
market prices), and then computes a policy function πi
that selects an action for an agent to take. After running
a number of simulations of agents interacting under

ar
X

iv
:1

90
4.

12
92

4v
1

 [
cs

.C
R

]
 2

9
A

pr
 2

01
9

different ensembles of initial conditions, exogenous
data, and policies, a practitioner usually computes
statistical averages and/or estimators of game theoretic
quantities [13] to provide estimates of ‘macroscopic’
quantities that are emergent properties of the agent
interaction. The statistical sampling of these ensembles
is usually implemented via Monte Carlo (MC) and
Markov chain Monte Carlo (MCMC) methods, while
the designing of policies, state spaces, and action
spaces is performed via analytic modeling and more
recently, deep reinforcement learning [7].

While these techniques have been successfully de-
ployed in practice within other financial disciplines,
the use of agent-based simulations for blockchain
development has been scant. As far as the authors can
tell, agent-based blockchain simulation has focused
on refining selfish mining rewards [14], reducing the
energy usage of Proof-of-Work systems [15], and on
disproving the claims of various block-free ledgers
(e.g. IOTA [16]). However, agent-based simulation can
be used as a production tool to help protocol designers
optimize parameters, estimate latency and bandwidth
usage, and to estimate the true cost of security for
Proof-of-Stake systems. Moreover, the pervasive usage
of agent-based simulations in production environments
within algorithmic trading intimates that the technique
is useful for monitoring and estimating risk within live
blockchain systems.

We aim to illustrate the versatility of agent-based
simulation via an analysis of Chainweb, a parallelized
Proof-of-Work protocol that has eluded a closed-form
security proof due to explicit correlation between
chains that makes it difficult to use standard proba-
bilistic tools. Our simulations, which are designed to
handle arbitrary distributed consensus protocols, will
show that we can get high-fidelity estimates for the
latency-security trade-off in Chainweb and an estimate
for how much miners lose when they try to censor
particular chains.

Finally, we note that estimating the precise cost of
security is a difficult challenge that involves a number
of variables, some of which are exogenous to the
underlying chain like rental markets [17], arbitrage op-
portunities on centralized and decentralized exchanges,
and the difficulty of estimating the market impact of
attacks. The simulations in this paper illustrate how
endogenous design choices, such as difficulty adjust-
ment periods or shard correlations, affect practical
protocol performance. Our final section will conclude
with a description of how simulations can interact with
exogenous data (akin to trading strategies) and how
we can use simulation to model the effects of volatile
exchange prices and derivatives markets on chain

security. These uses are increasingly important as the
security of Proof-of-Stake protocols is inseparably tied
to exogenous data and judicious parameter selection
(e.g. slashing rates in live protocols such as Tezos
[18]). Even alternative Sybil resistance mechanisms
such as Proof-of-Replication (used in FileCoin [19])
and privacy data marketplaces [20] end up relying on
market making and order matching functionality that
is best optimized via agent-based simulation.

II. SIMULATION METHODOLOGY

We will discuss our simulation methodology in two
parts: one that evinces the features of our generic
simulation platform and another that describes how we
modeled agents within our system.

A. Simulation Platform

Our C++ simulation platform consists of a custom
discrete event simulation that emulates the peer-to-
peer network of a blockchain system and uses a
probabilistic generative model to generate events that
corresponds to actions that agents can take within a
blockchain system. We use MCMC methods to sample
from this model to generate the next event and to
propagate this event via the network graph. Each
protocol, whether it be Proof-of-Work, Proof-of-Stake,
of Proof-of-Replication, has a standardized interface to
define its generative model. This interface forces the
protocol designer to specify a model for event arrival
times, a method for selecting an agent or committee to
produce an event, and actions that agents are supposed
to take. The protocol designer also has to select a
routing algorithm that represents how protocol users
are gossiping blocks and off-chain packets with each
other. We deliberately separate the routing algorithm
from the underlying graph of miners and users, allow-
ing us to test how the system behaves with different
gossip protocols. This allows for a protocol designer
to test their protocol under deterministic algorithms,
such as Kademlia [21], or a randomized gossip method
[22]. Moreover, the design of this platform is based
on a combination of high-frequency financial back-
testing simulations, which use highly optimized, low
latency versions of probabilistic networking models,
and computational physics simulations, which provide
optimized methods for evolving systems of interacting
objects.

The simulation also includes a domain-specific lan-
guage for describing the statistical calculations and
policies of individual agents. In order to mimic cryp-
tographic simulation-based proofs [23] and ideal func-
tionalities, we allow for agents to directly interact with
the MCMC model. This allows for honest agents to

2

mutate stochastic components of the simulation related
to their local state (e.g. hash power, bonded stake or
space) and lets Byzantine agents mutate the state of
other agents. Agent computations are not restricted and
allowed to be generic; for instance, an agent can use
a trained TensorFlow or PyTorch model as a policy.
Given that there is a modicum, at best, of data stored
in blockchains, all agent policies used in the sequel
will be rules-based and closer to high precision, low
recall trading strategies versus low precision, high
recall reinforcement learning policies.

B. Agent Design Methodology

We use agent-based models to model rational,
Byzantine, and adversarial miner strategies. We as-
sume, without the loss of generality, that our agents
satisfy the Byzantine-Altruistic-Rational assumption
[24]. Agents are represented via a state and action
space model, in which agents provide a utility function
U : S → R that is used to adapt a policy, π : S → A,
where the state space is S and the action space is A. In
this paper, we define our state space to be At×∆Nshards ,
where At is the miner’s local arboretum at time t and
∆Nshards represents the miner’s hash power distribution.
Note that we explicitly exclude block withholding
from the action space, as the only choices that a miner
can make involve changing their hash power distribu-
tion. In particular, this also means that our action space
is simply ∆Nshards , as any action corresponds to a choice
of hash power distribution. As this is preliminary
work, we excluded selfish mining and withholding
attacks to simplify the statistical analysis1 in §4. We
will expand upon these results and include selfish
mining and withholding attacks in future work. Agents
adjust their policies by attempting to optimize their
expected reward under a prescribed utility function.
For simplicity, we assume that the utility function is
C1, so that we can optimize it via gradient descent.
Drawing inspiration from the reinforcement learning
literature, we define the expected reward as the k-
step exponential moving average (α < 1) of the utility
function:

Eα[Rt] =

k−1∑
τ=0

ατU(St−τ)

where St ∈ S is the state observed by the agent at
time t. In this paper, St is simply the agent’s local
copy of the Chainweb arboretum at time t and their
current hash power distribution. From here on, we fix
α = 1

2 and let E[Rt] = E
[
Rt,

1
2

]
. Thus, given a

1Our future work will discuss using adaptive sampling methods
to deal with the non-stationarity that occurs when adding block
withholding

utility function, an agent will update their state via
the ordinary gradient descent iteration,

St+1 = St − η
k−1∑
τ=0

2−τ∇St−τU(St−τ).

Using gradient descent also helps us enforce a locality
constraint that ensures that miner strategies are purely
local and not reliant on long-term historical results.

In order to program the agents within our simulation
environment, we have developed a custom domain-
specific language that aims to optimize the computa-
tion of utilities and policies for each simulated agent.
This will be discussed in more detail in a subsequent
paper by a subset of the authors. Using this language,
we can specify what statistical signals trigger agents
to take actions, allowing for us to describe complex
agent strategies and policies via a simple script. Our
language also allows for us to treat agents as a tem-
plate, which lets us take a set of nodes and assign
the same strategy to that set of nodes. This allows for
easy specification of agent distributions, allowing for
a user to specify policies π1, . . . , πn and their relative
proportions p ∈ ∆n.

1) Utility Function: The authors of [25] show that
in the continuous time and zero latency (e.g. no peer-
to-peer network) setting, Markovian agents maximize
their expected reward in Bitcoin by optimizing a utility
function propotional to R(t)

H(t) , where R(t) is the number
of rewards that the agent has accrued at time t and
H(t) the agent’s hash power expenditure at time t.
Since this paper assumes that H(t) is constant and
uniform for all agents, we can simply define the single
chain utility function to be:

Ui,α(St) = Ui,α(At, ht) =
γ(height(Cα,t))

ht

where ht ∈ (0, 1) is the fraction of hash power placed
on chain Cα,t is the αth chain of the arboretum At
and γ is the fraction of blocks in chain C that agent
i produced (see equation 4). Since both values fall in
(0, 1), we’ve removed the issue of ensuring that the
dynamic ranges of these quantities are compatible and
will not under/overflow. In future work, we plan on
allowing ht to be an arbitrary positive real number,
representing energy costs, which will force us to add
in a scaling constant to this utility function.

In the multiple chain setting, we simply define the
ith miner’s utility function as:

Ui(St) =
∑

α∈[Nshards]

Ui,α(St)

3

Figure 1. Visualization of Chainweb Base Graph using the Petersen
graph as base protocol configuration

III. CHAINWEB DETAILS

For demonstration of the proposed modeling tech-
niques we will analyze Chainweb [26], a parallelized
Proof-of-Work network architecture designed to pro-
vide high security and high transaction throughput.
Chainweb serves as an ideal use case for simulation
because designers have to choose Ω(N2

shards) parame-
ters and because it is difficult to formally prove that
Chainweb is resistant to miner censorship. As there
has not been a formal description of Chainweb in the
literature, we will provide both an informal descrip-
tion (with visualization) and a formal description that
proves that the parallelized system achieves liveness.

A. Informal Description

Chainweb is a parallel chain Proof of Work ar-
chitecture that combines hundreds or thousands of
individually mined peer chains into a single network.
Figure 1 depicts ten chains that are connected via the
Petersen graph. The three-dimensional figures show
the dependencies of blocks at different heights on
blocks of lower heights. Each chain in the Chainweb
braid maintains its own ledger, and blocks on each
chain are mined with Nakamoto-style Proof of Work
hashing. Peer chains incorporate each other’s Merkle
roots to enforce a single super chain that offers an
effective hash power that is the sum of the hash
rate of each individual chain. Each chain in the net-
work mines the same cryptocurrency which can be
transferred cross-chain via a Proof-of-Burn verified
with trustless Simple Payment Verification (SPV) at
the smart contract level. The configuration of the
Chainweb braid and the relationship between chains
is fixed at launch and can be hard forked to larger
configurations as throughput demands. The majority
of miners are expected to mine the entire Chainweb
braid, and as such each miner will maintain its own
local version of Chainweb, the braid of which will be

Figure 2. A visualization of the multiple local copies of Chainweb
that are maintained by miners, here depicted as ovals, with blocks
being generated from left to right and Merkle root references as
arrows; this replication generates the arboretum structure. The red
block represents two conflicting blocks in the same location, creating
a fork which must be reconciled.

recombined with those of other miners as blocks are
created.

B. Formal Description

Notation:
• For any n ∈ N, [n] = {1, 2, . . . , n} ⊂ N
• Th,d is the set of a directed trees with maximum

height h and maximum degree d
• T = lim

h,d↑∞
Th,d. We can take this limit as there

is a natural lattice: Th,d ⊂ Th′,d′ if h < h′ and
d < d′

• B ⊂ {0, 1}∗: The space of admissible blocks
• T∅: The tree with one node that represents the

genesis block (e.g. the empty blockchain). We
define height(T∅) = 0

• If we have a graph G = (V,E) define the
boundary operator ∂ : V → 2V by ∂(v) = {w :
(v, w) ∈ E}

From single chain to multiple chains with constraints

In order to fully-specify a single chain PoW system,
one needs to define the following [1]:

1) Network graph that describes how miners and
users communicate

2) Merkle trees for each miner that represent each
miner’s copy of the blockchain.

3) A process for dynamically growing and updating
the Merkle tree

When we refer to trees, we will refer to a block tree,
where each vertex of the tree represents a block. In the
multiple chain world, in order to balance security and
throughput, we need to replace the single Merkle tree
rooted at each miner with a set of Merkle trees and a
set of constraints that do not let the different chains get
too far out of sync with out other. To formalize this,

4

we will first need to define the terms network graph,
base graph, and arboretum:

Definition 1. A network graph is a weighted, undi-
rected graph Gnetwork = (Vnetwork, Enetwork,Wnetwork),
where each vertex v ∈ Vnetwork represents a miner,
each edge e ∈ Enetwork, e = (v, w) represents a peer-
to-peer network connection between miners v and w,
and Wnetwork : Enetwork → R maps an edge to a latency.
An Nshards-base graph is an unweighted, undirected
graph Gbase = ([Nshards], Ebase), where each vertex
represents a separate chain and each edge represents
a constraint.

In practice, the network graph is changing as users
join and leave the network and the edges change in
accordance with the peer-to-peer networking protocol.2

In this work, we will consider the network graph
static and unchanging during the remainder of our
analysis. We next need to define how our constraint
set, represented by Gbase, affects the allowable Merkle
trees.

Definition 2. An arboretum A is a triple (V,E, T)

where V ⊂ N is a vertex set, E ⊂ 2(V2) is an edge
set and T : V → T is an operator that maps a
vertex to a tree. If Λ : E × tv∈V T (v) → {0, 1}
is a predicate, a Λ-arboretum is an arboretum that
Λ((v, w), T (v) t T (v)) = 1 for all (v, w) ∈ E.
Finally, if G′ = (W,F) is a subgraph of G = (V,E),
we define a subarboretum centered on (W,F) to be
(W,F, T |W)

An arboretum is distinct from a forest, as a forest
does not prescribe connectivity between trees, whereas
the edge set in an arboretum provides a natural graph
distance between any two trees. Figure 2 depicts an
arboretum where Gnetwork is the triangle graph and
Gbase is a length-1 path with two vertices and one
edge. The use of an arboretum is a key feature that is
important to Chainweb’s performance claims, as the
choice of graph can dramatically affect performance
in a sharded PoW setting. More precisely, if an edge
e = (v, w) ∈ Ebase, this means that ith block of chain
v can only be added if the i−1st block of w has been
added. Thus, a valid Chainweb arboretum will need to

2Formally, if we think of all possible node sets N as being a
subset of [Nmax], then we can view the networking protocol as a

map ρ : 2Nmax → 2

(
Nmax

2

)
, which maps a node set into an edge

set.

satisfy the following predicate for all (v, w) ∈ E:

ΛChainweb((v, w), T (v) ∪ T (w)) =

(height(T (w)) == height(T (v))− 1)

∨ (height(T (w))− 1 == height(T (v)))

∨ (height(T (w)) == height(T (v)))

∨ (height(T (v) == 0)

∨ (height(T (v) == 0) ∨ compatible(T (v), T (w))
(1)

The last predicate, compat(T (v), T (w)) ensures that
the block at the tip of T (v) at height h includes
a header from a block at height h − 1 of T (w).
This condition is illustrated in figure 2, where we
see the two blocks in red depending on both their
predecessor on the same chain and the adjacent chain.
By assumption, we have compat(T∅, T∅) = 1 Finally,
given a predicate Λ, we define a dynamic process on
an arboretum that represents a single miner’s mining
activity:

Data: An initial arboretum
A0 ← ([Nshards], E, T0), where T0(i) = T∅,
t← 0

while true do
Ãt+1 = (Ṽ , F̃ , T̃t+1)← largest
Λ-subarboretum of At ;

(i, B) ∈ Ṽ × B ← Apply mining strategy and
find chain i that is admissible and mine a
valid block B on it (possibly causing a fork);
Tt+1 ← Apply block B to T̃t+1(i)

end

In order to prove that the system achieves liveness,
assuming that there is a non-zero amount of hash
power on every shard, we need to show that this
process can continue in an infinite loop without halting
for Chainweb. This can happen, for instance, if there
are no ΛChainweb-subarboreta of At. We will show that
this cannot happen:

Claim 1. If G = (V,E) is connected, then for all t ∈
N, there exists a non-empty ΛChainweb-subarboretum of
At

This claim is proved in the appendix. Let Bt =
(Ct, Dt, T̃t) be the non-empty ΛChainweb-subarboretum
of At. We call Ct the cut set of the chain at time t. The
above claim says that the cut set is never empty and
we can always make progress and the liveness of the
set of chains reduces to the liveness of the individual
chains. Chainweb thus consists of a miner graph G
and a series of arboreta, one for each vertex, denoted

5

At,v . We note for completeness that one can also frame
Chainweb as an arboretum on the strong graph product
of a network graph and base graph.

C. Implementation of Chainweb

We represent Chainweb via a graph of miners each
of whom holds a copy of their local arboretum. We
sample new blocks from a probabilistic model repre-
senting Chainweb that has the following parameters:
• λα: Block frequency for chain α
• ζi ∈ ∆Nshards : Hash power distribution of miner i
• Hi ∈ R≥0: Hash power of miner i
• Htotal: The total hash power of the system, defined

as

Htotal =

Nnet∑
i=1

Hi

• Γα: The fraction of hash power on chain α,
defined as:

Γα =
1

Htotal

Nnet∑
i=1

Hiζi,α

We sample a new block on chain α at time t created
by miner j, Bα,j,t ∈ B, via the following generative
model:

α ∼ Multinomial(Γ1, . . . ,Γα)

j ∼ Multinomial(ζ1,α, . . . , ζNnet,α)

t ∼ Poisson(λα)

Given this model and initial conditions (such as a
choice of genesis block and random number seeds),
our simulation platform can sample a trajectory of
how Chainweb might evolve. Each miner’s policy is
represented via a function that adapts and optimizes
their own hash power distribution, ζi, which allows for
the miner to affect the sampled trajectory. We also note
that this model shares a number of similarities with
multivariate Hawkes processes [27]. In all simulations
performed in this paper, we make the following as-
sumptions about the above parameters (as these likely
reflect the choices in Chainweb upon launch [26]):
• All chains have the same block production rate:
∃λ ∈ R≥0 ∀α ∈ [Nshards] λα = λ

• We use uniform hash power, e.g. ∃H ∈ R≥0 ∀i ∈
[Nnet] Hi = H

• Our network graph will only contain miners (e.g.
we are assuming that all transaction generating
participants are also miners)

• All simulations in this paper route blocks using
either k-nearest neighbor routing (like Bitcoin) or
use randomized gossip [22]

• All latencies were sampled from the Bitcoin la-
tency distribution in [28]

Finally, we note that we do not include an explicit
difficult adjustment in our simulations, even though it
is supported within the platform. While changing the
difficulty adjustment time window can have dramatic
effects on the profitability of selfish mining [29], we
wanted to reduce the noise in our statistics and plan on
describing selfish mining optimization in a subsequent
work.

IV. RESULTS

We performed two experiments to validate our sim-
ulation methodology and to estimate endogenous costs
of security in Chainweb. Our goal is to illustrate
how modeling adversarial and networking behavior
can help choose design parameters such as λi and the
choice of base graph that is used in the production
client.

A. Network Analysis

Our first experiment aims to test how different
network and base graph configurations lead to changes
in system dynamics under different routing profiles.
As Claim 1 only guarantees that we will eventually
achieve liveness in Chainweb provided that all chains
have non-trivial chain growth, our goal is to perform
a numerical study of how realistic chain growth looks
and to find an estimate for how long it takes for a block
to reach the whole network. Statistically estimating
chain growth and the time to achieve liveness is crucial
for deciding how to set parameters the block produc-
tion rates, λi, as there is a natural trade-off between
liveness time and block production rate [30]. Since
Chainweb’s throughput is bounded by the diameter
of the base graph [26], we aimed to use graphs that
are the best known solutions to the degree-diameter
problem. For these experiments, we used Nnet = 8192
and Nshards = 57, with the choice of shards due to the
existence of a Moore Graph, the Hoffman-Singleton
graph, that solves the degree-diameter problem [31].

We will describe the statistics of interest. For a
miner i and chain α, let hi,α(t) ∈ N be the height of
the longest branch of chain α that miner i has seen. For
notational convenience, we assume that hi,α(t) = 0 for
t < 0. Define the height function, H : R≥0 → R as:

H(τ) =
1

Nnet

1

Nshards

Nnet∑
i=1

Nshards∑
α=1

Et[hi,α(t))−hi,α(t−τ)]

(2)

6

where Et is the expectation over all environments up
to time3 t. In practice, if we simulate k trajectories
until time T , we can approximate this expectation as:

Et[hi,α(t)−hi,α(t−τ)] ≈ 1

kT

∑
t≤T

(hi,α(t)−hi,α(t−τ))

Intuitively, this tells us what the expected height
change of the blockchain is within a window of size τ .
By averaging over windows that start at different times
t, we can de-noise the variations of this measurement
and observe behaviors that are persistent across differ-
ent initial conditions. Finally, let τi,α,k be the time that
the kth miner receives block i on chain α. Let τ̂i,α,k
be the random variable that is τi,α,k conditional on
block k being on the main branch of chain α. Define
the liveness time τ to be:

τ =
1

Nshards

Nshards∑
i=1

Ek

[
max
k∈[Nnet]

τ̂i,j,k − min
k∈[Nnet]

τ̂i,α,k

]
(3)

This measures the average time that it takes for a block
that reaches the main chain to reach all miners. If we
use randomized gossip, one expects this time to simply
be the covering time of random walk on the miner
graph, which is controlled by the spectral gap of the
miner graph [32]. However, since we are conditioning
on blocks that make up the main chain, this number
can be significantly greater than the covering time.

1) Verification Runs: We performed a few verifica-
tion runs to show that our simulation is replicating
the behavior of Chainweb. For these runs, we let
set the base graph be equal to the complete graph,
Gbase = KNshards . In this situation, since every shard
depends on every other shard, we expect the time
between successive blocks on the same chain to have
super-linear scaling in the size of the base graph.
We ran 100 simulations with 16,384 miners and a
base graph with |Vbase| ∈ {2k : 1 ≤ k ≤ 13} and
calculated this time. In figure 3, we see super-linear
scaling (note that both scales are logarithmic) and
decreasing variance as we increase the base graph size.
We also note that one expected some finite-size effects
as |Vbase| ≈ |Vnetwork|, which is the likely cause of the
decay in the rate of growth of this curve.

2) Liveness Time: To assess liveness time (3) under
realistic conditions, we constructed a realistic internet
graph, the Barabási small world graph [33], used a
randomized gossip protocol [22], and sampled laten-
cies the Bitcoin latency distribution [28]. In order to
stress the system, we assumed a block production rate

3Our Chainweb model is a composed of Markov models and
inherits a natural filtration that Et is defined on (regardless of initial
environment).

Figure 3. This figure shows the average inter-arrival time (e.g. time
between successive blocks on the same chain) as a function of n =
|Vbase| with Gbase = Kn, the complete graph on n vertices. We
expect super-linear growth in this time, as each chain has to wait
on all other chains before it can make progress. This continues to
be true even up to |Vbase| = |Vnetwork|/2.

Figure 4. In this figure, which plots expected latency (and confi-
dence intervals, represented via error bands) against expected degree
of a Barabśi graph, we see that by increasing the bandwidth used,
we quickly saturate the graph.

of λ = 1Hz. In figure 4, we see a plot of the expected
degree of a Barabási graph versus liveness time. We
used a miner graph of size 32,768 and used the
Hoffman-Singleton graph as a base graph to generate
these figures. The different curves correspond to a
different number of simultaneous connections, which
is how we quantify bandwidth. This corresponds to the
upper bound on the number of neighbors forwarded to
by a miner. We can see that by the time we get to 10
simultaneous connections, we are close to saturating
the high-bandwidth limit, even for low-connectivity
Barabási graphs. Data of this form helps protocol
developers assess design decisions and choose peer-to-
peer networking capabilities whose bandwidth-latency
tradeoff matches the expectations of the consensus
mechanism.

3) Random Miner Graph: In order to assess how
Chainweb performs under more extreme network
graphs, we looked at a modified version of Erdös-

7

Figure 5. Computation of H(τ) (denoted height derivative) for
times within one block interval (λ = 1

600
Hz.) The legend indicates

the Erdös-Renyi probability p that was used to generate Gp.

Renyi random graphs Gp such that if i ∈ [Nnet−1], j ∈
[Nnet]− {i+ 1}, then the edge (i, j) is included with
probability p and such that the edge (i, i+1) is always
included. We chose this ensemble because it ensures
that our graph is connected (via the inclusion of the
line edges (i, i+ 1)), but still inherits the Erdös-Renyi
phase transition. In these experiments, we set the block
production rate to be that of Bitcoin (λ = 1

600Hz) so
that these results could be interpreted in terms of real
world data. Moreover, we averaged over 10 instances
of each random graph Gp and used the Hoffman-
Singleton graph as a base graph.

In Figure 5, we see computations of H(τ) within
one block interval. We see that for high values of p
(e.g. the miner graph is more connected), there is a
sharp uptick in expected height increase around a half
block time (300s). As we decrease connectivity, we
expect there to be a more gradual height increase as
some of the graph will have received the latest block,
whereas other are still waiting to receive it and/or
are on other forks. This is the expected behavior:
when height increases propagate uniformly and rapidly
throughout the network graph, we expect a sharp
uptick in expected height change, as most participants
receive the block (on average) at the same time (since
miners have the same hash power). However, it is
curious to note that the Erdös-Renyi phase transition
[34] takes place around p = 0.001 for our graphs and
yet we only observe the signs of the transition (e.g.
the sharp derivative for p ∈ {0.1, 0.25, 0.5}) far away
from it. This suggests that the presence of forks can
dramatically slow down block propagation and adds
in a non-linear latency effect. This effect can likely be
measured by miners, who measure their deviation from
these expected curves, who can potentially use this
information to boost the rewards from selfish mining,
akin to latency arbitrage in high-frequency trading.

B. Adversarial Censorship

In order to test how resilient Chainweb is to miners
attempting to censor a chain α by not allocating any
hash power to α, we used our domain specific language
to construct two agents that do the following:

1) Honest Agent: Computes utility and gradient on
all chains and updates its hash power distribution
via gradient descent

2) Adversarial Agent: Computes utility and gradi-
ent on all chains, updates its hash power via
gradient descent, sets the hash power allocated to
the censored chain to zero, and then redistributes
the excess hash power equally.

We chose a sequence of twenty five evenly-spaced
adversary fractions fi ∈ (0, 1) and for each of these,
ran 256 simulations (with the Hoffman-Singleton base
graph) of 30,000 blocks produced with a (1 − fi)
fraction of honest agents and fi censoring agents. For
each miner i and chain α, we computed the fraction
γi,α(h) of blocks on the main branch of chain α that
were created by miner i at block height h, where
∀α ∈ [Nshards]∀h ∈ N

∑
i∈[Nnet]

γi,α(h) = 1. For
simplicity, we assume that the block reward is constant
and is equal to one coin per block throughout our sim-
ulations (as all of our plots are about relative rewards,
this choice of units does not affect our results). We
define the following two quantities:

γhonest(h) =
1

|Shonest|
1

Nshards

∑
i∈Shonest

γi,α(h) (4)

γadversary(h) =
1

|Sadversary|
1

Nshards

∑
i∈Sadversary

γi,α(h) (5)

where Shonest ⊂ [Nnet] is the set of honest miners and
Sadversary = [Nnet] − Shonest. In Figure 6, we see the
plot for a single trajectory with fi = 0.1, where we
see that γhonest > γadversary and that the honest curve is
much smoother than the noisy adversary curve.

In Figure 7, we see how the expected difference in
rewards and risk-adjusted rewards vary as a function of
f ∈ (0, 1). We measure risk-adjusted rewards using the
Sharpe Ratio, a common measure of trading strategy
performance, which is measured via the mean reward
(over all trajectories sampled) divided by the standard
deviation of the reward. As the plots illustrate, honest,
profit-maximizing agents beat out the censoring agents
until 50-60%, at which point the censoring adversary
is increasingly favored.

From this data, we can conclude that it appears to
be hard for miners that are aiming to censor a chain to
successfully do it as long as there are enough rational,
profit-maximizing miners in the system.

8

Figure 6. In this image, we see that the expected fraction of honest
blocks, γhonest(h) stabilizes rapidly, whereas γadversary(h) fluctuates
wildly, with excursions to the stable point that is achieved by honest
agents. This data is taken from a single simulation.

Figure 7. In the top figure, we see the relative expected reward,
E[Rhon]−E[Radv]

E[Radv]
between expected adversary rewards and honest

rewards. We see that the honest miner advantage decays quickly
from 7% to 1%, although honesty appears to be the dominant
strategy. On the other hand, the risk adjusted returns, measured via
the Sharpe Ratio Sα =

E[Rα]√
Var[Rα

, α ∈ {hon, adv}, has a stronger

transition around 80.

V. CONCLUSIONS AND FURTHER WORK

We explored how adversarial, agent-based simula-
tion can be used to assess claims and measure network-
ing behavior for a blockchain protocol. Our techniques
helped us assess different design choices, such as
how the choice of base graph affects liveness time,
and we were able to statistically estimate the rewards
sacrificed by an adversarial, censoring agent. These
techniques helped us evaluate the safety of Chainweb
and help us statistically justify that degree-diameter
minimizing base graphs prevent censorship attacks. As
our experiments with liveness time show, one can use
these techniques to optimize peer-to-peer networking
performance based on various metrics, such as the
number of simultaneous connection in 4. Finally, we
note that more complicated consensus protocols, such
as Proof-of-Stake and Proof-of-Space tend to have a
variety of other parameters (slashing, market making
or auction parameters, etc.) and these can be optimized
in a similar fashion, given a certain mixture of honest
and adversarial agents. Our future work will include an
analysis of block withholding and selfish mining and
analyzing Chainweb (once it is live) by incorporating
exogenous data to estimate the true cost of security and
selfish mining, conditional on the existence of active
fiat and derivatives markets.

VI. ACKNOWLEDGMENTS

The authors would like to thank Joseph Bonneau,
Yi Sun, Emily Pillmore, and the anonymous reviewers
for insightful and constructive comments.

REFERENCES

[1] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the
blockchain protocol in asynchronous networks. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 643–673. Springer, 2017.

[2] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos,
and Nickolai Zeldovich. Algorand: Scaling byzantine agree-
ments for cryptocurrencies. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, pages 51–68. ACM,
2017.

[3] Timo Hanke, Mahnush Movahedi, and Dominic Williams.
Dfinity technology overview series, consensus system. arXiv
preprint arXiv:1805.04548, 2018.

[4] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova.
Rapidchain: scaling blockchain via full sharding. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 931–948. ACM, 2018.

[5] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ewa Syta, and Bryan Ford. Omniledger: A
secure, scale-out, decentralized ledger via sharding. In 2018
IEEE Symposium on Security and Privacy (SP), pages 583–
598. IEEE, 2018.

[6] Sandrine Jacob Leal, Mauro Napoletano, Andrea Roventini,
and Giorgio Fagiolo. Rock around the clock: An agent-
based model of low-and high-frequency trading. Journal of
Evolutionary Economics, 26(1):49–76, 2016.

9

[7] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of go without human knowledge. Nature, 550(7676):354,
2017.

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[9] Igor Kotenko, Alexey Konovalov, and Andrey Shorov. Agent-
based modeling and simulation of botnets and botnet defense.
In Conference on Cyber Conflict. CCD COE Publications.
Tallinn, Estonia, pages 21–44, 2010.

[10] J Doyne Farmer and Duncan Foley. The economy needs agent-
based modelling. Nature, 460(7256):685, 2009.

[11] George Grozev, David Batten, Miles Anderson, Geoff Lewis,
John Mo, and Jack Katzfey. Nemsim: Agent-based simulator
for australia’s national electricity market. In SimTecT 2005
Conference Proceedings. Citeseer, 2005.

[12] Steve Yang, Mark Paddrik, Roy Hayes, Andrew Todd, Andrei
Kirilenko, Peter Beling, and William Scherer. Behavior based
learning in identifying high frequency trading strategies. In
Computational Intelligence for Financial Engineering & Eco-
nomics (CIFEr), 2012 IEEE Conference on, pages 1–8. IEEE,
2012.

[13] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki
Lazaridou, Karl Tuyls, Julien Perolat, David Silver, and Thore
Graepel. A unified game-theoretic approach to multiagent
reinforcement learning. In Advances in Neural Information
Processing Systems, pages 4190–4203, 2017.

[14] Johannes Göbel, Holger Paul Keeler, Anthony E Krzesinski,
and Peter G Taylor. Bitcoin blockchain dynamics: The selfish-
mine strategy in the presence of propagation delay. Perfor-
mance Evaluation, 104:23–41, 2016.

[15] Kei-Leo Brousmichc, Andra Anoaica, Omar Dib, Tesnim Ab-
dellatif, and Gilles Deleuze. Blockchain energy market place
evaluation: an agent-based approach. In 2018 IEEE 9th Annual
Information Technology, Electronics and Mobile Communica-
tion Conference (IEMCON), pages 321–327. IEEE, 2018.

[16] Michele Bottone, Franco Raimondi, and Giuseppe Prim-
iero. Multi-agent based simulations of block-free distributed
ledgers. 2018.

[17] Joseph Bonneau. Why buy when you can rent? In International
Conference on Financial Cryptography and Data Security,
pages 19–26. Springer, 2016.

[18] LM Goodman. Tezos—a self-amending crypto-
ledger white paper. URL: https://www. tezos.
com/static/papers/white paper. pdf, 2014.

[19] Ben Fisch. Poreps: Proofs of space on useful data. Technical
report, Cryptology ePrint Archive, Report 2018/678, 2018.
https://eprint. iacr. org . . . , 2018.

[20] Nick Hynes, David Dao, David Yan, Raymond Cheng, and
Dawn Song. A demonstration of sterling: a privacy-preserving
data marketplace. Proceedings of the VLDB Endowment,
11(12):2086–2089, 2018.

[21] Petar Maymounkov and David Mazieres. Kademlia: A peer-
to-peer information system based on the xor metric. In
International Workshop on Peer-to-Peer Systems, pages 53–
65. Springer, 2002.

[22] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat
Shah. Randomized gossip algorithms. IEEE transactions on
information theory, 52(6):2508–2530, 2006.

[23] Yehuda Lindell. How to simulate it–a tutorial on the sim-
ulation proof technique. In Tutorials on the Foundations of
Cryptography, pages 277–346. Springer, 2017.

[24] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike
Dahlin, Jean-Philippe Martin, and Carl Porth. Bar fault
tolerance for cooperative services. In ACM SIGOPS operating
systems review, volume 39, pages 45–58. ACM, 2005.

[25] Swapnil Dhamal, Tijani Chahed, Walid Ben-Ameur, Eitan
Altman, Albert Sunny, and Sudheer Poojary. A stochastic game
framework for analyzing computational investment strategies
in distributed computing with application to blockchain min-
ing. arXiv preprint arXiv:1809.03143, 2018.

[26] Will Martino, Monica Quaintance, and Stuart Popejoy. Chain-
web: A proof-of-work parallel-chain architecture for massive
throughput. http://kadena.io/docs/chainweb-v15.pdf, January
2018.

[27] Paul Embrechts, Thomas Liniger, and Lu Lin. Multivariate
hawkes processes: an application to financial data. Journal of
Applied Probability, 48(A):367–378, 2011.

[28] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Re-
nesse, and Emin Gün Sirer. Decentralization in bitcoin and
ethereum networks. arXiv preprint arXiv:1801.03998, 2018.

[29] Cyril Grunspan and Ricardo Pérez-Marco. On profitability of
selfish mining. arXiv preprint arXiv:1805.08281, 2018.

[30] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate
transaction processing in bitcoin. In International Conference
on Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

[31] Mirka Miller and Jozef Sirán. Moore graphs and beyond: A
survey of the degree/diameter problem. The electronic journal
of combinatorics, 1000:DS14–Dec, 2005.

[32] László Lovász et al. Random walks on graphs: A survey.
Combinatorics, Paul erdos is eighty, 2(1):1–46, 1993.

[33] Réka Albert, Hawoong Jeong, and Albert-László Barabási.
Internet: Diameter of the world-wide web. nature,
401(6749):130, 1999.

[34] Remco Van Der Hofstad. Random graphs and com-
plex networks. Available on http://www. win. tue.
nl/rhofstad/NotesRGCN. pdf, 11, 2009.

VII. APPENDIX: PROOF OF CLAIM 1
Proof. We will prove this by induction. By construc-
tion, A0 is a ΛChainweb-arboretum since height(T∅) = 0
and compat(T∅, T∅) = 1. Now assume the induction
hypothesis that At−1 has a ΛChainweb-subarboretum
and suppose for a contradiction that At does not
have a ΛChainweb-arboretum. We first note that if
compat(Tt(v), Tt(w)) is not satisfied, but all of the
height conditions are satisfied, then one can start a fork
at Tt−1(v) or Tt−1(w) that forces compatibility. By
assumption Tt−1(v) and Tt−1(w) are admissible, so
this is possible. Thus, we can assume that the compati-
bility condition is satisfied. Since At−1 has a ΛChainweb-
subarboretum, Ãt was non-empty. Let i ∈ [Nshards] be
the index of the block mined in the second step of
the loop. From the definition of ΛChainweb, this means
that height(Tt−1(i)) ∈ {height(Tt−1(j)) + η : j ∈
∂(it), η ∈ {0, 1}} and this set is non-empty since G
is connected. We have two cases:

1) height(Tt−1(i)) = height(Tt−1(j)): This im-
plies that height(Tt(i)) = height(Tt(j)) + 1, so
j is admissible in the next round

2) height(Tt−1(i)) = height(Tt−1(j)) + 1: This
implies that height(Tt(i)) = height(Tt(j) in the
next round, so both i, j are admissible

Thus j is admissible and there must be a non-empty
ΛChainweb-arboretum

10

http://kadena.io/docs/chainweb-v15.pdf

	I Introduction
	II Simulation Methodology
	II-A Simulation Platform
	II-B Agent Design Methodology
	II-B1 Utility Function

	III Chainweb Details
	III-A Informal Description
	III-B Formal Description
	III-C Implementation of Chainweb

	IV Results
	IV-A Network Analysis
	IV-A1 Verification Runs
	IV-A2 Liveness Time
	IV-A3 Random Miner Graph

	IV-B Adversarial Censorship

	V Conclusions and Further Work
	VI Acknowledgments
	References
	VII Appendix: Proof of Claim ??

