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Abstract—Web services are important in the processing of
personal data in the World Wide Web. In light of recent data
protection regulations, this processing raises a question about
consent or other basis of legal processing. While a consent
must be informed, many web services fail to provide enough
information for users to make informed decisions. Privacy policies
and privacy languages are one way for addressing this problem;
the former document how personal data is processed, while the
latter describe this processing formally. In this paper, the so-
called Layered Privacy Language (LPL) is coupled with web
services in order to express personal data processing with a
formal analysis method that seeks to generate the processing
purposes for privacy policies. To this end, the paper reviews the
background theory as well as proposes a method and a concrete
tool. The results are demonstrated with a small case study.

Index Terms—Data protection, privacy engineering, privacy
language, static analysis, semantic web, GDPR, LPL, SOA

I. INTRODUCTION

There has been a long-standing gap between research and
practice in the domain of privacy and data protection [1].
Privacy engineering has emerged as a field that seeks to narrow
this gap. In general, privacy engineering can be defined as
a “field of research and practice that designs, implements,
adapts, and evaluates theories, methods, techniques, and tools
to systematically capture and address privacy issues when
developing sociotechnical systems” [2]. The results from this
kind of research can lower the adoption costs for industry
and bridge the gap between practice and research. Within
this domain, privacy-friendliness of a system can be un-
derstood to range from “privacy-by-policy” to “privacy-by-
architecture” [3]. This paper can be positioned to the middle;
the goal is to move toward “privacy-by-architecture” tenets.

Privacy policies are necessary for many software engineer-
ing practitioners. For example, the General Data Protection
Regulation (GDPR) requires those processing personal data
to keep a record of their data processing activities [4]. Such
bookkeeping necessitates the documentation of the processing
activities in privacy policies. Documentation is required also
for establishing the lawfulness of a given processing activity.
In the Web, the consent of data subjects is presumably the most
widely used way to establish the lawful basis of processing
personal data under the GDPR. But to obtain an informed and
freely given consent, a data subject must know and understand
the purpose(s) of processing his or her personal data. Against
this backdrop, it becomes understandable why the whole

concept of consent has long been recognized as problematic
in the digital era [5]. There are many practical reasons behind
the problems. For one, there exists an information asymmetry
between service providers and data subjects [6], [7]. This
asymmetry motivates developing new methods for expressing
privacy policies in more transparent and understandable ways.
At the same time, there is value for service providers in tool-
assisted privacy policy management.

As an illustration, consider a web service (WS) that pro-
cesses personal data in a context of booking a hotel room
online. In this context, “hotel room reservation” might denote
the high-level purpose for the processing. However, this pur-
pose does not provide enough details to obtain an informed
consent. Therefore, the purpose could be augmented to contain
more fine-grained elements, such as “authentication”, “review
display”, “account management’, “reservation confirmation”,
and “online payment”. In a typical WS implementation,
these specific elements map to particular software architecture
modules in a service-oriented architecture (SOA). By further
increasing the granularity and lowering the level of abstraction,
it is possible to enumerate these elements as a sequence of
WS-specific functional calls. By using a formal privacy policy
language, the enumeration can be further used to generate
policies that describe the distinct elements in the processing.
It should be noted that this example only covers processing
done by a primary service provider. In practice, transfers of
data to other domains often occur; a single policy does not
cover the entire transitive closure in the flow of personal
data. A payment transaction might use a third-party provider,
for instance. To restrict the scope, this paper only considers
first-party processing of personal data, although the theory
described does take also third-party transfers into account.

In terms of privacy engineering, the previous illustration
underlines the possibility to switch between a user-focused
perspective of validating a privacy policy against a concrete
software architecture, and a developer-oriented perspective of
generating the policy automatically [8]. A tool that can carry
out such switching facilitates the writing of privacy policies—
even though human intervention is still required in practice.
Given this brief motivation, the present work lays down the
groundwork for generative privacy policies. In essence, a
privacy policy for a web service is also a documentation of
its behaviour. Against this backdrop, the paper’s goal is to
demonstrate an application programming interface (API) for
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documentation that fits into a privacy policy. To this end, the
following two research questions (RQs) are examined:
• RQ1: How to formalize a model describing personal data

processing for web services?
• RQ2: How to automatically extract this data from code?
The answers to these two questions establish both a

method (RQ1) and a tool (RQ2). In terms of the former,
existing models for privacy policies are extended and aug-
mented in the web application context; in terms of the latter, a
concrete implementation is presented. From a practical privacy
engineering viewpoint, it is important that the results are
possible to integrate into real-world applications with a low
amount of costs. Regardless of a particular domain, such low-
cost integration is always a challenge for formal languages.

The remainder of the paper is structured as follows. The
opening Section II outlines the background and related work.
The subsequent Section III provides the formal definitions for
the method and the tool thereto. These definitions are provided
in two parts: the LPL is first extended to accommodate
composition, after which the language’s Purposes are mapped
to web services. Thus, this section provides the answer to
RQ1. For answering to RQ2, Section IV presents a concrete
implementation based on static analysis and SOAs. The use of
the tool implemented is further elaborated in Section V with
a small case study. Finally, Section VI discusses the answers
reached and pinpoints a few directions for further work.

II. BACKGROUND AND RELATED WORK

Multiple competing formal privacy languages have been
presented in recent years. Of these, the LPL is a good and
timely example as it has been explicitly designed to address
the GDPR’s requirements [9]. It also adheres to both legal and
technical privacy viewpoints. The main design requirements
for the language included the differentiation of data subjects
and data recipients, purpose-based policies for data, retention
and anonymization elements, the ability to layer policies for
provenance, and human-readability. While some previous work
exists also for programmable privacy languages [10], the LPL’s
abstraction level focuses on the modeling of privacy policies,
and the level is also suitable for the present work.

After the LPL’s initiation in 2018, further effort has been
devoted for extending the language and building features
around it. The examples include authentication [11], per-
sonalization [12], and privacy icons [13]. However, there
appears to be no previous work for mapping LPL specifically
to web services, nor does there seem to exist previous re-
search for grouping purposes. Although LPL itself features a
PurposeHierarchy, this feature is an inheritance relation-
ship. In contrast, the present work operates with composition.

One goal of formal languages for expressing privacy policies
is to make them machine-readable. This readability enables
algorithmic validation of a privacy policy. There exists also
some previous work in this regard. For instance, a language has
been developed for the GDPR’s requirements [14]. Compared
to the original, unmodified LPL, the language’s ontology
is more expressive, modelling consent, processing of data,

location, and related data protection characteristics. If the
goal is compliance checking instead of mere formulation of a
policy, such modeling is also necessary. Against this backdrop,
the present work builds upon LPL and takes it a step closer to
implementation. That said, the concepts presented (excluding
Section III-A) are applicable to other policy languages as well.

In essence, the GPDR entails six aspects for privacy poli-
cies: the purposes of data processing, the data processed,
the potential data recipients, transfers of the data, erasure
conditions for the data, and information about the processing
itself [9], [14]. In its current state, LPL covers these aspects,
but it is cumbersome to model details about the processing in a
transparent way. Therefore, the present work further provides
means to document web services in detail and to generate this
data automatically. There exists plenty of previous work in the
web service context, of course. The so-called semantic web
would be a prime example [15], [16]. There are also many
industry tools and standards for API documentation, such as
the OpenAPI initiative.1 In general, these API frameworks
provide means to describe a service’s functionality and to
increase its discoverability [17]. The OpenAPI specification
has also been extended with metadata in order to improve
interoperability [18], [19]. Discoverability and interoperabil-
ity also align with the GDPR’s high-level goals. Modelling
privacy requirements by combining the legal view with a
technical view using Petri nets also has been presented [20].

Generating API documentation from source code is also an
industry standard practice, and there are tools that integrate
this task with OpenAPI.2 In addition to documentation, these
generators can create client libraries which use the APIs.
Despite these advances, there appears to be no existing tools
specifically tailored for generating privacy policies. By build-
ing upon an existing solution for annotating personal data
processing in source code [8], this paper sets to narrow this
apparent gap in both research and practice.

III. DEFINITIONS

This section first defines a composed Purpose, an extension
to the Layered Privacy Language. This definition creates a
bridge from the formal language to the technical implementa-
tion level. After having demonstrated that a concrete Purpose
can be represented as a directed graph, it is subsequently
elaborated how these concepts can be mapped to web services.

A. Defining Purpose composition

The layered nature of LPL allows for nested privacy
Policies, and Purposes can have inheritance. While this is
useful, our application requires another way to layer granular-
ity and abstraction levels into the language—the component
parts that Purpose consists of. Here, inheritance is understood
as an is-a relationship; a child may be substituted for its parent.
Composition, in turn, refers to a has-a relationship of holding
a reference to another component element. The LPL forbids
multiple inheritance, but composition has no such restriction.

1 https://www.openapis.org/
2 https://swagger.io/tools/swagger-codegen/
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A LayeredPrivacyPolicy, or lpp, that is, an element
representing a privacy policy, is defined [9, Def. 1] as a tuple:

lpp = (version, name, lang, ppURI, upp, P̂ ), (1)

where version describes the LPL version, name labels the
given policy, lang specifies the language with which the policy
is written, ppURI is a link to a textual version of the policy,
upp is a so-called UnderlyingPrivacyPolicy element, and
P̂ is the set of Purposes the policy consists of. Of these,
upp allows composing policies from different entities, while
P̂ defines the actual policy content. An LPL Purpose element,
p, is defined [9, Def. 6] as the following tuple of values:

p = (name, optOut, required, descr, D̂R, r, pm, D̂), (2)

where D̂ is a set of Data elements accessed in the given
Purpose, D̂R a set of DataRecipients, r a Retention
element, and pm a PrivacyModel element. The boolean
values optOut and required define whether the purpose has
to be “actively denied” and whether the purpose has to be
accepted to be able to consent to the policy. Finally, name
and descr are human-readable textual descriptions.

Given these preliminaries, the goal is to extend the language
by defining the relation among composite Purposes in a
Policy. Since a root-level Purpose in a privacy policy is
often not specific or concrete enough to map to a technical
implementation unit, the hierarchy between Purposes can be
defined as a directed graph. However, abstract concept-level
purposes (e.g., “reserve a room”) contain many concrete parts
(e.g., API calls). Therefore, the aim is to also define constraints
under which data subjects accepting a given p may accept all
its composite purposes, denoted by p′, without weakening their
data protection. The relation is specific to a Policy, which
defines the hierarchy—policies may have different hierarchies.

Let up denote a relation for a UnderlyingPurpose, rep-
resented as a tuple of values in a policy, and ûp a set of up.
Further denote the relation of all ComposedPurposes in an
lpp by cp. Then,

up = (p, p′) and cp = (lpp, ûp), (3)

where p is any Purpose in the policy, and p′ is a Purpose
element with additional constraints to form a valid privacy
policy, as follows. From the relationship that a composite p′

is a component of a Purpose p, the constraints for a Policy
can be reasoned. In any given lpp, where p is a Purpose
belonging to it and p′ its underlying Purpose, i.e. the tuples
in (3) exist and up ∈ ûp, in order for the lpp to be valid, it
must hold that

D̂p′ ⊆ D̂p, (4)

D̂Rp′ ⊆ D̂Rp, (5)

rp′ ≤ rp, (6)

pmp′ ≥ pmp, (7)

requiredp′ = requiredp, (8)

optOutp′ = optOutp. (9)

p1: "Personalization"

p1.1: "Content recommendations"

is-a

p2': "Collect page view analytics"

p3': "Profile preferences"

p4': "Personalize feed"

has-many

PurposeHierarchy ComposedPurposes

Fig. 1. An example of a possible PurposeHierarchy using ComposedPur-
poses, highlighting both composition and inheritance.

In (6) the inequality is defined as a strictness of a Retention
element depending on its particular type. Let Indefinite ≥
AfterPurpose ≥ FixedDate and assume that comparisons
with the same type are decided by pointInT ime. With these
assumptions, AfterPurpose ≥ FixedDate follows from
not considering a Purpose completed until all FixedDate
retentions are resolved. It is also worth remarking that the
comparison of PrivacyModel elements in (7) is not de-
fined strictly. The reason originates from the LPL, which
does not provide a rigid definition for a set of potential
(pseudo)anonymization methods. A comparison of two pm’s
with the same name (e.g., “k-anonymity”) is decided by the
values of their PrivacyModelAttributes. Without a defini-
tion of an exact comparison across different pm types, it is
possible to avoid the issue by augmenting the criteria with a
requirement that the types of pmp′ and pmp must be equal.

The definition for ComposedPurposes, cp, accompa-
nies another structure originally defined in the LPL that is
named PurposeHierarchy, ph. PurposeHierarchy defines
a parent-child relationship as an inheritance hierarchy. While
this hierarchical is-a relationship is similar to the has-many re-
lationship for ComposedPurposes, there exists a meaningful
difference in capability and intent. In other words, the relation-
ships are complementary. Whereas inheritance enables reusing
rights and making a Purpose concrete, ComposedPurposes
expose the actual contents of the Purpose. Given that an
inherited Purpose is substitutable to its parent, it cannot
elaborate its intent to a data subject. A brief example can be
used to elaborate this point further.

Thus, consider “personalization” as a parent Purpose. This
purpose, p1, might be inherited by “content recommenda-
tions”, p1.1. Both would inform the data subject about the
categories of personal data used, but these would not expose
any further insights. But by adding underlying purposes to
p1.1, it is possible to elaborate the nature of “content rec-
ommendations” further. For instance, in Fig. 1 the purpose
p1.1 composes “collect page view analytics” (p2′), “profile
preferences” (p3′), and “personalize feeds” (p4′). Clearly,
when compared to displaying only p1.1, these compositions
make the policy more transparent to the data subject.

It is possible to construct a policy that does not meet
the properties required, but it would not be valid. Using the
definition of up in (3), it is possible to display a privacy policy
organized as a directed acyclic graph. A cyclic graph could be



theoretically viable in a policy (as long as the constraints for
valid policies are met), but we have not found meaningful use-
cases. The root elements are those which are not underlying
any other purpose—and following the constraints, the data
subject needs only to study and accept these. An interested
party may read deeper. Furthermore, the formal definitions
enable the subsequent functionality: coupling the purposes
with technical functions.

B. Web services as privacy policy purposes

The composed purpose specifications elaborated allow to
create more informative privacy policies. These empower
to specify down from an abstract level of a personal data
processing Purpose to what the processing concretely consists
of. These specifications enable a deeper validation of a policy,
more transparency, and confidence that the policy matches a
corresponding technical implementation. Although the com-
posed Purpose is entirely domain-agnostic, it is particularly
useful in the web application domain.

Therefore, consider a web service as a function of requests
to responses (see the definition of a server in RFC 2616; [21]).
To increase the abstraction depth, these basic characteristics
can be further extended with the concepts of web services and
service nets (SNs) [22]. Roughly, a web service is a tuple of
values describing the service, a set of component web services,
and a service net. An SN, in turn, is a place-transition Petri
net modeling the dynamic behavior of a given web service.
To proceed more formally, let

WS = (NameS,Desc, Loc, URL,CS, SN), (10)

where NameS is the service’s unique identification code,
Desc a textual description for it, Loc the server in which
the service is located, URL its endpoint, CS a set of com-
ponent web services, and SN the service net describing its
behaviour [22]. A service net, in turn, can be defined as a tuple

SN = (P, T,W, i, o, `), (11)

where P is a set of places, T a set of transitions representing
the operations of the service, W a set of directed arcs, i the
input place, o the output place, and ` a labeling function for
transitions [22]. A couple of assumptions allow to connect
these definitions to personal data processing. First, in the
present context, any web service is assumed to be governed by
a privacy policy, and that policy can be modelled with LPL.
Second, the dynamic behavior exposed by the Petri net model
can be exploited by assuming that personal data processing
occurs always within T . The latter assumption necessitates a
more thorough inspection of the behavior of a service, and
assumes it is possible to do so.

For a simple instance, say that an SN of a web service
has an input place i, an output o, and three transitions with
labels “register customer” (t1), “create subscription” (t2), and
“send confirmation email” (t3). The set of arcs W connect
i→ t1→ t2→ t3→ o. Each transition processes its own set
of personal data. If this processing can be inspected, a union
can be used to define the total processing for the given SN .

The principle remains the same in a more complex instance
with branches: a union is the sum of all potential transitions
in the service net.

To this end, a function that inspects personal data processing
in any given web service can be defined as:

pd : WS → (D̂ws, D̂Rws, ÛPPws), (12)

where WS is a web service and the return value is a tuple
describing data processing in its behaviour. In this tuple, D̂ws

is a set of personal data (i.e., LPL’s Data elements) processed
in the transitions of a service net of the WS, D̂Rws is a
set of authorized parties allowed to access the personal data
(i.e., LPL’s DataRecipient elements), and, finally, ÛPPws

is a set of privacy policies (i.e., UnderlyingPrivacyPolicy
elements) of third-parties the WS transfers personal data to.

The function pd allows to model personal data processing
at a sufficiently abstract level. Also the mapping of the
definition (10) to LPL Purpose is straightforward by using
the composition rules described earlier. In essence: (i) any
WS processing personal data is governed by a privacy policy;
(ii) the act of processing in LPL is encoded in Purposes; and,
therefore, (iii) at least one Purpose governs any web service
processing personal data. In other words, the definitions (2)
and (10) are composable and flow from a high abstraction
level to concrete operations. These can be further mapped to
the definition (1) by noting that (iv) there exists a Purpose for
any web service WS in a set of web services ŴS governed
by a LayeredPrivacyPolicy. In other words:

for all WS ∈ ŴS exists p ∈ lpp (13)

for which

pd(WS) := (D̂ws ⊆ D̂,

D̂Rws ⊆ D̂R, (14)

ÛPPws ∈ lpp).

Finally, in order to simplify the notation, let the following
tuple mark the relation between a Purpose and a web service:

gov = (WS, p). (15)

Although the relation gov is not specified as a part of a privacy
policy, this mapping between the policy and a description
of a service provides a useful method for data controllers.
Although any web service processing personal data does so
under a privacy policy, this condition does not dictate the
practice. For instance, a single Purpose could govern all web
services of a policy, or a single WS might be governed by
multiple Purposes. In practice, it is also possible that a policy
is invalid: a pd(WS) does not match any Purpose in a policy.
Such cases should be avoided, obviously.

A further benefit originates from the fact that modeling
can be done at either side of the abstraction; at the level of
web services or at the level of privacy policies. It is possible
to “attach” a governed web service at any level of the LPL
Purpose graph. Also composed web services can be modeled.
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Fig. 2. Illustration of LPL Purposes mapping to composed web services;
dotted arrows represent the relation gov and the function pd (extended from
[22])

To illustrate these points, Fig. 2 shows a web service S
composed of two services S1 and S2, both of which have
a governing Purpose. The Data elements are derived from
the SN of the web service in question through the function pd.
The depth and granularity of a privacy policy can be chosen
as it is written. Different configurations and their privacy
implications are discussed later on in Section VI.

IV. IMPLEMENTATION

A. Static analysis

Since the personal data processing purposes coupled to web
services are derived from the behaviour of the services, the
next part is to define a way to generate the data via static
analysis. This construction requires limiting the scope to the
specific implementation level. To still retain a high degree
of generality, the practical solution discussed focuses on a
particular but common design pattern for SOA web services.

In essence, many web frameworks use the same strategy of
defining application entry-points in the source code by using
annotations. Good examples include the Spring framework3

for Java and Flask4 for Python. In this pattern, the server
functionality is run by the given library, which maps incoming

3 https://spring.io/
4 https://pypi.org/project/Flask/

requests to (application code) function calls based on anno-
tated end-point definitions. Strictly speaking, the pattern is a
composite web service, which conditionally calls a different
component web service based on the given request. Consid-
ering it as a single service with multiple entry-points is a
reasonable shorthand; the source code for many entry-points
may belong to a single file or class, for instance.

In the present work, each entry-point maps to a privacy
policy Purpose, as defined in the previous Section III-B. By
continuing the annotation-based approach, the Data elements
can be derived from object relational mapping (ORM) classes.
Many web service frameworks offer annotations to mark these
declaratively and to define the relational mapping statically
(see Hibernate5, for instance). Personal data stored in these
database entity objects can be reasoned about if the semantic
information is provided in a similar way [8].

Using both the application entry-point and personal data
ORM annotations, a code-base declares how personal data is
processed statically. This declaration maps to the theoretical
service net definition in a concrete manner. By using static
analysis processing, it is possible to create (at the least
templates for) Purpose definitions. Since each entry-point
is a “main” function of a subprogram of a web service,
they form a distinct directed graph of function dependencies.
Analyzing each function of the code-base during compilation
allows marking personal data the function depends on. To
demonstrate this processing, a concrete implementation was
developed for the Java programming language.

The method and the implementation address generating
Data elements from source code in a specific architec-
ture. Essentially, the static analysis process represents an
implementation of a part the pd function. Full capabilities
of the inspection function pd would require providing the
DataRecipients the web service has as well as the set of
UnderlyingPrivacyPolicies of third-parties the WS trans-
fers data to. Although both requirements are possible to fulfill,
these require heavier contextual data to be present in the
code. Storing this data in annotations may not be the optimal
way. Therefore, these are excluded from the scope of the
present work. Another point is that extracting Data elements
from source code is not enough generate complete Purposes.
While that might be the end goal, even incomplete purposes
are useful on their own right. For instance, the values from
the tuple p in (2), including name and descr, can also be
generated with static analysis and matching annotations. That
said, the values for optOut, required, retention r, and privacy
model pm require human judgement in the present work.

B. Data extraction tool

A concrete implementation was developed for the method
described. The data extraction part of the program was de-
veloped as a compiler plugin for the Java language. The tool
runs as an annotation processing tool (APT) and generates
a fresh dataset automatically upon building a project it is

5 https://hibernate.org/orm/
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enabled on. The source code of the tool is published under an
open source license.6 Using the APT interface, the package
can be integrated to both command line tools and integrated
development environments.

The prototype implementation is limited to a particular
set of supported annotations using the Spring framework:
@RequestMapping and @Document. In addition, the im-
plementation requires the use of the personal data annotation
@PersonalData described in previous work [8]. It should
be relatively trivial to extend the support for more frame-
work annotations as long as the target architecture is similar.
Extending the method to further programming languages is
more challenging, but not impossible. As of yet, only the data
extraction part is fully automatic: visualizing the results in an
IDE plugin is a possible opportunity for future work.

Developing the inspection process for the specific envi-
ronment required some further design choices. Given that
there are no right or wrong answers in this context, other
implementations might differ slightly. In particular, Java’s
Interfaces are handled with a pessimistic approach. For in-
stance, consider a Purpose entry-point using an interface
with multiple implementations. The tool implemented handles
this by summing the personal data found in all available
implementations. Another design choice made pertains to other
modules (libraries) imported in a web service. As the tool
is tied to compile-time static analysis, other (pre-compiled)
modules are out of the scope of the tool. In practice, this choice
was not seen as a hindrance because the given business logic
generally defines the type of personal data processed. Finally,
access to client-side libraries of third-party services would be
important when analysing transfers of personal data.

In summary, the tool presented satisfies the data extraction
for a specific case of the more general solution outlined. The
concrete implementation is limited to a single architecture,
but extending to different design patterns is possible in the
future. The subsequent section briefly describes how the static
analysis tool was used in practice.

V. A CASE STUDY

To demonstrate the practical use of the tool implemented,
the tool was applied to an industry code-base of a web service.
The goal of the case study was to validate the tool with
a simple hypothesis in mind: the generated documentation
should match the theoretical expectations.

The case WS has been in production for processing trans-
actions in a Finnish company since 2014, under different
maintainers and product owners. Despite ongoing maintenance
and development, there was no automated documentation until
the deployment of the tool presented. Deploying the tool
required annotating the personal data database entity classes
and installing the annotation processor to the build chain. This
integration amounted to a moderate amount of work. The
moderate work amount indicates applicability of the tool to
new targets with roughly similar software architectures.

6 https://github.com/devgeniem/personaldataflow

The case WS is a single monolithic code-base, which is
split into modules. The total of 323 classes (amounting to
about 28 thousand lines of code) can be understood as a
Model/View/Controller architecture with specific service and
database layers. Considering the definition for composable
web services, the entire system would be the root WS.
It would compose WS modules (“Controllers”), which, in
turn, compose WS endpoint functions. These functions are
governed by composed Purposes, which the data extraction
tool maps. Although the case WS uses several libraries, these
are not relevant for the case study. It should also be noted that
authorization for the end-points is out of scope; the sessions
are checked in the framework rather than in the code inspected.

The results of the data extraction tool can be summarized as
follows. The case WS was found to compose of 30 Controller
modules, each of which compose of multiple end-points (a
total of 245 with a range of [1, 51], and an average of 8.2).
Out of these, not all processed personal data. After filtering
out those, a total of 22 Controller modules remained (with a
total of 224, a range of [1, 51], and an average 9.3). In total,
19 different personal data entity types were identified.

Following our formulation of the problem, the case WS
was viewed as set of component web services (i.e., Controller
modules), which in turn are composed of entry-point web
services. An example of the data extracted via static analysis is
visualized in Fig. 3, where the resulting component of the case
WS are accompanied by the sets of personal data processed
within the Purpose. The analysis tool also calculates the
same data for the entry-point WS, which is omitted in this
figure. As defined before, the sets of Data elements belonging
to any component Purposes p′ are subsets of their higher-
level Purpose p. The data also visualizes the application
architecture, and highlights important areas; those where many
entities concentrate in a single Purpose as well those where
entities are used across multiple purposes.

There is no existing formal privacy policy for the case WS,
so an exact number for coverage cannot be given. Regardless,
it is possible to gain insights by comparing the implicit
Purposes in the system to those extracted with the tool
implemented. With manual verification, it is confirmed that
the results of the analysis cover all of the entry-points. Thus,
in this sense, the tool is sound. However, the complete logical
hierarchy of the composed Purposes cannot be constructed by
inspecting the WS source code alone. As a counterexample,
the process of purchasing (a purpose) composes of entry-
point Purposes from WS’s SubscriptionController and
LoginController. This can only be inferred by viewing the
clients in addition to the web Services. An example of this case
is illustrated in Fig. 4, where composed Purposes (p1, p1′)
and (p2, p2′) also have a third Purpose p3 that could not be
found in the web service analysis.

The case study demonstrates the possibility to construct
any Purpose concerning the case system, by composing the
extracted Purposes that act as building blocks. The presented
method thus answers to RQ2. To create the whole Policy, it
is not sufficient to analyse server-side code alone.

https://github.com/devgeniem/personaldataflow


...

ReferencedSubscription

SMSLog

UserAccount

PendingEmailSend

PurchaseLog

Subscription CampaignRestriction

SentEmailRecordBannedAddress

LoginToken

FailedPurchaseLog

Data-element sets

p1 name:     "SubscriptionController",
optOut:   true,
required: false,
descr:    "Manage and create subscriptions to
           the service",

DR:       <Employees of Company>,

r:        (AfterPurpose, 0),

pm:       null,

D:        d1

d1

d2

d3

name:  "createSubscriptionWithCampaign",
descr: "Subscribe to the service by
        campaign offer",
D:     d2

p2'

name:  "changeSubscription",
descr: "Change your subscription to a 
        different type",
D:     d3

p3'

Fig. 3. An example of composed Purposes with their corresponding Data-
elements from the case study.

p1: "SubscriptionController"

p3: "SubscribeExistingUser"

...

p2: "LoginController" p2': "login"
...

p1': "createSubscriptionWithCampaign"

Fig. 4. Another example of composed Purposes generated in the case study,
with an added missing Purpose (white) inferred from client-side.

VI. DISCUSSION

It is trivial to say that any web service processing personal
data works under a privacy policy, whether implicit or explicit.
The definitions of this paper only provide the means to
express and reason about the processing formally. However,
whether the relation rl and the PurposeHierarchy defined
are used to actually increase transparency to the data subject
is not enforced with the results of this paper. The method
of automatically generating Purposes from a web service
source code might lower the effort required to create more
expressive privacy policies. This assumes a good faith effort
on part of the service provider: a more detailed privacy policy
might be also a liability for maintenance. The first principle

of the GPDR requires personal data processing to be lawful,
fair, and transparent [4]. In a practical environment, there are
multiple other constraints and requirements competing with
these abstract principles [23]. In the end, it is on the shoulders
of academic and industry organizations to proliferate these
privacy engineering methods to wider adoption via examples
and standards. Needless to say, the task is not easy. But by
using automated documentation methods, such as the present
work, may provide means to move forward by focusing on data
controllers instead of data subjects. For a plausible route for
adoption with less friction, the documentation generated could
be integrated first to internal documentation repositories. From
there, it could be further integrated to public privacy policies.

As was remarked in Section V, the automatically generated
Purposes cannot describe the full privacy policy in most
cases. Although it depends on a given system, rarely will the
logical processes (purposes) exhaustively map to a hierarchy
derived from a service structure. However, it can be claimed
that any policy which uses a web service ought to include
the Purpose governing that WS in its composition. There
should be also one Purpose that governs all web services of a
privacy policy. Given these assumptions, a preliminary metric
can be proposed for the transparency of a privacy policy.
Namely: the ratio of Purposes to web services should be more
than one as long as the breadth of the ComposedPurposes
graph is minimized (i.e., consent is not asked for unnecessary
purposes). Although transparency of a privacy policy is a part
of its quality, it is difficult to say anything definite about
potential quality improvements in general.

For instance, it cannot be conjectured that more information
would always imply “better” privacy policies. A privacy policy
that overwhelms a data subject with information might not
be presented in “intelligible and easily accessible form, using
clear and plain language” [4]. In other words, the legal re-
quirements for a consent might not be satisfied. The composed
purpose definition of this paper somewhat alleviates this issue:
it is possible to specify purposes in detail, and only show
deeper levels of a given tree to those data subjects who are
interested in the details. To overcome potentially confusing
and ambiguous linguistic expressions, more standardized terms
and expressions could be used for Purpose descriptions. Also
graphical user interface elements and other visual cues could
be used to improve the presentation.

A. Limitations and further work

The presented work is by no means exhaustive. Leveraging
static analysis for privacy policies has further potential. Some
limitations of this paper are a deliberate scoping choice, which
can be briefly discussed further. The implementation of pd
within the constraints defined in Section IV is just one instance
of the general problem. However, similar definitions should be
possible for other architectures and programming languages.

The inspection function pd, as defined in this paper, only
handles the first aspect of it: finding personal data processed.
Finding transfersof data to realms of other privacy policies
would be an important step towards computer-assisted privacy



policies. A simple approach would be to encode also these
with annotations (i.e., a web service code executes a transfer).
Another possibility would be to leverage further semantic web
capabilities by finding the underlying policies from the source.

As discussed previously, the framework of generating
Purposes from web services does not have the full in-
formation for a complete Policy on its own. In addi-
tion to the Purposes matching web services, a complete
ComposedPurposes graph requires client side information
to know the combinations on how the building blocks are
arranged. Further research might analyse client-side source
code in order to combine data with the web service Purposes.
Although a similar approach would suffice, the method would
require novelty; if web services are understood as a tree, client-
side code would be a pyramid, in a manner of speaking.

The case study presented in this work should generally
be considered as a validation project. While an example was
presented on how the method works, a more comprehensive
study might be useful. For instance, a better theory around
what constitutes a “good” arrangement of Purposes to web
services could be studied. Another path forward would be to
integrate LPL (or another related language) to the OpenAPI
standard (or a similar specification), and generate the corre-
sponding documents automatically. This path would fully start
to leverage formal privacy languages in the semantic web.

B. Conclusion

This paper sought answers to two research questions. The
first asked about a way to formalize a model describing per-
sonal data processing in web services. To this end, the Layered
Privacy Language was extended to include composition for
Purposes. This extension was formally combined with the
definition of web services to form a final model that couples
privacy policies web services together.

The second question solicited a method for extracting the
corresponding data automatically from a web service code
base. This question was approached both theoretically and
practically. In theory: by defining an inspection function that
would satisfy LPL requirements of a Purpose. In practice:
by limiting the scope to a certain web service design pattern
and by presenting an analysis tool.
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