N
N

N

HAL

open science

DAMAS: Control-Data Isolation at Runtime through
Dynamic Binary Modification

Camille Le Bon, Erven Rohou, Frédéric Tronel, Guillaume Hiet

» To cite this version:

Camille Le Bon, Erven Rohou, Frédéric Tronel, Guillaume Hiet. DAMAS: Control-Data Isolation at
Runtime through Dynamic Binary Modification. SILM 2021 - Workshop on the Security of Software /
Hardware Interfaces, Sep 2021, digital event, Austria. pp.86-95, 10.1109/EuroSPW54576.2021.00016 .
hal-03340008

HAL Id: hal-03340008
https://hal.science/hal-03340008

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03340008
https://hal.archives-ouvertes.fr

DAMAS: Control-Data Isolation at Runtime through Dynamic Binary
Modification

Camille Le Bon, Erven Rohou
Univ Rennes, Inria, CNRS, IRISA
Rennes, France
camille.le-bon@inria.fr
erven.rohou@inria.fr

Abstract—Memory corruption attacks have been a major
issue in software security for over two decades and are still
one of the most dangerous and widespread types of attacks
nowadays. Among these attacks, control-flow hijack attacks
are the most popular and powerful, enabling the attacker
to execute arbitrary code inside the target process. Many
approaches have been developed to mitigate such attacks
and to prevent them from happening.

One of these approaches is the Control-Data Isola-
tion (CDI) that tries to prevent such attacks by removing
their trigger from the code, namely indirect branches. This
approach has been implemented as a compiler pass that
replaces every indirect branches in the program with a table
that leads the control-flow to direct hard-written branches.
The drawback of this approach is that it needs the recompi-
lation of the program. In this paper we present an approach
and its implementation, DAMAS, a framework capable of
deploying protections on a running software and use runtime
information to optimize them during the process execution.
We implemented a coarse-grain CDI protection using our
framework and evaluated its impact on performance.

Index Terms—control-data isolation, dynamic binary modi-
fication, binary rewriting

1. Introduction

Memory corruption bugs are one of the oldest prob-
lems in computer security that still persists. Programming
languages such as C or C++ that allow the programmer to
manually manage memory are prone to this kind of bugs.
Unfortunately, these languages are among the most used
languages in the industry [1]. Those bugs are entry doors
for malicious users to alter the behavior of a program or
to even take full control of its control-flow [2]], [3], [4].

There are many ways to take advantage of a memory
bug and attack a vulnerable program. Szekeres et al.
proposed a model of memory corruption attacks [S]]. This
model presents every possible scenario that may lead to
a memory corruption attack as well as security policies
that can prevent these attacks to happen. Implementations
of some of these policies are active by default on modern
systems because of their negligible impact on the perfor-
mance of programs, such as W&X or address-space layout
randomization. Due to the presence of such protections,
some attack vectors have become rare in real attacks, such

Frédéric Tronel, Guillaume Hiet

CentraleSupelec, Inria, Univ Rennes, CNRS, IRISA

Rennes, France
frederic.tronel @centralesupelec.fr
guillaume.hiet @ centralesupelec.fr

as the injection of shellcodes. However, these protections
only make attacks harder to perform and require higher
skills from the attacker to circumvent them but they are
not able to ensure a complete memory safety [6]], [7].

Control-flow hijack attacks are among the most com-
mon and dangerous memory-corruption-based attacks.
They allow the attacker to take full control of the control-
flow, thus permit the execution of arbitrary code. Cur-
rently, no protection can entirely erase the threat of this
type of attacks. According to Szekeres et al. [, a com-
plete implementation of the control-flow integrity (CFI)
policy should prevent the program from diverging from
the control-flow decided by the programmer. Nonetheless,
all implementations of CFI have been defeated as of
today [6], [7]. The root issue that permits a process to
diverge from its original control-flow is the presence of
indirect branches in its code. These kind of branches are
omnipresent and take several forms: return instructions,
indirect calls, indirect jumps, etc. A solution to control-
flow hijacking could be to remove every indirect branch
as proposed by the control-data isolation policy (CDI) [8].
This approach transforms every indirect branch instruction
into a direct one, replacing them by sleds of compar-
ison/jump pairs.

Most implementations of these approaches are imple-
mented as a compilation pass and use the control-flow
graph (CFG) built by the compiler to generate the appro-
priate protection code. Binary-based CFI implementations
rely on their ability to recover the initial CFG of the
program. Hence the protection may be very coarse in
order to preserve the semantics of the program and avoid
false positives. The trade off between the overall safety
added and the overhead in performance introduced by the
protection is usually pretty bad.

Solutions that use runtime information are not per-
fect either. These solutions monitor the process execution
in order to recover information about the CFG of the
program. However this monitoring has two main pitfalls.
First the completeness of the CFG depends highly on the
code coverage of the monitored execution of the process.
Second, if the monitored execution is itself deceived by
an attacker, malicious CFG edges may be considered valid
by the protection mechanism. Moreover, the protection is
added ahead of time in order to patch the target binary.
This approach introduces difficulties to patch the binary
file such as generating assembly code that respects the
assumptions made in the original code as exposed by

Wang et al. [9]], such as the relative position of sections
according to each other and the consequences of this
position in terms of offsets in the code.

1.1. Contributions of this work

The main issue with the solution proposed by Arthur
et al. [8]] is the need to recompile the program to deploy
the protection. COTS software thus cannot benefit from
this solution. Moreover, the need for a process to be
stopped and restarted to deploy a security solution may
be an undesired constraint. In order to respond to these
problems, we propose in this paper an approach using
dynamic binary modification (DBM) to deploy protections
on running processes. Our approach allows to add protec-
tions, optimize them and even remove them at runtime
without the need to restart the process.

Using our framework, we implemented a protection
solution greatly inspired from CDI that uses runtime in-
formation to reduce its impact on the performance of the
target process.

In order to enforce a robust CFI solution, a complete
CFG needs to be recovered. Nonetheless, the lack of
compile-time information such as the source code or the
CFG prevents us from knowing exactly what the semantics
of the program is. The recovery of a complete CFG from
the binary code alone without executing the program first
to discover dynamic paths is a difficult task [10]]. The most
famous binary-analysis frameworks such as IDA Pro [11],
ANGR [12], Ghidra [13l], BAP [14] or Radare2 [15] are
not able to generate complete enough CFG to ensure that
a perfectly valid execution of a program never escapes the
computed CFG.

The goal of this work is to adapt the control-flow-
isolation policy to make it work on running processes
only using a disassembly of their binary code and runtime
information such as the mapping of memory. We make the
following contributions:

o Given precise function boundaries in a program
binary, we propose an approach to enforce a
protection scheme based on control-data isolation
without the need for the sources nor to recompile
the program.

e Our implementation of this approach, DAMAS, can
attach to a running process and deploy protections
without the need to restart it. We evaluated our
solution in order to measure its impact on the
performance of the instrumented programs.

e We propose multiple optimizations to incremen-
tally minimize the impact of our solution on the
target process performance.

2. Our approach

The goal of our approach is to prevent a program from
diverging from its intended control-flow. To do that, unlike
CFI, we do not check at runtime that an indirect branch
is valid, but we get rid of indirect branches.

In this article, we call a jump the control-flow instruc-
tion jmp and branch any kind of control-flow instruction
whether it is a jump, a call or a return instruction, as
described precisely in Table [I} We chose these terms for

Generic name | Category | Examples (x86_64 ISA)
jump jmp [rip+0xd7f9a]
Jmp [0x4c5580+rax*8]
call [rax]

call [rl15+rbx=*8]
return ret

TABLE 1. OUR TERMINOLOGY OF INDIRECT CONTROL-TRANSFER

INSTRUCTIONS

branch call

the sake of consistency, clarity and to agree with the rest of
the literature that calls indirect branch any kind of branch
whose operand is not an immediate.

Just like control-data isolation [8]], indirect branches
are replaced by comparisons to valid potential target ad-
dresses and a corresponding direct branch. The program
must compare the computed branch target addresses one-
by-one to the hard-coded potential target addresses until it
finds one that corresponds. A sled (for a call instruction)
would be organized like the following piece of code:

if (fptr == addrl)

call addrl;

else if (fptr == addr2)
call addr2;

else if (fptr == addr3)
call addr3;

In the original CDI, a different sled is associated to
each branching site. Indeed, the potential targets explicited
by a specific sled are the ones defined by the CFG.
Thus, every sled in the resulting program is supposedly
potentially different. The advantage of this technique is
that both forward — call and jump instructions — and
backward — return instructions — edges can be protected
in the same fashion. Our approach is a bit different. As
explained in Subsection [2.2] we cannot build sleds as
precise as the compile-time CDI approach and thus we
use the same sled for several branching sites. In fact,
since our approach relies essentially on the disassembly
of the binary code instead of a CFG, a lot of contextual
information is missing. For instance, a call instruction
could only target a handful of functions according to the
source code. But because we do not have this information,
we will consider that this instruction can target the start
of any function in the address space.

This difference between the original CDI and our
dynamic CDI is important. In our approach, instead of
replacing every branch site with a reasonably small sled,
we create equivalence classes of branches that are redi-
rected to the same bigger dispatch code. As described in
Subsection the structure of the code responsible for
dispatching branch instructions is a bit more complicated
than sleds and goes beyond their initial scope. For this
reason, we call our structure a dispatch table. The precise
organization of a dispatch table is described in Figure [I}

’ Entrypoints ‘ Entrypoints
filtering branching
- ; Cases
filtering branching
’ Error code ‘

Figure 1. Structure of a dispatch table

In order to make the target process use these dispatch
tables, we must modify its binary code. The modification
of binary code, especially if it is already being executed,
is tedious and requires precision. As a rule of thumb, one
cannot really shift code without taking the risk to break
the branch instructions nearby. Indeed, direct branching
instructions and memory accesses in x86—64 use offsets
from the program counter as operands. Moving an instruc-
tion or a whole basic-block may make these instructions
point to the wrong location.

Moreover, it would not be possible to merely use
trampolines to jump to code caves containing the code
representing a given sled. Some indirect branches are
encoded using fewer bytes than what is needed to encode
a jump to a trampoline. For instance (in x86 assembly
code), a call to a register is encoded by two bytes while a
direct call to a given address needs at least five bytes. As a
consequence, not only the indirect branching instructions
must be modified, but the whole binary code as well.
Since the layout of the code must be modified, instructions
accessing memory locations must be translated as well to
ensure that they still target the same address as before.
For this reason, it is particularly difficulty to modify
branching instructions in the code without pushing all the
subsequent instructions farther, raising the need to allocate
more memory to store the whole program’s code.

2.1. Relocation of the code

Because the whole .text section of the program
needs to be rewritten, we decided to allocate enough
contiguous memory in the target process to contain the
new code and relocate each basic-block individually in
this new section we call .secure_text. Relocating
each block individually allows our tool to give enough
room between each block to be able to translate its last
instruction afterwards without messing with the following
basic-block. Moving the whole code to another place
in memory also allows the user to entirely remove the
protection and redirect the process back to its original
code, restoring the original performance as well. However,
this possibility has not been thoroughly explored and is
beyond the scope of this paper.

During the relocation process, the instructions inside
each basic-block is also translated in order to preserve
their original semantics. Instructions such as mov and
lea are modified so that their operands target the same
memory location as in the original code. Note that all
instructions rewritten in a basic block take up the same
amount of space, except the last branching instruction.

2.2. Removal of indirect branches

As stated in the original CDI paper, indirect branches
cannot simply be replaced by direct branches since they
can target multiple locations and the target of an indirect
branch is only decided at runtime. Hence they are replaced
by sleds as described at the beginning of this section.

However, we have access neither to the source code
nor compile-time information and thus in general we
cannot build a complete yet minimal set of valid tar-
gets for the indirect branches within the binary code of
the program. For this reason, the set of valid targets is

much larger than those computed by a compile-time CDI.
Moreover, since the code is relocated, the dispatch tables
must not only match the branches operands with possible
target addresses, but it must also redirect the branching to
the relocated code corresponding to the matched address.
For example, suppose that a function at address 0x1024
has been relocated at address 0x2048. The corresponding
entry in the dispatch table will be the following:

cmp rax, 0x1024
je [cs:0x2048]

Depending on the nature of the branch — a function
call, a return or just a jump — the sled part of the table is
not built the same way. The register used in comparisons
with addresses is not the same for function calls and return
instructions. Indeed, for function calls, rax is preferred
as it is not used for arguments and is caller-saved, while
for returns, rdi is preferred because rax is used as the
return value and must be preserved at all costs. According
to the System V AMD64 ABI, the register rdi is call-
clobbered, meaning that modifying it before returning
from the function should not be a problem. For more
information, translation of indirect calls is discussed in
Subsection [2.2.1] then translation of indirect jumps is
discussed in Subsection and finally translation of
return instructions is discussed in Subsection 2.2.3]

Moreover, if each call site had its own dispatch table
composed of every possible function, the memory cost
of our approach would be unacceptable. Consequently,
we use the same dispatch table for every call sites in
the program. However, as a consequence, call instructions
with different arguments use the same dispatch table. The
comparison of the target address is thus more complicated
since this address can be stored in different registers,
for example. This problem is easily circumvented by
prepending the dispatch table with several entrypoints as
shown by Figure [} There must be one entrypoint per
call-instruction kind of operand found in the program.
The following listing is an example of entrypoints for
a table replacing call instructions using rcx, rbx or
-0x18[rbx] as operand. This example is made up for
the sake of explanation, but a very small program could
produce this list of entrypoints.

_entrypoints:
; entry for call rcx
mov rax, rcx
jmp _table_start

; entry for call rbx
mov rax, rbx
jmp _table_start

; entry for call -0xI18[rbx]

mov rax, —-0x18[rbx]

jmp _table_start
_table_start:

These entrypoints copy the operand of the original
call instruction into a dedicated register called preferred
register in the rest of this article. Once the preferred
register is set, the process jumps to the beginning of the
sled part of the table to perform the comparisons.

2.2.1. Translation of indirect calls. Indirect calls can
theoretically target the beginning of every function in the
address space of the program. These functions are not only
the ones defined in the main binary file of the program
but also functions defined in libraries.

The lack of a CFG is a big issue here. It is impossible
to retrieve a precise and complete inter-procedural CFG
from the static analysis of the binary code in the general
case. To avoid false positives, we assume that each in-
direct call only target the beginning of a function in the
program. For this reason, there is only one dispatch table
for the whole program and every indirect call instruction
is redirected to this table.

Moreover, some call instructions may target an entry
in the PLT section, which cannot be relocated as-is due
to its dynamic nature. When the code is relocated, some
entries may not have been visited yet and the corre-
sponding branch instruction may not have been overridden
by the dynamic loader. If the PLT were relocated and
the copy used by the process after the relocation, a call
to an uninitialized entry would trigger a branch to an
unknown location. Indeed, the instruction being relocated,
the branch operand would not be an offset to the loader
anymore but an offset to an undefined location. In order
to prevent that, the PLT is not relocated and its entries are
considered valid targets.

A possible solution would be to force the runtime
linker to resolve all the symbols at the moment the code
begins to be instrumented. The PLT would be complete
and its content could be relocated and translated like the
rest of the program. We did not explore this solution for
this article however.

Finally, another kind of calls occur sometimes that
causes troubles to the dispatch table. It is possible that a
call instruction targets a function from a shared library but
instead of going through the PLT, the call targets directly
the function code. This usually happens when the call
corresponds to a C++ method call. The following listings
give an insight of the phenomenon:

Listing 1. Code in the library
struct Class {
void (xmethod)();
s

void say_hello () {
printf (”Hello!\n”);
}

struct Class class_new () {
struct Class obj;
obj.method = say_hello;

return obj;

}

Listing 2. Code in the main binary
struct Class my_obj = class_new ();
my_obj.method ();

Here, the pointer obj.method contains the actual
address of say_hello. So calling my_obj.method
means performing an indirect call to this address directly,
bypassing the PLT. Since libraries are often loaded lazily,
we cannot add the address of functions located in shared

libraries into the dispatch table. Indeed, during the relo-
cation process and when the tables are built, it is possible
that some libraries are not loaded yet.

The solution we use in our implementation is to place
atrap — int 3 — at the beginning of the error-handling
code at the end of the table. Our tool catches these traps
and verifies whether the address in the preferred register is
a valid target or not. To do that, our tool finds the library
loaded at the address range that contains the given address
and checks if this address corresponds to a function using
the symbols in the library’s ELF file. If the call target is
valid, the instruction pointer is set to this address before
resuming the process execution, otherwise, the execution
continues with the error handling. In our implementation,
the code used to handle errors is simply a call of the
system call exit with a return code 0x42. Nonetheless it
could be possible to implement a more complex solution
to test more precisely if the given address is in fact a valid
target — e.g. for JIT compiled code — but such error-
recovery solutions are beyond the scope of this paper.

In conclusion, indirect calls are replaced by direct calls
that target the right entrypoint to the call dispatch table.
This table consists essentially of pairs of comparison and
branch instructions. If no case in the table matches the
preferred register, an error code, placed after the cases of
the table, is executed.

2.2.2. Translation of indirect jumps. Indirect jumps
raise even more concern than indirect calls. While we
can safely assume that calls must target the beginning of
functions, indirect jumps can target any address in the
program code. For this reason, we assume that an indirect
jump can either:

o target any address in the basic blocks of the func-
tion to which the instruction belongs or;
e Dbe a tail-call optimization, equivalent of a call.

The first hypothesis supposes that the binary code
results from the compilation of a program written in a
high-level language and not from some manually written
assembly code. In that case, an indirect jump may be the
result of the compilation of a high-level construct such as
a switch statement. Such constructs do not make jumps
go outside the function they are part of.

Moreover, since our approach relocates the basic
blocks that compose the program, we can safely assume
that the target address of a jump must be inside these
blocks. This prevents a malicious user from targeting data
that is stored in the middle of a function’s code.

The second hypothesis states that a jump instruction
can be in fact a call to another function. This is called a
tail-call optimization. This optimization enables a function
to call another function without modification of the stack
and letting the callee return from both functions at once
using only one ret instruction. To do that, a mere jump
is used instead of a call instruction. This is particularly
useful for functional programming languages that would
overflow the stack quickly or spend a lot of time in
successive ret instructions without such an optimization.
In this case, the valid targets of the jump instruction are
the first instruction of every function in the program.

These hypotheses allow our approach to have one
jump dispatch table for every function in the main binary.

Every indirect jump of the program must be redirected to
the dispatch table associated to the function it appears in.

Moreover according to these hypotheses, the structure
of the jump dispatch tables is the following: every address
in a basic block that is part of the same function as the
jump instruction is a valid target and if no match is found,
the error code of the table consists of a jump to the main
call dispatch table in order to handle tail-calls.

_entrypoints:

_table_cases:
cmp rax, 0x1024
jl _after_case_one
cmp rax, 0x1035
jege _after_case_one
; target inside this block
; here comes the redirection

_after_case_one:
s more cases

_error_code:
jmp _main_dispatch_table

This listing gives an insight of how the jump dispatch
tables are organized. In this example, the function has a
basic block in the address range 0x1024 to 0x1035. The
preferred register is tested against the block’s boundaries
and if the target address is within these boundaries, the
jump can be redirected.

While the preferred register could be tested against
the address of every single instruction of the function,
we opted instead for a bound check. This trades a little
security for performance since a lot fewer comparisons
and jumps are performed this way. However, a jump into
the middle of an instruction will be considered as valid.

When the preferred register matches a case in a jump
dispatch table, the redirected address must be computed
using an offset from the beginning of the basic block.
Let bborigina: be the start address of the matching basic
block in the . text section and bb,..;,. be the start address
of the same basic block in the .secure_text section.
For a target address target, the relocated branch target
target,eoc 1s the following:

target'r'eloc = targ€t - bboriginal + bbreloc

This computation is done at runtime inside the dis-
patch table code and an indirect jump to the computed
address is performed. The validity of this indirect jump is
ensured by the previous comparisons performed against
the preferred register. The value of the indirect jump
operand is computed right before the jump and is not
entirely controlled by the user. The user may control
the value enough to target the wrong instruction inside
the matched basic block. But this weakness is inherent
to our approach and is a consequence of our lack of a
precise control-flow graph. Even individual comparisons
between the preferred register and the address of each
instruction in the basic block could not eliminate this
threat. Nonetheless, the previous checks ensure that the
preferred register contains an address inside the matched
basic block, limiting greatly the possibilities of the at-
tacker.

Since only the last branching instruction of the re-
located basic blocks can be modified, the offset of an

instruction from the beginning of a block stays the same
between the original code and its relocated counterpart.
However, we make the hypothesis that instructions in the
form mov reg, [rip+offset] will not need to be
rewritten with an offset that is big enough to prevent the
instruction to be correctly encoded. Indeed these instruc-
tion access memory addresses relative to the instruction
pointer. However, since we relocate the instruction itself,
the offset to access the same memory location is not the
same any more. As long as this offset can be encoded as
a 32-bit value, it can be easily replaced in the instruction
binary code.

This limitation could be easily circumvented by mak-
ing such instructions terminator of basic blocks. Indeed
this would allow a proper translation of the instruction
without messing with the block’s layout. The instructions
after this mov would be part of a subsequent independent
basic block.

2.2.3. Translation of return instructions. Without a pre-
cise CFG, we consider that return instructions may target
any of the instructions located after a call. Therefore, there
is only one return dispatch table for the whole program
and every ret instruction is replaced by a direct jump to
this table. To enhance the security, a shadow stack can be
added to the current protection to ensure that the provided
return address is the expected return address. We did not
add one in our implementation for the sake of simplicity,
however.

Unlike the previous tables, the return dispatch table
has only one entry point. Indeed, return instructions do
not return to an address given as operand but rather
retrieve the target address from the stack. Consequently,
the preferred register — rdi for the return dispatch table
— is set using the stack pointer rsp. Aside from this
particularity, the return dispatch table is organized in the
same fashion as the call dispatch table and compares the
preferred register with addresses considered valid branch-
ing targets.

The real difference between the call dispatch table
and the return dispatch table is the set of valid addresses.
While the call dispatch table compares the preferred reg-
ister with addresses from the original code — i.e. from
the .text section — the return dispatch table compares
it with addresses from both the original code and the
relocated code. Indeed, our approach can be applied to
a program that is already running.

If the target process is executing protected code and
calls a function, the return address of this function will
be an address inside the .secure_text section. This
scenario is the most common when a process is protected.
However, if our tool has not yet been attached and the
target process calls a function, its return address will be in
the original .text section. If our tool is attached during
the execution of the function, it means that this function
will continue to execute its modified version inside the
.secure_text section. When the function will return,
it will look for its return address inside the return dispatch
table. If we did not store the return-sites from the original
code inside the return dispatch table, returns to these
addresses would be considered invalid and would prevent
the process from running a semantically correct execution.

The solution to this problem is to have two cases per
return-site in the table. One is the return-site in the original
code, the other is its counterpart in the relocated code. In
both cases, the return instruction will target the return-
site inside the .secure_text section, preventing the
process from escaping our protection by returning to its
original control flow.

In the following listing, we show a subset of a return
dispatch table where a valid return-site address is 0x2048.
The corresponding instruction in the original code is lo-
cated at 0x1024. As we can see, both return-site addresses
appear in the table and both cases redirect the control flow
to 0x2048.

cmp rdi, 0x2048
jne _after_case_0x2048
jmp [cs:0x2048]

_after_case_0x2048:
cmp rdi, 0x1024
jne _after_case_0x1024
jmp [cs:0x2048]

_after_case_0x1024:

At the beginning of the treatment of a return instruc-
tion — i.e. translating it to a branch instruction to the
return dispatch table —, the return address is popped from
the stack into the rdi register. At the moment the process
enters the return dispatch table, the stack pointer has the
correct value as expected after a return instruction.

3. Implementation

We implemented our approach as a command-line tool
named DAMAS. DAMAS is written mainly in RUST with
a module in PYTHON and a shell script. Its disassembly
module is written in PYTHON and uses the ANGR [12]
framework. This framework has proven to recover a sat-
isfactory part of the total binary code of programs [10],
[9] while being easy to use.

We use a shell script to assemble binary snippets
from x86-64 assembler codes. RUST has many libraries
available to assemble code inline, but they are relatively
complex to use while we only need to assemble simple
snippets. For this reason, we wrote this little script that
uses GNU as to generate a little shared library and then
displays it in the standard output. The RUST module
responsible for assembly captures this output and lets the
rest of DAMAS use it as needed.

DAMAS is based on a library we wrote for DBM,
called Sorry [16]. This library is very inspired from
Padrone [17]], a lightweight DBM framework that only
takes control of the target process when needed. Unlike
heavier frameworks like DynamoRIO [18] or Pin [19],
Padrone and Sorry do not instrument the whole code, only
adding the necessary overhead to the process performance.

In order to generate and retrieve statistics about the
use of the dispatch tables injected in the target process,
we added counters to the tables that are incremented each
time the corresponding case is matched.

The purpose of these counters is twofold. First, it
enables us to visualize how the tables are used. We can
determine precisely if the distribution of the cases reached
by the process follows a distribution similar to a uniform

distribution or if branching instructions target a specific
subset of the potential target addresses. Secondly, it allows
us to discriminate the specific cases that the branching in-
structions target the most. Using this information, we can
optimize our tables to minimize the number of superfluous
instructions executed to perform a branch — i.e. make the
dispatch table reach the actual branch instruction faster.

4. Optimizations

The addition of redirection tables in the code to re-
place a single branch instruction eventually introduces an
overhead in the performance of the process. This overhead
worsens as a table grows. In its naive form, a table is
structured linearly, putting each case one after the other.
In order to reach the 400th case of a table, the process
must pass by the 399 previous ones. In large programs,
such as web servers, this becomes a real concern.

Consequently, we have designed dynamic optimiza-
tions to change the layout of a table during the execution
of the process in order to make it faster to traverse. We
have focused our effort in two main optimizations: sort
of cases and a tree representation. Both approaches are
detailed in the following subsections.

These optimizations are applied during the runtime of
the target process using dynamic binary modification. We
use a dynamic profiling of the use of the tables to find
the appropriate optimization scheme in a similar way as
FittChooser [20].

4.1. Case sort

The tables used in our approach are very large and
contain many cases since we over-approximate the possi-
ble targets of each branch. This ensures that the process
will continue to execute normally and never encounter a
false positive. However, a lot of cases in the tables will
never be matched because the semantics of the program
would never trigger them. As a consequence, some cases
may become privileged targets of branches and some
other cases will never be reached. Unfortunately, the most
matched cases are not necessarily the ones that appear
at the beginning of the table. This is especially true for
the call dispatch table whose first cases correspond to the
PLT entries which may not be the most indirectly-called
functions. Figure |2| (top) illustrates the distribution of the
return table for sqlite3: the most frequent entry (7,199,290
hits) requires 3,200 comparisons before a match, and most
cases are never matched. After sorting (bottom), entries
with high probability are compared first.

To circumvent this problem, we profile the use of the
tables in order to identify the most used cases and sort
the table so that they appear at the beginning of the table,
making them much faster to reach. Once a table has been
sorted it is re-injected into the target process.

4.2. Tree representation of tables

The first and naive form we designed for dispatch
tables was to put each case one after the other ordered
by the original address of the branch target — i.e. the
hardwritten address we compare the register to, that is the

1x107

1x10°

—
osoo |
o
wo |
1 H
Ny
.

1x107

5000 10000 15000 20000 25000 20000
retuin e—
1x<10°
100000
10000

1000

o 20 a0 60 B8O 100

Figure 2. Distribution of return table for sqlite3, unsorted and sorted. The
x-axis represents the distinct return instructions. Note the y-logscale, and
the different range on the x-axis: the bottom graph is a zoom on executed
return instructions. All others are never executed.

address the branch should have targeted in the absence
of DAMAS. While this ordering may be not optimal as
described in the previous subsection, the use of the table
may not be as unbalanced as some extreme cases. For
instance, the call dispatch table may be relatively equally
used and no really preferred targets may be identified. In
this case, a simple sort of the table is not sufficient.

For this reason, we totally changed the layout of our
table, giving it the form of a balanced binary tree. Instead
of traversing the whole table linearly, the process can
navigate faster through the tree and reach the appropriate
case in less time — O(log, n) instead of O(n).

When DAMAS is first deployed on a process, no
runtime information about branching targets is available.
Consequently, using this tree representation as the default
representation for tables allows better performance. Dur-
ing the execution of the process, if some table shows a use
that clearly privileges cases over the other, a sorted linear
representation can be injected to replace the original tree
representation, refining further the performance overhead
induced by our approach.

5. Limitations

DAMAS is a prototype developed in the context of
our research, hence it comes with some limitations. First
of all, the library it relies on, Sorry, makes most of its
manipulations in the target process using the C interfaces
of system calls such as malloc, mprotect, etc. As a
consequence, DAMAS can only be deployed on programs
that are dynamically linked and use the C library. For
instance, programs written in Go or Pascal would not be
supported. Fortunately, the C library is linked by many
programs written in common languages including C itself,
C++, OCaml, and RUST. Further development of Sorry
and DAMAS could easily lift this issue, replacing refer-
ences to the C API to calls to the actual system calls. In
addition to this problem, it appears that C++ exceptions
are not handled properly, limiting even more the programs
supported by our tool.

Second, many big programs still crash because of
segmentation fault while under the protection of DAMAS.

Even though we do not know the precise cause of these
crashes, we expect them to be solved with a more thor-
ough debugging of DAMAS, hopefully promoting it from
research prototype to an actually usable tool.

Moreover, programs using JIT compilation cannot be
protected. JIT code does not exist in the binary file of
the program by definition, preventing DAMAS from dis-
assembling it and make it part of the known binary code
of the program. Therefore, no dispatch table may contain
references to JIT compiled code, leading to false posi-
tives. Moreover, analyzing the code after each JIT code
generation could give an attacker the possibility to abuse
DAMAS and make it accept code they crafted through the
JIT compiler. While a solution to these concerns could be
found, it goes beyond the scope of this paper.

6. Results

The impact of DAMAS on performance has been
measured against multiple programs. The testing plat-
form consists in an Intel Xeon CPU E5-1603 v4 @
2.80 GHz running a Fedora 34 with Linux kernel 5.11.15-
300.fc34.x86_64. Every benchmark has been run inside
a Docker container that contained: DAMAS, the target
process, the benchmark client such as the command t ime
or ApacheBench and any necessary dependencies.

We chose a diverse set of programs to make the
measurements with the intention of showing the different
impacts DAMAS has on performance according to the
kind of application it is protecting. Our dataset contains
CPU-intensive programs such as compression software
GZIP and BZIP2, server applications like the HTTP server
NGINX and the MQTT server MOSQUITTO as well as TCC
— the tiny C compiler — and the SQL database engine
SQLITE3.

The compiler TCC has been benchmarked twice with
two different inputs. First, we used the source code of
SQLITE3 which is an amalgamation of C code into three
files. Then, as explained in detail in Subsection since
the execution time was too short, we used the source code
of SSHD as input for a more complete evaluation.

Moreover, since a lot of work in NGINX is done in
shared libraries instead of inside the main binary, we
compiled another version of the software with most of its
dependencies linked statically, only leaving the C library
and the dynamic loader as dynamic linked libraries (as
needed by DAMAS). This way, most of the treatments
are performed inside the main binary, forcing DAMAS to
relocate and translate this code in order to consider the
impact of our solution on these parts of the software as
well. This build of NGINX is referred to as NGINX-STATIC.

In these benchmark scenarii, DAMAS is attached to
the target process when it reaches the main function and
stays attached during the whole execution of the process.
This way, we can consider the impact of DAMAS on the
target process during its entire execution. We can have
more trustworthy, precise and reproducible measurements
with this method than with an evaluation of arbitrary parts
of the execution. Only the target process execution time
is evaluated, the time spent by DAMAS is not considered.
Indeed, DAMAS is supposed to be a protection that can
be added to a running software and that most of its
preparation procedures can be done in parallel to the target

Program Reference Damas (linear) Damas (tree) Damas (presorted)
time (s) | time (s) overhead | time (s) overhead | time (s) overhead
BZIP2 198.86 935.24 x3.7 226.70 +14% 217.44 +9%
GZIP 68.38 250.52 Xx2.66 94.15 +38% 81.15 +19%
NGINX 501.69 501.89 +0% 500.68 +0% 499.74 +0%
NGINX-STATIC 495.31 496.74 +0% 496.10 +0% 496.91 +0%
MOSQUITTO 4.50 19.89 x3.42 4.74 +5.33% 4.70 +4.44%
SQLITE3 1.32 626.61 x473.71 225 +70.45% 207 +56.81%
TCC
sshd 2.38 29.04 x11.2 2.87 +20.58% 3.01 +26.47%
sqlite3 0.14 7.85 X56 0.28 X2 0.42 X3

TABLE 2. AVERAGE EXECUTION TIMES OF THE PROGRAMS OF THE DATASET AND OVERHEAD TO THE REFERENCE EXECUTION TIME.

execution, therefore the only reason why the program is
stopped in our scenarii is for measurement purpose.

Some programs of our dataset — BZIP2, GZIP, TCC
and SQLITE3 — have been benchmarked using the t ime
command, since their purpose is to take input, realize
a treatment, give output and exit. The servers however
have been benchmarked using specialized clients in or-
der to get more meaningful metrics such as time taken
per request, latency, etc. NGINX has been benchmarked
with APACHEBENCH [21]] and MOSQUITTO with MQTT-
BENCHMARK [22].

The Docker images were run several times to ensure
the validity of our measurements. The tested program
inside the Docker image has been executed four times
per run. First, the program was run without protection for
reference. The three other times, DAMAS was attached at
the startup of the program and used respectively unsorted
linear tables, tree tables and presorted linear table. In
order to have presorted tables, the previous execution of
DAMAS using unsorted linear tables logged the values
of the dispatch-table counters at the end of the target
process execution and sorted the cases of each tables. This
configuration was then provided to sort the tables at the
beginning of a new execution.

While it is possible to run DAMAS without counters,
every execution uses them, even when they are technically
useless — e.g. with the tree tables — to ensure that the
naive linear table executions are not unfairly penalized
by the counters. Nonetheless, the counters take the form
of 32-bit integer arrays and an inc instruction per case
in each table that is executed only when the case is
matched, therefore the impact of counters on performance
is negligible.

The average execution runtime and the overhead com-
pared to the reference are shown in Table 2] The average
execution times are arithmetic means of the sampled ex-
ecution times and the overhead are computed as follows
(and expressed as percentage for clarity):

tiMmeegecution 1

overheadegecution = —
tlmereference

6.1. Performance evaluation

As expected, DAMAS imposes a big overhead on the
performance of the most CPU-intensive programs in our
dataset, especially when it is deployed with the naive
linear dispatch-table representation. This representation

causes the execution time of these programs to be multi-
plied, such as TCC which was slowed down by a factor
of 11X, or even the most extreme case, SQLITE3 with an
slowdown of 473 x.

These programs present a massive impact of DAMAS
on their performance, as shown in Figure 3] The boxplots
give the following pieces of information:

o the median;
« the lower and upper quartiles;
o the extreme line is 1.5x the interquartile range.

The slowdown disappears when a more optimized rep-
resentation of dispatch tables is used. Typically, on BZ1p2
and GZIP the tree representation allows to reduce the
overhead in execution time to an average of respectively
14% and 38% while the more suited presorted tables
enable a further reduction of the overhead to respectively
9% and 19%.

The large overhead observed in TCC when compiling
SQLITE3 — 100% for the tree tables and 200% for the
presorted tables — can be explained by the short execution
time. It is possible that DAMAS’ impact on performance is
not perfectly linear and that a minimal non-compressible
overhead occurs. For instance, function returns may have
become a significant part of the execution of TCC in
such a small execution. Measurements with very large
compilation units can answer this question. We have also
measured the impact of DAMAS on TCC when compil-
ing SSHD that has a bigger codebase. As expected, the
overhead introduced by DAMAS is much smaller.

It is nonetheless difficult to find other large projects
that can be compiled with a command line in the same
fashion as the following listing.

tcc —o executable x.c —ldependency

Indeed, modular compilation is not interesting in our
testing scenario, we want only one long execution of
TCC. Moreover, this compiler is renowned for its fast
compilation time, making the task even harder.

6.1.1. NGINX and NGINX-STATIC. Unlike with the CPU-
intensive programs, DAMAS did not impact NGINX’s per-
formance. Since this server is supposed to be very 10
intensive, a very small overhead was expected as opposed
to CPU-intensive that suffer much more from a large
amount of additional branches.

However, this almost inexistent overhead raised our
concerns. According to APACHEBENCH logs and manual
verifications with a web browser, the server works as in-
tended and serves the requested pages. Moreover, DAMAS

|
|

300
I
300
I

200
I

200
I

100
I

600 800 1000
I I

400

100
I

-100

200
I

T T T T
Damas (linear) Damas (tree) Damas (presorted) Damas (linear)

Damas (tree)

T T T T
Damas (presorted) Damas (linear) Damas (tree) Damas (presorted)

Figure 3. Overhead in execution times in percentage of the most CPU intensive programs. Left is BZIP2, middle is GZIP and right is TCC.

did not warn us about any indirect branch instruction that
could not be translated — leaving an indirect branch inside
the code that could circumvent our protection and branch
back to the original control flow. In addition to that, we
checked the whole execution control flow to be sure that
the process never branches back to its original control flow
and thus escapes our protection.

Finally, our results show no difference between NGINX
and NGINX-STATIC both in terms of execution time of
the reference and in terms of overhead. In conclusion, it
seems that the impact of IO operations is big enough to
completely hide the impact of DAMAS regardless of the
difference in code coverage made by the static linkage of
most libraries used by NGINX.

6.1.2. Tree representation and sorted tables. Some
programs of our dataset benefit more from the tree rep-
resentation of their dispatch tables from presorted linear
tables and some do not. The reason is that the programs
that benefit from presorted tables have a very biased use
of the tables. Indeed only few cases of the most used
tables match the preferred register during the execution of
these programs, the other cases are often never matched,
ensuring that a linear traversal of such a table is faster
than a traversal of a binary tree for the entire table.

However, the biggest table — i.e. the ret dispatch table
— in a process instrumented by DAMAS usually does not
fit this description. Indeed, return instructions are always
indirect by design, forcing the process to use the table
for each call it made beforehand, whether it was direct or
indirect. While indirect branches can have a very precise
set of targets in a program — e.g. C++ virtual methods,
switch statements, etc —, the set of every direct calls in
the program usually induces a more balanced use of the
return dispatch table.

7. Conclusion and future works

In this paper, we presented an approach against
control-flow hijack attacks that can be deployed at runtime
on a process. Our approach is based on control-data
isolation [8]] and aims to remove every indirect branching
in the program code. The removal of these branches is
done using dispatch tables that must compare an effective

branch target address with valid potential target addresses
and performing the corresponding direct branch.

A first implementation of our approach with a linear
traversal of the dispatch tables showed an unacceptable
impact on the performance of the target process. However,
simple optimizations such as sorting the table in reverse
order of use and a tree representation of these tables
instead of the linear representation improved significantly
the impact of our approach on performance.

In order to further reduce the impact of our solution,
we will implement a dynamic monitoring of the process
execution in order to get traces that will help choose the
best representation for each table individually depending
on how it is used. Each table of the process could have the
most fitted representation unlike the current implementa-
tion.

For instance, a tree representation of tables by default
for the tables improves the overall performance of the
program compared to the unsorted linear representation.
Nonetheless, the process may not target each case of one
of the most used tabled uniformly and some cases of a
table may be overused compared to the others. In such
cases a sorted linear representation for this particular table
may offer better performance. Moreover, the cases of the
table will be sorted according to their use in the current
execution of the program and not according to a previous
execution, providing an even better fitting order of the
cases of the tables.

In order to make the choice of representation, we
could use the Bhattacharyya distance to estimate how
close the use of a table is to a uniform distribution. For
probability distributions p and ¢ over the same domain X,
the Bhattacharyya distance is defined as

Dg(p,q) = —In(BC(p,q))

where BC is the Bhattacharyya coefficient for discrete
probability distributions defined as

BC(p,q) = Y v/p(w)q(x)

reX

Moreover, we will further enlarge the scope of pro-
grams our solution can support. First, we will improve the
support of multithreaded applications by making DAMAS
aware of the different threads of the target process instead

of relying blindly on the PID of the main thread. Threads
of an already running process will have to be protected
properly as well.

Second, the current experiments focus primarily on the
impact of the dispatch tables and their different represen-
tations in terms of code. We would like to measure the
impact of the relocations and table traversals on the branch
predictor and in terms of cache misses, etc. Therefore,
we will analyze further the execution traces of processes
protected by DAMAS using performance counters of the
CPU with the intention of reducing even more the impact
of our approach on the performance of the program.

Finally, it would be interesting to implement a func-
tionality to remove entirely our protection from the target
process. Such a functionality would release all the mem-
ory allocated by DAMAS and redirect the execution back
to the original control flow.

In conclusion, the effort will be put in priority on im-
proving performance as well as the range of applications
our solution can support to widen its potential adoption.

Acknowledgement

This work is partially funded by a grant from DGA
— France’s Ministry of Armed Forces — and takes place
within the missions of the Péle d’Excellence Cyber.

References

[1] TIOBE - The Software Quality Company, “TIOBE index
for April 2021,” |https://web.archive.org/web/20210502041035/
https://www.tiobe.com/tiobe-index/, 2021. [Online]. Avail-
able: |https://web.archive.org/web/20210502041035/https://www.
tiobe.com/tiobe-index/

[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,”
ACM Trans. Inf. Syst. Secur., vol. 15, no. 1, Mar. 2012. [Online].
Available: https://doi.org/10.1145/2133375.2133377

[3] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security,
ser. CCS ’07. New York, NY, USA: ACM, 2007, p. 552-561.
[Online]. Available: https://doi.org/10.1145/1315245.1315313

[4] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-
oriented programming: A new class of code-reuse attack,”
in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’11.
New York, NY, USA: ACM, 2011, p. 30-40. [Online]. Available:
https://doi.org/10.1145/1966913.1966919

[5] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war
in memory,” in 2013 IEEE Symposium on Security and Privacy,
2013, pp. 48-62.

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow
integrity,” in 24th USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association, Aug. 2015, pp.
161-176. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 5/technical-sessions/presentation/carlini

[71 M. Payer and T. R. Gross, “String oriented programming: When
ASLR is not enough,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, ser.
PPREW ’13. New York, NY, USA: ACM, 2013. [Online].
Available: https://doi.org/10.1145/2430553.2430555

[8] W. Arthur, B. Mehne, R. Das, and T. Austin, “Getting in control of
your control flow with control-data isolation,” in 2015 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO), 2015, pp. 79-90.

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
(17]

(18]

(19]

(20]

(21]

[22]

R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kriigel, and G. Vigna, “Ramblr: Making reassembly
great again,” in NDSS, 2017.

C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “SoK: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” ArXiv, vol. abs/2007.14266,
2020.

SA Hex-Rays, “IDA Pro.” [Online]. Available: https://www.
hex-rays.com/ida-pro/

F. Wang and Y. Shoshitaishvili, “Angr — the next generation of bi-
nary analysis,” in 2017 IEEE Cybersecurity Development (SecDev).
IEEE, 2017, pp. 8-9.

National Security Agency, “Ghidra.” [Online]. Available: https:
//ghidra-sre.org/

D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A bi-
nary analysis platform,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 463—469.

“Radare2.” [Online]. Available: https://rada.re/n/
“Sorry.” [Online]. Available: https://gitlab.inria.fr/klebon/sorry

E. Riou, E. Rohou, P. Clauss, N. Hallou, and A. Ketterlin,
“PADRONE: a Platform for Online Profiling, Analysis, and
Optimization,” in DCE 2014 - International workshop on
Dynamic Compilation Everywhere, Vienne, Austria, Jan. 2014.
[Online]. Available: https://hal.inria.fr/hal-00917950

D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure
for adaptive dynamic optimization,” in International Symposium on
Code Generation and Optimization, 2003. CGO., 2003, pp. 265—
275.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,”
SIGPLAN Not., vol. 40, no. 6, p. 190-200, Jun. 2005. [Online].
Available: https://doi.org/10.1145/1064978.1065034

A. A. Ap, K. Le Bon, B. Hawkins, and E. Rohou,
“FITTCHOOSER: A dynamic feedback based fittest optimization

chooser,” in 2018 International Conference on High Performance
Computing Simulation (HPCS), 2018, pp. 98-105.

“ab: Apache HTTP server benchmark tool.” [Online]. Available:
https://httpd.apache.org/docs/2.4/en/programs/ab.html

“MQTT benchmarking tool.” [Online]. Available: https://github.
com/krylovsk/mqtt-benchmark:

https://web.archive.org/web/20210502041035/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20210502041035/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20210502041035/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20210502041035/https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1966913.1966919
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://doi.org/10.1145/2430553.2430555
https://www.hex-rays.com/ida-pro/
https://www.hex-rays.com/ida-pro/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://rada.re/n/
https://gitlab.inria.fr/klebon/sorry
https://hal.inria.fr/hal-00917950
https://doi.org/10.1145/1064978.1065034
https://httpd.apache.org/docs/2.4/en/programs/ab.html
https://github.com/krylovsk/mqtt-benchmark
https://github.com/krylovsk/mqtt-benchmark

	Introduction
	Contributions of this work

	Our approach
	Relocation of the code
	Removal of indirect branches
	Translation of indirect calls
	Translation of indirect jumps
	Translation of return instructions

	Implementation
	Optimizations
	Case sort
	Tree representation of tables

	Limitations
	Results
	Performance evaluation
	nginx and nginx-static
	Tree representation and sorted tables

	Conclusion and future works
	References

