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Abstract-Cybersecurity testing of automotive systems 

has become a practical necessity, with the wide adoption 

of advanced driving assistance functions and vehicular 

communications. These functionalities require the inte­

gration of information and communication technologies 

that not only allow for a plethora of on-the-fly config­

uration abilities, but also provide a huge surface for 

attacks. Theses circumstances have also been recognized 

by standardization and regulation bodies, making the 

need for not only proper cybersecurity engineering but 

also proving the effectiveness of security measures by 

verification and validation through testing also a for­

mal necessity. In order to keep pace with the rapidly 

growing demand of neutral-party security testing of 

vehicular systems, novel approaches are needed. This 

paper therefore presents a methodology to create and 

execute cybersecurity test cases on the fly in a black box 

setting by using pattem matching-based binary analysis 

and translation mechanisms to formal attack descriptions 

as well as model-checking techniques. The approach 

is intended to generate meaningful attack vectors on a 

system with next-to-zero a priori knowledge. 

Index Terms-automotive, cybersecurity, testing, digital 

twin, model-based testing 

1. Introduction 

The upcoming UNECE regulation R.155 [1] man­
dates not only the introduction of a cybersecurity 
management system (CSMS) and according security 
measures for automotive systems, but also evidence 
of their appropriateness and effectiveness, which is 
to be furnished by testing. The regulation becomes 
effective in Europe for new models in 2022 and for all 
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new registrations in 2024, making it virtually impos­
sible to sell vehicles without structured cybersecurity 
engineering to the European (as well as the Japanese 
and Korean) market in the very near future. While 
the regulation and the underlying security standard 
ISO/SAE 21434 [2] do not elaborately specify how 
to test vehicular systems, it is evident that an au­
tomated, comprehensive, efficient and scalable auto­
motive cybersecurity testing solution is needed. Due 
to the characteristics of a common automotive sup­
ply chain, which involves many sub-suppliers de­
livering an original equipment manufacturer (OEM) 
with heterogeneous, proprietary software with non­
disclosed source, this solution to be capable of black 
box testing, even more as also regulators and other 
third parties will have an interest in security con­
formance testing. In order to industrialize automo­
tive cybersecurity testing, this paper outlines an ap­
proach that combines an automatic dynamic black 
box security analysis of a System-under-Test (SUT) 
with an automated test execution. The requirements 
for a technical solution to industrialize cybersecurity 
testing are therefore the capability to a) generate test 
cases in a black box, automated manner and b) to 
automate test case execution as much as possible. 
This is valuable for external testers, regulators and 
certification bodies to test complete systems, as well 
as for OEMs and TIERl-x suppliers to verify the 
claims of their suppliers on subsystems that come to 
them as black box components. The remainder of this 
Section outlines preceding as well as distinct work 
(1.1) and highlights the additional contributions by 
this paper (1.2). Section 2 a static approach to transfer 
known attacks from one automotive system to an­
other using an own domain specific language (DSL) 
and a test case generation producing JSON-based 
execution instructions is described, while Section 3 
describes a system that uses this code in an execu­
tion engine to perform the actual tests on an SUT. 
As this static approach ( called Automated Automotive 
Cybersecurity Testing - AACT) requires much a-priori 
information, we also discuss the concept of a Cyber 
Digital Twin (CDT) for dynamic model creation and 
data and control flow representation generation that 
serves as a basis for security analysis, as well as ap­
proaches to perform the latter (see Section 4). Three 
approaches for the synthesis of the dynamic analysis 
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and the automated testing are outlined in Section 5, 
while Section 6 concludes the paper. 

1.1. Related Work 

There are several known works concerning the 
usage of digital twins for cybersecurity analysis. The 
work in [3] applies the digital twins concept to the 
cybersecurity analysis of smart grids by manually 
modeling the grid infrastructure and test attack vec­
tors from a threat intelligence system on the digital 
twin improve the grid architecture's cybersecurity. 
Another paper [4] provides a method to model a 
system specification and respective tests for indus­
trial control systems under strict budget constraints. 
Gehrmann & Gunnarsson [5] describe a method 
that allows for protecting industrial control systems 
while being accessible for data sharing by creating 
a digital twin, using direct state replication through 
active state monitoring, that can be monitored and 
acts as a shield for the physical twin. Due to some 
drawbacks of active monitoring, two related works 
[6], [7] present a passive state replication approach 
utilizing the specification of the respective cyber­
physical system (CPS) to clone. All of the last three 
works allow for real-time monitoring systems, which 
is, however, not a required property of a digital 
twin that serves for security analysis with the goal 
of creating test cases. Furthermore, all of the work 
described so far does not have a focus on automotive 
systems. The authors of [8] present an approach sim­
ilar to Gehrmann & Gunnarsson's for the usage in an 
autonomous driving use case by using sensor data as 
source of data for the digital twin. Veledar et al. [9] 
describe a method to model a digital twin in an auto­
motive use case, defining its assets and metrics and 
facilitate risk management and machine leaming­
based security-related forecasting. However, all of 
the works described so far are suitable for perform­
ing verification and validation activities in a white­
box setting only, as they need very detailed infor­
mation on the physical system for the synthesiz­
ing the digital twin. Aichemig et al. [10] provide a 
methodology to black box leam a finite state machine 
via abstract automata learning and derive test cases 
by executing the model symbolically. This method, 
however, is meant and only feasible for testing SUTs 
that contain white and black box components, as 
the white box components imposes restrictions that 
allow for the symbolic execution to produce sensible 
test cases. lt is therefore not suitable for purely black 
box systems. 

As the requirements for industrialized automo­
tive cybersecurity testing (as outlined in Section 1) 
are not met by any of these approaches (combining 
automation of black box test case generation and 
execution), this paper describes it own methodology 
that bases on black box generating a digital twin 
using pattem matching techniques as outlined in 
[11] (see also Section 4) and using the a security 
analysis for generating and executing test cases (see 
Section 5). The groundwork static process for the 

latter (described in 2) also orients on an automotive 
cybersecurity testing architecture outlined in [12]. 

1.2. Research Contribution 

The presented work contributes and approach for 
fully automated black box security testing virtually 
no a priori knowledge using three strategies. Based 
on existing work for deriving a cyber digital twin 
and performing security analysis based on pattem 
matching [11], we discuss to 

a) Transform an existing data flow representation 
in a finite state model and evaluate faults on that 
model to derive test cases; 

b) Find interesting edge cases by performing 
model checking on that model; 

c) Transform the analysis results into generic attack 
descriptions that be used to generate test cases. 

The test case generation and execution 

2. Static Approach to Automating Auto­
motive Cybersecurity Testing 

One of the key issues in security test industri­
alization is portability, i.e. to be able to transfer a 
cybersecurity attack (or test case) from one system 
to another. The reason is: 

a) To expand the usage of one engineered attack 
vector beyond a single system (scalability); 

b) To allow for benchmarking different SUTs (com­
parability); 

c) To improve pattems for single steps of a tests 
and easily re-use that improvement (efficiency); 

d) To put the test cases in a defined workflow that 
needs only minimal user interaction (automa­
tion). 

In order to fulfill these targets, our methodology 
is to abstract a concrete test case and turn it into 
a generic test scenario by stripping it of all SUT­
specific information. Single executable steps of a 
test case (test scripts) become generic test pattems 
[13]. At the test case generation, the abstract test 
scenario is concretized using information from an 
SUT database (see Figure 1), generating a test case 
out of a scenario. 

For modeling and storing these generic attacks, 
we developed a domain-specific language (DSL), 
called Agnostic Language for Implementing Attacks 
(ALIA) [14]. For (a simplified) example, an attack 
that captures an infotainment head unit and issues 
a fake speed signal onto a connected CAN bus 
would not contain any specifics of the SUT, rather 
a CAN message for the speed signal would generi­
cally called CAN_SPD, while a test case generation 
fuses the script with information about the SUT 
(in this exemplary case, the concrete CAN message, 
e.g. 5Al#ll.2233.44556677.881). Usting 1 shows an 

1. This is just an example. In this case, SAl is the object identifier 
that determines the message content (e.g. 'brake', 'RPM', 'steering 
torque'), while the rest is the message content. Which 1D belongs 
to which function, as well as the meaning of set bits is proprietory 
and defined solely by the manufacturer. 



Figure 1. Test Abstraction as in [13] 

example DSL attack script, where the Actions part 
contains the actual attack (while the PreConditions 
define when to omit a step ant the Postconditions 
contain information for the test evaluation): First can 
for a potential victim to a BlueBorne attack (line 5), 
then exploit a found target to get access (line 6), 
install a malicious script (line 7 - in this case a DoS 
on the CAN bus) and execute the attack (line 8) by 
using the script from the line above. The outcome is a 
semi-executable JSON script that will be interpreted 
and executed by a dedicated execution engine (see 
next Section). 

Listing 1. DSL Attack Script Example from [14] 
1 PreConditions: 

BT-Scanning: BT_IF 

BT-Exploiting: target 

Actions: 

BT-Scanning: target = scan(type:BlueBorne, interface BT_IF) 

BT-Exploiting: shell = exploit (type: Blueborne, target: target) 

Install Script: attackScript = exploit (type: InstallAndroidCANDosScript 

, target:target) 

can_attack: exploit (type: ScriptExecution, target: target, shell: shell, 

file: attackScript) 

9 PostConditions: 

BT-Exploiting: shell 

11 can_attack: CAN_MESSAGE (CAN_SPD) 

3. Test Execution 

The AACT Test Execution is runs on the At­
tack Execution Engine (AXE), a platform independent 
python application, which is based on the Flask 
framework, a lightweight Web Server Gateway In­
terface (W SGI) framework that is designed to en­
able an easy start for web applications but also to 
allow easy upscaling for complex applications. The 
core functionality of flask is a wrapper around the 
Werkzeug framework and the Jinja template engine 
. For our scenario, the AXE runs on Kali Linux, a 
Debian-based Linux distribution which is optimized 
for Security Auditing and Penetration testing. lt in­
cludes over six hundred tools for penetration testing, 
security research, computer forensics and reverse 
engineering, which means that most of the software 
utilities needed to execute the security cases is al­
ready installed out-of-the-box. The hardware could 
be an ordinary PC or even a Raspberry Pi that posses 
a direct CAN connection for testing (e.g. a PiCAN2 
board for the Raspberry). For Bluetooth connection, 
a Cambridge Silicon Radio (CSR) USB device (i.e. 

dongle) is necessary, as a those allow for changing 
the MAC address arbitrarily. By providing various 
resources via a restful API, the application takes 
HTTPS POST requests that contain JSON objects as 
input via and processes them according to the spec­
ified URL path. The JSON data interchange format 
is a subset of JavaScript and allows transfer data as 
name/value pairs between applications in an easily 
readable and writable manner [15]. Input requests 
for the application contain an array of executable 
commands, which each consist of the tool to use, 
its parameters, the environment and a time duration 
that specifies how lang the output collection phase 
takes. The parameter list for each command may 
include placeholders that are either determined by 
the application at runtime or are loaded from the 
global configuration of the application before exe­
cution. The Test Case Generator (TCG) uses scripts 
that are defined in the attack DSL as a blueprint and 
outputs corresponding JSON objects that can be di­
rectly used for execution and consist of the respective 
Precondition and Action block, whereas the post­
condition block is forwarded to a test oracle. Each 
step in the Action block is executed subsequently. 
Before execution, the application checks if all cor­
responding preconditions are matched. Depending 
on the necessary execution environment, commands 
can be executed in different shells than the initial 
bash shell as well, for example if an exploit returns 
a reverse shell, it is stored onto an object and new 
commands can be piped into that shell as an input. 
After the execution, the output of each command 
is collected and stored into the HTTPS response of 
the application. Verification of Postconditions is clone 
by the Test Oracle, which is implemented as a rule­
based engine that runs on an existing automotive test 
control solution. The Oracle receives the condition 
block from the TCG and monitors the SUT and the 
tool output received from the AXE accordingly. If 
a condition is met, it reports this back to the Or­
chestration Software. Through the rules, it asserts 
whether the SUT has failed or passed a specific test 
of the complete test case and reports this result to 
the orchestration software and GUI. 

4. Dynamic Digital Twin Generation 

A Digital Twin (DT) produces a virtual model of 
a physical object as a digital representation with the 
purpose of simulating them before construction to fa­
cilitate predictive maintenance [16]. A Cyber Digital 
Twin (CDT) transfers this idea of the DT to automo­
tive software [11]. As such, a CDT digitally repre­
sents the firmware of a vehicular component, e.g. of 
an electronic control unit (ECU) or a head unit of an 
infotainment system and can be used for thorough 
security analysis. In general, most software utilizes 
widespread software packages to build on. This is 
particularly true for the automotive industry, where 
original equipment manufacturers (OEMs) assemble 
parts of suppliers (TIER 1), which in turn use parts 
of sub suppliers and so on (TIER 2-X). This applies 
also for the software in ECUs and other integral parts 



Figure 2. Digital Twin Derivation 

of an automotive system. Mostly in these settings 
the source code of the respective firmware is not 
available, rendering the part in question essentially 
a black box. For comprehensive security analysis, a 
system that is capable of extracting an SUT's (e.g. an 
ECU's) behavior-defining key attributes is necessary. 
This is given by the CDT approach, that extracts 
these attributes automatically, which can be used for 
the analysis and, subsequently, to generate test cases 
by converting them into ALIA statements or induced 
faults (see next section) that can be converted into 
executable attack code. To do so, the firmware of 
the SUT is automatically transformed into a corre­
sponding CDT to be used for cybersecurity analysis. 
Due to the circumstances of the automotive supply 
chain described above and the fact that the automo­
tive domain predominantly works with proprietary, 
closed-source products, the firmware is usually only 
available in binary form, which mandates the CDT 
approach to be operational without access to source 
code or deeper inside-details of the firmware. The 
CDT creation engine generates a software bill of 
materials (BOM) that contains all libraries and com­
ponents of the SUT by using pattem recognition al­
gorithms that compare software pattems of the SUT 
with known applications and modules. The CDT en­
gine automatically discovers all available interfaces 
(e.g., CAN Bus, GPS or Bluetooth), employed soft­
ware libraries (e.g., OpenSSL or SQLite) and further 
information. To create a model that is suitable for 
security analysis based on dynamic executions, the 
engine also extracts the control and data flow. Mainly 
the CDT encompasses the following attributes of the 

SUT (and the interaction between them): 

• Software & Hardware bill of materials (S&H
BoM);

• Network interfaces;
• Operating system and the Operating system set-

tings;
• Kernel configuration;
• OS-level security configuration;
• Memory management and mapping;
• User credentials;
• Firewall configuration;
• Application frameworks in use and their config-

uration;
• Available and in-use APis;
• Application configuration;
• Encryption mechanisms and flows;
• Encryption keys;
• Control and data flow representation.

Using the very same pattem recognition tech­
niques, the CDT is the analyzed for 

a) Known vulnerabilities derived from Common
Vulnerabilities and Exposures (CVE) databases;

b) Unknown weaknesses as classified by the Com­
mon Weakness enumeration (CWE) scheme;

c) Policies and compliance rules.

Figure 2 gives an overview on the CDT generation 
and analysis. 

5. Digital Twin-based Security Testing

In order to transition the model of the Cyber 
Digital Twin into test cases (that can eventually be 
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Figure 3. Test Case Generation Strategies 

executed on the AXE) we follow two different prin­
ciple approaches: 

• Transforming the CDT security analysis results
into attack vectors;

• Transforming the CDT model into a state ma­
chine and using this as input fault injection and
model checking.

The former approach mandates a mechanical algo­
rithm that transforms the analysis results into a DSL 
description. This occurs by a) referring to the vul­
nerabilities identified in the CDT security analysis 
and mapping proper attack vectors (and later in the 
toolchain exploits) to it and b) using building block 
attack vectors and exploits that would, for instance, 
try to issue a payload into an identified buffer over­
flow attack. This resembles the static workflow, how­
ever, with a dynamically generated starting point. 
Still, there are building blocks and exploit code nec­
essary to be in place a priori. The second approach 
uses methods traditionally attributed to automated 
test case generation and to formal verification, re­
spectively. To fully utilize already established meth­
ods, we transform the CDT model into a state ma­
chine. This state machine allows for two operations: 

• Inject faults into the model using mutation­
based algorithms;

• Examine security-relevant parts of the machine
through model checking.

The first operation uses state-of-the-art model-based 
testing methodology. This includes input and fault 
injection to the model using mutation-based algo-

rithms [17] and potential paths to outside interfaces 
of the latter using distance heuristics [18]. 

The second operation includes firstly extracting 
security-relevant parts, which are identified by the 
bill of materials (BOM) provided by the CDT. These 
relevant parts of the model are then checked by a 
model checker [19]. At those points where the model 
checking fails, the respective input is taken to form 
input for directed fuzzing tests [20], [21]. Figure 
3 depicts these approaches with blue boxes being 
models, cyan being checking results, purple being 
concrete test case parts and orange being the SUT. 
The result of the binary (pattern matching) analysis 
therefore serves either as a basis for synthesizing a 
state machine for model-based testing or as a basis 
for an agnostic attack description using a DSL. 

6. Concl usion

Due to regulations and standards, an industrial­
ization of automotive cybersecurity testing is heavily 
needed. This paper outlined an approach to pro­
vide a tool for automated, comprehensive and effi­
cient cybersecurity testing of vehicular systems. The 
approach displays how test automation is possible 
by transferring attacks from one system to another 
through generalization using a DSL, but also how to 
derive a Cyber Digital Twin model of an SUT that 
can be analyzed for cybersecurity properties. The 
model and result of this dynamic, black box model 
building and analysis can then be transformed into 
test cases for the automated testing system using 
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fault injection, model checking as well as transforma­
tion into the DSL and appropriate attack script selec­
tion in the test case generation, as well as automated 
execution. This way, the complete system is capable 
of automatically analyzing the cybersecurity of an 
automotive component and subsequently generat­
ing and executing tests to verify its security, which 
makes this approach most suitable for external test­
ing facilities to test vehicular systems with minimal 
or no a priori knowledge about the SUT. Future work 
includes, apart from implementation tasks, mainly 
methodologies for advanced case generation out of 
the derived attack descriptions, as well as methods to 
automating code transfer between SUTs (e.g. address 
estimation for exploits). 
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