
Using Cyber Digital Twins for Automated Automotive Cybersecurity
Testing

Stefan Marksteiner

AVL List GmbH

Graz, Austria

stefan.marksteiner@avl.com

Slava Bronfman

Cybellum Ltd

Tel Aviv, Israel

slava@cybellum.com

Abstract-Cybersecurity testing of automotive systems

has become a practical necessity, with the wide adoption

of advanced driving assistance functions and vehicular

communications. These functionalities require the inte­

gration of information and communication technologies

that not only allow for a plethora of on-the-fly config­

uration abilities, but also provide a huge surface for

attacks. Theses circumstances have also been recognized

by standardization and regulation bodies, making the

need for not only proper cybersecurity engineering but

also proving the effectiveness of security measures by

verification and validation through testing also a for­

mal necessity. In order to keep pace with the rapidly

growing demand of neutral-party security testing of

vehicular systems, novel approaches are needed. This

paper therefore presents a methodology to create and

execute cybersecurity test cases on the fly in a black box

setting by using pattem matching-based binary analysis

and translation mechanisms to formal attack descriptions

as well as model-checking techniques. The approach

is intended to generate meaningful attack vectors on a

system with next-to-zero a priori knowledge.

Index Terms-automotive, cybersecurity, testing, digital

twin, model-based testing

1. Introduction

The upcoming UNECE regulation R.155 [1] man­
dates not only the introduction of a cybersecurity
management system (CSMS) and according security
measures for automotive systems, but also evidence
of their appropriateness and effectiveness, which is
to be furnished by testing. The regulation becomes
effective in Europe for new models in 2022 and for all

This research has received funding from the program "ICT of the
Future" of the Austrian Research Promotion Agency (FFG) and the
Austrian Ministry for Transport, Innovation and Technology under
grant agreement No. 867558 (project TRUSTED) and within the the
ECSEL Joint Undertaking (JU) under grant agreement No. 876038
(project InSecTT). The JU receives support from the European Union's
Horizon 2020 research and innovation programme and Austria, Swe­
den, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, Turkey. The document reflects the author's view only and
the Commission is not responsible for any use that may be made of the
information it contains.
NB: appendices, if any, did not benefit from peer review.A preprint of
this paper has been deposited on Ar Xiv.

Markus Wolf

AVL List GmbH

Graz, Austria

markus.wolj@avl.com

Eddie Lazebnik

Cybellum Ltd

Tel Aviv, Israel

eddie@cybellum.com

new registrations in 2024, making it virtually impos­
sible to sell vehicles without structured cybersecurity
engineering to the European (as well as the Japanese
and Korean) market in the very near future. While
the regulation and the underlying security standard
ISO/SAE 21434 [2] do not elaborately specify how
to test vehicular systems, it is evident that an au­
tomated, comprehensive, efficient and scalable auto­
motive cybersecurity testing solution is needed. Due
to the characteristics of a common automotive sup­
ply chain, which involves many sub-suppliers de­
livering an original equipment manufacturer (OEM)
with heterogeneous, proprietary software with non­
disclosed source, this solution to be capable of black
box testing, even more as also regulators and other
third parties will have an interest in security con­
formance testing. In order to industrialize automo­
tive cybersecurity testing, this paper outlines an ap­
proach that combines an automatic dynamic black
box security analysis of a System-under-Test (SUT)
with an automated test execution. The requirements
for a technical solution to industrialize cybersecurity
testing are therefore the capability to a) generate test
cases in a black box, automated manner and b) to
automate test case execution as much as possible.
This is valuable for external testers, regulators and
certification bodies to test complete systems, as well
as for OEMs and TIERl-x suppliers to verify the
claims of their suppliers on subsystems that come to
them as black box components. The remainder of this
Section outlines preceding as well as distinct work
(1.1) and highlights the additional contributions by
this paper (1.2). Section 2 a static approach to transfer
known attacks from one automotive system to an­
other using an own domain specific language (DSL)
and a test case generation producing JSON-based
execution instructions is described, while Section 3
describes a system that uses this code in an execu­
tion engine to perform the actual tests on an SUT.
As this static approach (called Automated Automotive
Cybersecurity Testing - AACT) requires much a-priori
information, we also discuss the concept of a Cyber
Digital Twin (CDT) for dynamic model creation and
data and control flow representation generation that
serves as a basis for security analysis, as well as ap­
proaches to perform the latter (see Section 4). Three
approaches for the synthesis of the dynamic analysis

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

and the automated testing are outlined in Section 5,
while Section 6 concludes the paper.

1.1. Related Work

There are several known works concerning the
usage of digital twins for cybersecurity analysis. The
work in [3] applies the digital twins concept to the
cybersecurity analysis of smart grids by manually
modeling the grid infrastructure and test attack vec­
tors from a threat intelligence system on the digital
twin improve the grid architecture's cybersecurity.
Another paper [4] provides a method to model a
system specification and respective tests for indus­
trial control systems under strict budget constraints.
Gehrmann & Gunnarsson [5] describe a method
that allows for protecting industrial control systems
while being accessible for data sharing by creating
a digital twin, using direct state replication through
active state monitoring, that can be monitored and
acts as a shield for the physical twin. Due to some
drawbacks of active monitoring, two related works
[6], [7] present a passive state replication approach
utilizing the specification of the respective cyber­
physical system (CPS) to clone. All of the last three
works allow for real-time monitoring systems, which
is, however, not a required property of a digital
twin that serves for security analysis with the goal
of creating test cases. Furthermore, all of the work
described so far does not have a focus on automotive
systems. The authors of [8] present an approach sim­
ilar to Gehrmann & Gunnarsson's for the usage in an
autonomous driving use case by using sensor data as
source of data for the digital twin. Veledar et al. [9]
describe a method to model a digital twin in an auto­
motive use case, defining its assets and metrics and
facilitate risk management and machine leaming­
based security-related forecasting. However, all of
the works described so far are suitable for perform­
ing verification and validation activities in a white­
box setting only, as they need very detailed infor­
mation on the physical system for the synthesiz­
ing the digital twin. Aichemig et al. [10] provide a
methodology to black box leam a finite state machine
via abstract automata learning and derive test cases
by executing the model symbolically. This method,
however, is meant and only feasible for testing SUTs
that contain white and black box components, as
the white box components imposes restrictions that
allow for the symbolic execution to produce sensible
test cases. lt is therefore not suitable for purely black
box systems.

As the requirements for industrialized automo­
tive cybersecurity testing (as outlined in Section 1)
are not met by any of these approaches (combining
automation of black box test case generation and
execution), this paper describes it own methodology
that bases on black box generating a digital twin
using pattem matching techniques as outlined in
[11] (see also Section 4) and using the a security
analysis for generating and executing test cases (see
Section 5). The groundwork static process for the

latter (described in 2) also orients on an automotive
cybersecurity testing architecture outlined in [12].

1.2. Research Contribution

The presented work contributes and approach for
fully automated black box security testing virtually
no a priori knowledge using three strategies. Based
on existing work for deriving a cyber digital twin
and performing security analysis based on pattem
matching [11], we discuss to

a) Transform an existing data flow representation
in a finite state model and evaluate faults on that
model to derive test cases;

b) Find interesting edge cases by performing
model checking on that model;

c) Transform the analysis results into generic attack
descriptions that be used to generate test cases.

The test case generation and execution

2. Static Approach to Automating Auto­
motive Cybersecurity Testing

One of the key issues in security test industri­
alization is portability, i.e. to be able to transfer a
cybersecurity attack (or test case) from one system
to another. The reason is:

a) To expand the usage of one engineered attack
vector beyond a single system (scalability);

b) To allow for benchmarking different SUTs (com­
parability);

c) To improve pattems for single steps of a tests
and easily re-use that improvement (efficiency);

d) To put the test cases in a defined workflow that
needs only minimal user interaction (automa­
tion).

In order to fulfill these targets, our methodology
is to abstract a concrete test case and turn it into
a generic test scenario by stripping it of all SUT­
specific information. Single executable steps of a
test case (test scripts) become generic test pattems
[13]. At the test case generation, the abstract test
scenario is concretized using information from an
SUT database (see Figure 1), generating a test case
out of a scenario.

For modeling and storing these generic attacks,
we developed a domain-specific language (DSL),
called Agnostic Language for Implementing Attacks
(ALIA) [14]. For (a simplified) example, an attack
that captures an infotainment head unit and issues
a fake speed signal onto a connected CAN bus
would not contain any specifics of the SUT, rather
a CAN message for the speed signal would generi­
cally called CAN_SPD, while a test case generation
fuses the script with information about the SUT
(in this exemplary case, the concrete CAN message,
e.g. 5Al#ll.2233.44556677.881). Usting 1 shows an

1. This is just an example. In this case, SAl is the object identifier
that determines the message content (e.g. 'brake', 'RPM', 'steering
torque'), while the rest is the message content. Which 1D belongs
to which function, as well as the meaning of set bits is proprietory
and defined solely by the manufacturer.

Figure 1. Test Abstraction as in [13]

example DSL attack script, where the Actions part
contains the actual attack (while the PreConditions
define when to omit a step ant the Postconditions
contain information for the test evaluation): First can
for a potential victim to a BlueBorne attack (line 5),
then exploit a found target to get access (line 6),
install a malicious script (line 7 - in this case a DoS
on the CAN bus) and execute the attack (line 8) by
using the script from the line above. The outcome is a
semi-executable JSON script that will be interpreted
and executed by a dedicated execution engine (see
next Section).

Listing 1. DSL Attack Script Example from [14]
1 PreConditions:

BT-Scanning: BT_IF

BT-Exploiting: target

Actions:

BT-Scanning: target = scan(type:BlueBorne, interface BT_IF)

BT-Exploiting: shell = exploit (type: Blueborne, target: target)

Install Script: attackScript = exploit (type: InstallAndroidCANDosScript

, target:target)

can_attack: exploit (type: ScriptExecution, target: target, shell: shell,

file: attackScript)

9 PostConditions:

BT-Exploiting: shell

11 can_attack: CAN_MESSAGE (CAN_SPD)

3. Test Execution

The AACT Test Execution is runs on the At­
tack Execution Engine (AXE), a platform independent
python application, which is based on the Flask
framework, a lightweight Web Server Gateway In­
terface (W SGI) framework that is designed to en­
able an easy start for web applications but also to
allow easy upscaling for complex applications. The
core functionality of flask is a wrapper around the
Werkzeug framework and the Jinja template engine
. For our scenario, the AXE runs on Kali Linux, a
Debian-based Linux distribution which is optimized
for Security Auditing and Penetration testing. lt in­
cludes over six hundred tools for penetration testing,
security research, computer forensics and reverse
engineering, which means that most of the software
utilities needed to execute the security cases is al­
ready installed out-of-the-box. The hardware could
be an ordinary PC or even a Raspberry Pi that posses
a direct CAN connection for testing (e.g. a PiCAN2
board for the Raspberry). For Bluetooth connection,
a Cambridge Silicon Radio (CSR) USB device (i.e.

dongle) is necessary, as a those allow for changing
the MAC address arbitrarily. By providing various
resources via a restful API, the application takes
HTTPS POST requests that contain JSON objects as
input via and processes them according to the spec­
ified URL path. The JSON data interchange format
is a subset of JavaScript and allows transfer data as
name/value pairs between applications in an easily
readable and writable manner [15]. Input requests
for the application contain an array of executable
commands, which each consist of the tool to use,
its parameters, the environment and a time duration
that specifies how lang the output collection phase
takes. The parameter list for each command may
include placeholders that are either determined by
the application at runtime or are loaded from the
global configuration of the application before exe­
cution. The Test Case Generator (TCG) uses scripts
that are defined in the attack DSL as a blueprint and
outputs corresponding JSON objects that can be di­
rectly used for execution and consist of the respective
Precondition and Action block, whereas the post­
condition block is forwarded to a test oracle. Each
step in the Action block is executed subsequently.
Before execution, the application checks if all cor­
responding preconditions are matched. Depending
on the necessary execution environment, commands
can be executed in different shells than the initial
bash shell as well, for example if an exploit returns
a reverse shell, it is stored onto an object and new
commands can be piped into that shell as an input.
After the execution, the output of each command
is collected and stored into the HTTPS response of
the application. Verification of Postconditions is clone
by the Test Oracle, which is implemented as a rule­
based engine that runs on an existing automotive test
control solution. The Oracle receives the condition
block from the TCG and monitors the SUT and the
tool output received from the AXE accordingly. If
a condition is met, it reports this back to the Or­
chestration Software. Through the rules, it asserts
whether the SUT has failed or passed a specific test
of the complete test case and reports this result to
the orchestration software and GUI.

4. Dynamic Digital Twin Generation

A Digital Twin (DT) produces a virtual model of
a physical object as a digital representation with the
purpose of simulating them before construction to fa­
cilitate predictive maintenance [16]. A Cyber Digital
Twin (CDT) transfers this idea of the DT to automo­
tive software [11]. As such, a CDT digitally repre­
sents the firmware of a vehicular component, e.g. of
an electronic control unit (ECU) or a head unit of an
infotainment system and can be used for thorough
security analysis. In general, most software utilizes
widespread software packages to build on. This is
particularly true for the automotive industry, where
original equipment manufacturers (OEMs) assemble
parts of suppliers (TIER 1), which in turn use parts
of sub suppliers and so on (TIER 2-X). This applies
also for the software in ECUs and other integral parts

Figure 2. Digital Twin Derivation

of an automotive system. Mostly in these settings
the source code of the respective firmware is not
available, rendering the part in question essentially
a black box. For comprehensive security analysis, a
system that is capable of extracting an SUT's (e.g. an
ECU's) behavior-defining key attributes is necessary.
This is given by the CDT approach, that extracts
these attributes automatically, which can be used for
the analysis and, subsequently, to generate test cases
by converting them into ALIA statements or induced
faults (see next section) that can be converted into
executable attack code. To do so, the firmware of
the SUT is automatically transformed into a corre­
sponding CDT to be used for cybersecurity analysis.
Due to the circumstances of the automotive supply
chain described above and the fact that the automo­
tive domain predominantly works with proprietary,
closed-source products, the firmware is usually only
available in binary form, which mandates the CDT
approach to be operational without access to source
code or deeper inside-details of the firmware. The
CDT creation engine generates a software bill of
materials (BOM) that contains all libraries and com­
ponents of the SUT by using pattem recognition al­
gorithms that compare software pattems of the SUT
with known applications and modules. The CDT en­
gine automatically discovers all available interfaces
(e.g., CAN Bus, GPS or Bluetooth), employed soft­
ware libraries (e.g., OpenSSL or SQLite) and further
information. To create a model that is suitable for
security analysis based on dynamic executions, the
engine also extracts the control and data flow. Mainly
the CDT encompasses the following attributes of the

SUT (and the interaction between them):

• Software & Hardware bill of materials (S&H
BoM);

• Network interfaces;
• Operating system and the Operating system set-

tings;
• Kernel configuration;
• OS-level security configuration;
• Memory management and mapping;
• User credentials;
• Firewall configuration;
• Application frameworks in use and their config-

uration;
• Available and in-use APis;
• Application configuration;
• Encryption mechanisms and flows;
• Encryption keys;
• Control and data flow representation.

Using the very same pattem recognition tech­
niques, the CDT is the analyzed for

a) Known vulnerabilities derived from Common
Vulnerabilities and Exposures (CVE) databases;

b) Unknown weaknesses as classified by the Com­
mon Weakness enumeration (CWE) scheme;

c) Policies and compliance rules.

Figure 2 gives an overview on the CDT generation
and analysis.

5. Digital Twin-based Security Testing

In order to transition the model of the Cyber
Digital Twin into test cases (that can eventually be

Firmware Cyber Digital Twin Unknown Weaknesses

Known Vulnerabilities

Regulation Incompliances

- CVEs
- Context-based Filtering

- CWEs: Buffer overflow,
stack overflow,
double free, etc.

- Standards: ISO 21434
- Regulation: WP 29
- Best practices: ENISA

- HW BoM
- Network Interfaces
- SBoM
- Operating System
- Operating System settings
- Kernel configuration
- OS-level security
 configurations

- Memory mgmt. and
 mapping

- User Credentials
- Firewall configuration
- Application frameworks
- Available, accessible and
 in-use APIs

- Encryption mechanisms
 and flows

- Control and data flow
 graph representation

- Binary file
- In on of 60+ formats
- Different languages
- Different Architectures
- Different OSs

Transition Analysis

Figure 3. Test Case Generation Strategies

executed on the AXE) we follow two different prin­
ciple approaches:

• Transforming the CDT security analysis results
into attack vectors;

• Transforming the CDT model into a state ma­
chine and using this as input fault injection and
model checking.

The former approach mandates a mechanical algo­
rithm that transforms the analysis results into a DSL
description. This occurs by a) referring to the vul­
nerabilities identified in the CDT security analysis
and mapping proper attack vectors (and later in the
toolchain exploits) to it and b) using building block
attack vectors and exploits that would, for instance,
try to issue a payload into an identified buffer over­
flow attack. This resembles the static workflow, how­
ever, with a dynamically generated starting point.
Still, there are building blocks and exploit code nec­
essary to be in place a priori. The second approach
uses methods traditionally attributed to automated
test case generation and to formal verification, re­
spectively. To fully utilize already established meth­
ods, we transform the CDT model into a state ma­
chine. This state machine allows for two operations:

• Inject faults into the model using mutation­
based algorithms;

• Examine security-relevant parts of the machine
through model checking.

The first operation uses state-of-the-art model-based
testing methodology. This includes input and fault
injection to the model using mutation-based algo-

rithms [17] and potential paths to outside interfaces
of the latter using distance heuristics [18].

The second operation includes firstly extracting
security-relevant parts, which are identified by the
bill of materials (BOM) provided by the CDT. These
relevant parts of the model are then checked by a
model checker [19]. At those points where the model
checking fails, the respective input is taken to form
input for directed fuzzing tests [20], [21]. Figure
3 depicts these approaches with blue boxes being
models, cyan being checking results, purple being
concrete test case parts and orange being the SUT.
The result of the binary (pattern matching) analysis
therefore serves either as a basis for synthesizing a
state machine for model-based testing or as a basis
for an agnostic attack description using a DSL.

6. Concl usion

Due to regulations and standards, an industrial­
ization of automotive cybersecurity testing is heavily
needed. This paper outlined an approach to pro­
vide a tool for automated, comprehensive and effi­
cient cybersecurity testing of vehicular systems. The
approach displays how test automation is possible
by transferring attacks from one system to another
through generalization using a DSL, but also how to
derive a Cyber Digital Twin model of an SUT that
can be analyzed for cybersecurity properties. The
model and result of this dynamic, black box model
building and analysis can then be transformed into
test cases for the automated testing system using

Faulty

Ma

SUT

Cyber Digital Twin

Security
Analysis
Results

State Machine

Attack Vectors
DSL Description

Model
Checking
Results

Edge Case
Input for Fuzzing Test Cases

Attack Script
Sequence

ltyStateFau Edge Case
Input for Fuzzing

Fault Vector
Descriptions

Binary Analysis

Automated Anaysis

Transformation

Transformation

Model Checking Concretization Test Case
Generation

Test Case Execution

Concretization Test Case Generation

Fault Injection
(Coverage-based)

Test Case Generation

Concretization

Binary Code Injection

Fault
Propagation

Analysis

Mutiple Faulty
State Machines

fault injection, model checking as well as transforma­
tion into the DSL and appropriate attack script selec­
tion in the test case generation, as well as automated
execution. This way, the complete system is capable
of automatically analyzing the cybersecurity of an
automotive component and subsequently generat­
ing and executing tests to verify its security, which
makes this approach most suitable for external test­
ing facilities to test vehicular systems with minimal
or no a priori knowledge about the SUT. Future work
includes, apart from implementation tasks, mainly
methodologies for advanced case generation out of
the derived attack descriptions, as well as methods to
automating code transfer between SUTs (e.g. address
estimation for exploits).

References

[1] United Nations Economic and Social Council - Economic
Commission for Europe, "Cyber security and cyber security
management system," United Nations Economic and So­
cial Council - Economic Commission for Europe, Regulation
"155", 2020.

[2] International Organization for Standardization and Society of
Automotive Engineers, "Road Vehicles - Cybersecurity Engi­
neering," International Standard, International Organization
for Standardization, ISO/SAE Standard "FDIS 21434", 2021.

[3] M. Atalay and P. Angin, "A digital twins approach to smart
grid security testing and standardization," in 2020 IEEE In­
ternational Workshap an Metrology for Industry 4.0 IoT, 2020,
pp. 435-440.

[4] R. Bitton, T. Gluck, 0. Stan, M. Inokuchi, Y. Ohta, Y. Yamada,
T. Yagyu, Y. Elovici, and A. Shabtai, "Deriving a cost-effective
digital twin of an ics to facilitate security evaluation," in
Computer Security, J. Lopez, J. Zhou, and M. Soriano, Eds.
Cham: Springer International Publishing, 2018, pp. 533-554.

[5] C. Gehrmann and M. Gunnarsson, "A digital twin based
industrial automation and control system security architec­
ture," IEEE Transactions an Industrial Informatics, vol. 16, no. 1,
pp. 669-680, 2020.

[6] M. Eckhart and A. Ekelhart, "A specification-based state
replication approach for digital twins," in Proceedings of the
2018 Workshop an Cyber-Physical Systems Security and PrivaCy,
ser. CPS-SPC '18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 36--47.

[7] --, "Towards security-aware virtual environments for dig­
ital twins," in Proceedings of the 4th ACM Workshop an Cyber­
Physical System Security, ser. CPSS '18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 61-72.

[8] S. Almeaibed, S. Al-Rubaye, A. Tsourdos, and N. P. Avde­
lidis, "Digital twin analysis to promote safety and security in
autonomous vehicles," IEEE Communications Standards Mag­
azine, vol. 5, no. 1, pp. 40-46, 2021.

[9] 0. Veledar, V. Damjanovic-Behrendt, and G. Macher, "Digital
twins for dependability improvement of autonomous driv­
ing," in Systems, Software and Services Process Improvement,
A. Walker, R. V. O'Connor, and R. Messnarz, Eds. Cham:
Springer International Publishing, 2019, pp. 415-426.

[10] B. K. Aichernig, R. Bloem, M. Ebrahimi, M. Tappler, and
J. Winter, "Automata leaming for symbolic execution," in
2018 Formal Methods in Computer Aided Design (FMCAD),
2018, pp. 1-9.

[11] A. C. Franco da Silva, S. Wagner, E. Lazebnik, and E. Trai­
tel, "Using a cyber digital twin for continuous auto­
motive security requirements verification," arXiv preprint
arXiv:2102.00790, 2021, article under review for IEEE Soft­
ware.

[12] S. Marksteiner and Z. Ma, "Approaching the automation of
cyber security testing of connected vehicles," in Proceedings of
the Central European Cybersecurity Conference 2019, ser. CECC
2019. New York, NY, USA: ACM, 2019.

[13] S. Marksteiner, N. Marko, A. Smulders, S. Karagiannis,
F. Stahl, H. Hamazaryan, R. Schlick, S. Kraxberger, and
A. Vasenev, "A process to facilitate automated automotive
cybersecurity testing," in 2021 IEEE 93rd Vehicular Technol­
ogy Conference (VTC Spring). New York, NY, USA: IEEE,
2021, paper presented, published pending, preprint on arXiv:
https:/ / arxiv.org/ abs/2101.10048.

[14] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, "An
agnostic domain specific language forimplementing attacks
in an automotive use case," in Proceedings of the 16th Inter­
national Conference an Availability, Reliability and Security, ser.
ARES '21. New York, NY, USA: ACM, 2021.

[15] B. Bray, "The JavaScript Object Notation (JSON) Data Inter­
change Format," Internet Requests for Comments, Internet
Engineering Task Force, RFC 7159, 2014.

[16] S. Boschert and R. Rosen, Digital Twin-The Simulation Aspect.
Cham: Springer International Publishing, 2016, pp. 59-74.

[17] Y. Jia and M. Harman, "An analysis and survey of the de­
velopment of mutation testing," IEEE Transactions an Software
Engineering, vol. 37, no. 5, pp. 649--678, 2011.

[18] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick,
and S. Tiran, "Killing strategies for model-based mutation
testing," Software Testing, Verification and Reliability, vol. 25,
no. 8, pp. 716-748, 2015.

[19] R. Ameur-Boulifa, F. Lugou, and L. Apvrille, "Sysml model
transformation for safety and security analysis," in Security
and Safety Interplay of Intelligent Software Systems, B. Hamid,
B. Gallina, A. Shabtai, Y. Elovici, and J. Garcia-Alfaro, Eds.
Cham: Springer International Publishing, 2019, pp. 35-49.

[20] L. Daniel, E. Poll, and J. de Ruiter, "Inferring openvpn
state machines using protocol state fuzzing," in 2018 IEEE
European Symposium an Security and Privacy Workshaps (Euros
PW), 2018, pp. 11-19.

[21] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, "End-to­
end automated exploit generation for validating the security
of processor designs," in 2018 51st Annual IEEE/ACM Inter­
national Symposium an Microarchitecture (MICRO), 2018, pp.
815-827.

