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Abstract—Payment channel networks (PCN) enable scalable
blockchain transactions without fundamentally changing the
underlying distributed ledger algorithm. However, routing a
payment via multiple channels in a PCN requires locking col-
lateral for potentially long periods of time. Adversaries can
abuse this mechanism to conduct denial-of-service attacks.
Previous work focused on source routing, which is unlikely
to remain a viable routing approach as these networks grow.

In this work, we examine the effectiveness of attacks
in PCNs that use routing algorithms based on local knowl-
edge, where compromised intermediate nodes can delay or
drop transactions to create denial-of-service. We focus on
SpeedyMurmurs as a representative of such protocols. We
identify two attacker node selection strategies; one based
on the position in the routing tree, and the other on be-
tweenness centrality. Our simulation-driven study shows that
while they are both effective, the centrality-based attack
approaches near-optimal effectiveness. We also show that
the attacks are ineffective in less centralized networks and
discuss incentives for the participants in PCNs to create less
centralized topologies through the payment channels they
establish among themselves.

Index Terms—Cyrptocurrency; Routing Attack; Payment
Channel Network; Lightning Network; Local Routing; Cen-
trality

1. Introduction

Payment channel networks such as Lightning [1] are
the predominant solution to scaling blockchains without
fundamentally changing the underlying consensus algo-
rithm [2]. At their core, they rely on the concept of a pay-
ment channel, wherein two parties who wish to perform
transactions off-the-ledger put funds in escrow dedicated
to such operations. For parties that do not directly share a
channel, payment channel networks facilitate transactions
by forwarding the payment along one [1] or multiple [3],
[4], [5] paths in the graph created by all existing direct
payment channels. The chosen paths need to have the
necessary funds to complete the transaction. The process
of finding suitable paths is referred to as routing, as an
analogy to routing in networks, with the caveat that the
main goal here is completion of the payment.

Routing payments along one or multiple paths pro-
ceeds in two phases: First, all involved nodes commit to
paying their successor on the path. Such a commitment
implies that they lock the funds required for the payment
as collateral. As a consequence, these funds are not avail-
able for any concurrent payments. Second, the payments

are finalized. If the payment fails, the collateral is released
after a timeout. These timeouts tend to be on the order
of minutes or even hours, e.g., for Lightning, 40 Bitcoin
blocks in the future from the current block number (at
the start of the transaction) — more than 6 hours [6].
Adversarial parties can abuse this mechanism for a denial-
of-service attack. By forcing collateral to remain locked in
a maximal number of channels for long periods, they can
drastically reduce the funds available for other concurrent
payments. As a consequence, concurrent payments can fail
due to a lack of available funds [7], [8]. Such an attack
is called a griefing attack [9].

Previous work [8], [7], [10] on griefing attacks has
focused on single-path source routing as this is the current
type of algorithm in the Lighting Network. In such a
setting the attacker is the source of the payment and no
intermediate nodes are involved in the attack. Initiating
payments for an attack is costly, however. The attacks
exploit either the specifics of Lightning’s source routing
protocol by selecting a cheap path, or leverage proper-
ties of the underlying PoW blockchain (e.g., block size,
transaction limit).

It is unlikely that source routing will remain the rout-
ing in the Lightning Network as network usage increases.
Not only does source routing require storing a snapshot
of the global topology at each node, it also prevents
intermediary nodes from adjusting the path if a channel
does not have sufficient funds, thus leading to routing
failures even in the absence of attacks [5]. A naı̈ve solution
would be to maintain information about current funds at
the source. However, keeping such information up-to-date
is infeasible in a large network, because each successful
transaction entails changes in the available funds of one or
more channels. In a network of one million nodes, every
update due to a transaction has to be forwarded at least
one million times. If PCNs, indeed, settle thousands of
transactions per second, as the VISA network does [11],
billions of update messages have to be sent per second;
an unacceptable overhead.

To overcome the limitations of source routing, rout-
ing algorithms solely based on local information have
been developed [12], [3], [13]. Such approaches allow
intermediaries to choose suitable channels based on the
currently available funds. However, giving more power to
intermediate nodes also opens these routing algorithms to
attacks. Prior work did not evaluate the effect of denial-
of-service attacks on such routing algorithms. Given the
severity of such attacks for source routing, it is essential to
evaluate novel algorithms in the presence of such attacks
before deploying them. To the best of our knowledge

ar
X

iv
:2

00
7.

09
04

7v
2 

 [
cs

.C
R

] 
 7

 S
ep

 2
02

1



such attacks have not been studied for payment channels
routing with local knowledge.

In this work, we focus on attacks against local rout-
ing algorithms in payment channel networks, where the
attacker is an intermediate node on a payment path. More
precisely, we perform two versions of a denial-of-service
attack on SpeedyMurmurs [3], a routing algorithm based
on local information, which is considered a promising
alternative to source routing [2]. In the first variant of
our attack, the attacker drops payments entirely. In the
second variant, the attacker performs griefing by delaying
the payment without causing it to fail. All attacks are
performed by intermediaries rather than the source, with
the intermediaries being selected strategically based on
their position in the network. To conduct the attacks,
the attacker needs to know the topology of the network.
Note that attackers cannot be prevented from learning
the topology as in all currently deployed PCNs (includ-
ing SpeedyMurmurs), channel opening and closing are
recorded on the public blockchain.

In contrast to source routing, SpeedyMurmurs’s abil-
ity to let intermediaries detect and avoid channels with
blocked collateral should make it more resistant to such
attacks. Our simulations show the vulnerability of Speedy-
Murmurs to attacks. We observe, in all simulated scenar-
ios, that dropping is more damaging than griefing. How-
ever, network operators can more easily detect dropping
than griefing. This is because in a griefing attack, a trans-
action may fail due to an attacker delaying a transaction on
a partially overlapping path, whereas with dropping, the
transaction must be directly routed through the attacker’s
node.

Our results indicate that selecting attackers by graph
centrality is the most effective selection method. Specif-
ically, a centrality-based attacker must corrupt just 0.1%
of the nodes to reduce the fraction of successful transac-
tions to near zero, which is only slightly less effective
than an ideal attacker that selects the nodes based on
the number of transactions they relay. In contrast, our
SpeedyMurmurs-specific attack, which selects attackers
based on spanning tree-depth, requires 3%, while a ran-
dom node selection requires 20% to do the same degree
of damage. Though SpeedyMurmurs is a tree-based algo-
rithm, it allows the use of channels not in the tree. Thus,
nodes in central positions in the tree do not forward as
many transactions as nodes with a central positions in the
graph, leading to the lower effectiveness of the tree-based
attack.

We perform a cost-analysis and show that our most
powerful attack, which requires only 10 attackers in a net-
work of 10,000, would cost an estimated one million USD
to perform. This may seem expensive, however, as our
simulated network resembles the size of Lightning, which
as of Mar. 22, 2021 [14] has a capacity of 64 million
USD, the lost income due to nearly all the transactions
failing could dwarf the attack cost.

Based on the observation that centrality drastically
increases the impact of the attacker, we evaluate the
attacks in a small-world network with homogeneous node
centralities and find that the attack is indeed less effective.
Consequently, we discuss incentives for nodes to trans-
form existing payment channel networks to more suitable
topologies.

In summary, our contributions are:
• A design of dropping and griefing attacks specific to

local routing with intermediaries as attackers.
• A simulation-based evaluation of the proposed attacks

revealing that high-centrality nodes allow for highly
effective attacks. The strongest attacker uses just 0.1%
of such nodes to reduce the fraction of successful
transactions to near zero, close to what an ideal attacker
could do.

• A cost-analysis of our attacks with current transaction
pricing, indicating that the attack would cost 1 million
USD in a network worth 64 million USD.

• A strategy for reducing a network’s susceptibility to our
attacks by incentivizing nodes to build less centralized
topologies.

2. Payment Channel Networks

In this section, we introduce the key ideas of PCNs as
well as components of PCNs relevant for the remainder
of the paper.

2.1. Payment Channels

A payment channel defines the relationship between
two parties who wish to perform monetary transactions
in a common digital currency. In the most general form,
a channel is defined by the two parties that establish it
and the amount of funds that they make available for
transactions to each other. There are three operations that
can be performed on each payment channel: i) opening
the channel, ii) performing transactions, and iii) closing
the channel.

Figure 1: A payment channel network.
Open channel. The channel balance is initially estab-

lished by a channel open operation. This operation may
be a verified transaction as is the case for Bitcoin’s [15]
Lightning Network [1] or Ethereum’s [16] Raiden Net-
work [17], where channel creation is a blockchain trans-
action that uses smart contracts to hold the party’s funds
in escrow. Payment channels may be either bidirectional
or unidirectional. We focus on bidirectional payments
channels, i.e., payments can be sent in either direction.
A diagram of a payment channel network can be found
in Figure 1.

Perform transaction. A transaction in a payment chan-
nel is initiated by one party, referred to as the sender,
proposing a new state of the channel to the other party,
referred to as the recipient. The transaction changes the
balance of the channel, i.e., the amount the sender can
send to the recipient. There are a number of mecha-
nisms that enable secure transactions on a channel [2] —
mechanisms that ensure the recipient receives exactly the
promised funds.



Close channel. Either party on the channel can decide
to close the channel. When closing the channel, one or
both parties publish the latest state of the channel on
the blockchain to regain the coins corresponding to the
balance they have on their side. Disputes between the two
parties are resolved by the blockchain consensus [2].

2.2. Payment Channel Networks

An open payment channel requires at least one party to
escrow funds. As a result, the number of channels a party
is willing or able to open is limited. Payment channel
networks were proposed to facilitate payments between
parties who do not have a direct channel between them.
If one considers the parties and the channels between
them as a graph, then as long as at least one path with
enough liquidity exists between the two parties, they can
conduct transactions without having a direct channel by
performing a series of pairwise transactions along each
channel of each path. If a payment is split over multiple
paths, the sum of the partial payments must equal at least
the total payment value.

A brief note on semantics: we will follow the con-
vention of Bagaria et al. [18] and use the term payment
to indicate the high-level task that a user might wish
to accomplish, and the term transaction to mean the
components that make up that payment; these components
include individual hops along a single path and also
payment splits in multi-path routing.

Depending on the implementation, there are various
mechanisms in place to guarantee atomicity so that either
all of the pairwise transactions succeed, or none of them
do [1], [19], [4]. These typically proceed in two rounds:
During the commitment phase, all involved parties agree
to participate in the payment using a smart contract that
enforces cooperation later on. In the payment phase, par-
ties then finalize the payment if all parties agree to make
the commitment. Otherwise, the commitments expire after
some time and the parties are able to use those funds for
other payments.

When making a transaction, both parties must lock
the value of that transaction as collateral which cannot
be used for other, concurrent transactions. The key idea
of a griefing attack is to have parties lock collateral for
longer than intended periods of time. In this manner,
the attacker prevents benign transactions from succeeding
as the locked collateral is not available and hence the
liquidity of the network reduced [7].

2.3. Routing Algorithms

Finding payment paths is one of the core challenges
of PCNs. Several algorithms have been proposed with
different properties and goals [1], [20], [12], [3], [5],
[21]. Many of the algorithms use source routing [1],
[20], [12], [3], [5], [21]. Of the remaining algorithms,
Flare [20] seems unable to deal with network dynamics
and Celer [21] has not been evaluated for more than 100
nodes. The only algorithms based on local information
with an in-depth analysis are SilentWhispers [12] and
SpeedyMurmurs [3]. Both algorithms provide various pri-
vacy properties with SpeedyMurmurs showing consider-
ably better performance [3].

Hence, we choose SpeedyMurmurs for our attack in-
vestigation and use Ford-Fulkerson as a baseline. Ford-
Fulkerson makes a good baseline for the success ratio,
however, it results in an unacceptably high overhead to
be a suitable algorithm in practice [3]. In the following,
we describe SpeedyMurmurs in detail, for more informa-
tion on an implementation of Ford-Fulkerson suitable for
PCNs, please refer to [3], which is also the implementation
we use for our evaluation.

SpeedyMurmurs. SpeedyMurmurs [3] is a privacy-
preserving routing algorithm for PCNs based on local
knowledge; it consists of three stages. In the first stage, n
spanning trees are created. The number of spanning trees
corresponds to the number of paths a payment can use.
Increasing the number of spanning trees may improve the
success ratio and privacy properties but comes at a cost of
performance as overhead operations will increase as well.
The SpeedyMurmurs protocol uses Perlmans’s distributed
algorithm for building spanning trees [22]. The protocol
starts by selecting the root nodes the details of which are
not included in the SpeedyMurmurs paper, but are covered
in works such as Byrenheid et al. [23]. Next, the nodes
in the network organize into a spanning tree with each
node connecting to another that is already in the spanning
tree — searching through the topology until it finds such
a node. The newly joined node then alerts its neighbors
of its connection and the index of the tree it is connected
to.

In the second stage, which can be interleaved with
the spanning tree generations, nodes construct a network
embedding for each spanning tree, i.e., each node receives
a coordinate from its parent for each spanning tree based
on its position in the respective tree. These coordinates
enable defining a distance between two nodes, U and
V , that corresponds to the length of the path when re-
stricted to the spanning tree. Concretely, for each tree,
the root node has the empty vector as coordinate. A child
adds a random 64-bit number to the vector representing
its parent’s coordinate to form its own coordinate. The
shortest path between two nodes in a rooted spanning
tree is the sum of the length of the paths to their least
common ancestor in the tree. Let |u| denote the length
of a coordinate u and cpl(u, v) be the common prefix
length of coordinates u and v, i.e., the number of leading
elements they have in common. Then the shortest path
length in the tree is a distance function d with

d(u, v) = |u|+ |v| − 2cpl(u, v). (1)

In the third stage, transactions are routed through the
network. The routing algorithm first splits the payment
into n randomly sized shares and then routes each of
them along a different spanning tree. Nodes forward the
transaction shares to whichever neighbor is closest to
the recipient according to the coordinate distance of the
respective spanning tree, also taking care the channels
used have sufficient liquidity. Note that this path-finding
algorithm need not follow only spanning tree channels; a
node should choose its direct neighbor that is closest to
the recipient node, which might not be a parent or child
in the spanning tree. Channel balances are decreased by
the value of the payment that is routed through them. If
the balance of a channel reaches zero, then the channel is
removed from all spanning trees. A node that is connected



to the spanning tree by a now zeroed channel will leave the
spanning tree and reconnect with a non-zeroed channel.
The affected subtrees adapt locally by choosing alternative
channels; this process is called rebalancing.

As stated above, local routing algorithms are needed
to increase the scalability of payment channel networks.
However, none of the existing local algorithms has been
evaluated in terms of providing availability in the pres-
ence of adversarial nodes. Maintaining a high degree of
availability in the presence of attacks is of the utmost
importance, hence our work focuses on providing the
necessary analysis and experimental evaluation of local
routing algorithms in the presence of attacks.

3. Attacks against PCNs

In this section, we describe our threat model and
attacks we consider in this work. We focus on internal,
malicious attackers that aim to undermine the availability
of the payment service. In other words, the attacker wants
to maximize the fraction of failed payments. Adversaries
aiming to abuse the protocol for monetary gain or to learn
confidential information have been addressed in previous
work [24], [3], [4].

3.1. Threat Model

Computation capabilities. We consider an internal,
active, colluding attacker that is computationally bounded.
More precisely, the attacker has powerful computational
resources but cannot break cryptographic primitives.

Incentives. We assume that malicious actors may be
interested in damaging the system without monetary gain.
This could include nation-state actors attempting to desta-
bilize an economy.

Collusion. An attacker can create nodes that they fully
control, and they are able to corrupt formerly honest nodes
through means such as social engineering. Attacker nodes
are geographically distributed in arbitrary locations and
collude with each other. Colluding nodes communicate
out-of-band, which might be faster than PCN informa-
tion. Thus, we assume that an attacker node is aware of
any information gathered by other adversarial parties. As
motivated in previous work, nodes that are created by the
attacker may be arbitrarily connected to other nodes in the
network, even those controlled by honest participants [25],
[24]. However, they have no access to an honest node’s
locally stored information.

Attacker knowledge (topology, initial channel bal-
ances). As is common in PCNs, an attacker is aware of
the complete network topology — all of which is openly
readable on the blockchain — this includes all connections
and their initial capacities, but not any transactions or
capacities changed by transactions. While the attacker is
aware of the initial capacities, it may not have up-to-date
information about the available balances on channels to
which it is not directly connected. This is because while
the initial balance of a channel is public information that
is published on channel opening, transactions between two
connected parties can change the channel balance without
publishing updates (unless a dispute or channel closure
occurs). Thus, a node can never be sure of the balance of

a channel it is not part of. Rather, it can only say that it
is between zero and the total capacity of the channel.

If SpeedyMurmurs is used, nodes are assigned coordi-
nates based on their position in spanning trees. When the
attacker establishes a connection, it learns the coordinates
of its neighbors for all trees. As every node adds one
element to its parent’s coordinate, the coordinate length
corresponds to the level of the node in the tree. Thus, the
attacker can know how close it is to the root.

The attacker does not know the complete tree and can-
not necessarily map nodes to coordinates. If the attacker
does not have a connection to a node, it cannot tell which
of the neighbors of the node are its parent (unless it has
a connection to all but one).

Furthermore, the attacker knows the routing algorithm
and its properties. For instance, prior work showed that
nodes close to the spanning tree root forward more traffic.
However, the load on the root node itself is not necessarily
high. Recall from Section 2.3 that nodes forward the
transaction to the node closest to the recipient in terms
of coordinates. If the recipient shares a subtree with the
source, the chosen path does not contain the root node. If
the recipient and the sender are not in the same subtree,
the chosen path might still not contain the root node as
there might be a shortcut, i.e., a channel between the two
subtrees that is not part of the tree. The probability of
finding such a shortcut is reasonably high in a densely
connected graph [26].

Attacker placement. We focus on on-path adversaries
that manipulate payments they are involved in. In contrast,
off-path attackers aim to affect transactions that are not on
their channels, e.g., by sending their own payments along
certain paths or crafting the payments in particular ways.
Off-path attackers have been discussed in detail in prior
work [10].

3.2. Attack Design

Utilizing the above capabilities, the attacker has two
options to explore for attack: the selection of malicious
nodes in the network topology and the actions performed
by these nodes.

3.2.1. Attacker Selection. For the considered on-path
attackers, selecting the position of the node in the topology
is closely related to the number of transactions routed
by the attacker and hence the strength of the attack. An
obvious strategy is random selection (referred to as a
Random Attacker). Several other selection strategies are
particularly interesting:

Graph-oriented. There are many ways to quantify a
node’s position within a graph e.g., connectivity, central-
ity [27], communicability [28], etc. An attacker can choose
to optimize for one or several of these properties, and
choose their location in the graph accordingly.

Centrality-based Attacker. Of particular interest to us
is betweenness centrality [27], which for a specific node,
z, is the ratio of shortest paths between every pair of nodes
that include z. The betweenness centrality cb(z) of node,
z, is given by

cb(z) =
∑

s,r,z∈N

σsrz
σsr



where σsr is the total number of shortest paths be-
tween s and r, and σsrz is the number of shortest paths
between s and r that include z. In a routing protocol that
always selects the shortest path, the betweenness centrality
hence correlates with the fraction of payments forwarded
via a node z.

Routing algorithm-oriented. Routing protocols typ-
ically do not select the shortest path due to constraints
such as lack of liquidity or knowledge of topological
information. As such, it makes sense to adapt the attack to
the path selection of the routing protocol. Concretely, the
path selection of the routing algorithm may prefer certain
nodes, which should then be chosen for corruption.

Tree-based Attacker. We can exploit that Speedy-
Murmurs is based on spanning trees [3]. As stated in
Section 3.1, corrupting the root node is not necessarily
the optimal strategy in terms of transactions an on-path
attacker can affect. Furthermore, there exist protections
against attacks on root nodes [23]. Instead, the attacker
can easily obtain a position close to the root. Initially, the
attacker connects to random nodes. If it does not obtain
a position close to the root, it connects to all neighbors
of its parent. These include the parent’s parent, which
will elevate the attacker by one level. The process is then
continued until the attacker is connected to the root. Once
the attacker knows the root, it can establish a connection
to it with multiple nodes.

Transaction-oriented. We also considered selecting
nodes based on the balance of their channels and the rate
of changes. However, such information is only explicitly
known to the parties in the channel. Thus, the information
should only be available to the attacker after corrupting the
node and it does not seem sensible to base the selection
strategy on such unknown information in a real attack.

Ideal Attacker. Given that corrupting the nodes based
on the cumulative value of transactions handled is the
strongest attack, we consider it as an Ideal Attacker and
use it as baseline for comparison in our evaluation.

3.2.2. (On-path) Attacker Actions. We consider insider
attacks, and are primarily interested in intermediary nodes
on the path as they are less detectable. For a node to have
a valid suspicion of an attacker, it is enough to simply
know which direction the failed payments came from —
not necessarily the source.

There are various actions an attacker could take when
it is on-path. This is in contrast to Rohrer et al. [7]
who fully remove their selected nodes from the topology,
whereas our selected nodes perform malicious actions,
which are harder to detect.

Dropping. An attacker could simply drop a transaction
that it should forward to the next node in a multi-hop
payment. More maliciously, the attacker could refuse to
forward the transaction, but still send a confirmation that
the transaction has been forwarded to the previous node on
the path. If a transaction is dropped during the commitment
phase (Section 2.2), all previous hops would need to main-
tain their locked collateral until the transaction expires.
We follow Miller et al. [29] in assuming that a rational
investor’s preference is to obtain and use money now
rather than later, and therefore a forced restriction on using
one’s own money constitutes an attack. Locked collateral
also cannot be used to route other transactions that may

have a higher chance at succeeding, and thereby deprives
the collateral holder of potential revenue from fees. Note
that dropping is not performed during the payment phase
(Section 2.2) by a rational attacker, because then they
would be forced to pay their guaranteed funds to the node
one hop closer to the recipient but, in dropping, would not
be reimbursed from the node one hop closer to the sender.

Griefing by delaying. A node can wait to forward a
payment to the next node until some specified amount of
time has passed or some condition is met. For example,
one such condition could be to wait until just before
the transaction times out before forwarding it. Doing so
will allow the payment to complete, but would force the
collateral to be locked up for the maximum amount of
time, which constitutes an attack. Performing this attack
inconsistently, e.g., on only 50% of transactions, would
also make it difficult to detect because of its similarity to
network delays. In addition, failures from this attack can
be indirect and thus deniable by the attacker. This has a
similar effect to payment griefing [9], in which an attacker
sends payments to colluding nodes that then delay and
drop the transaction. Our variant is more general, however,
because any node on the transaction path can grief by
delaying, whereas in traditional griefing, a transaction has
to be addressed to the griefing node.

4. Attack Implementation

In this section, we describe the attacks we imple-
mented. First we describe the changes we made to the
simulator and then the realization of the attacks.

4.1. Concurrent Transactions

We extend the sequential transaction simulator from
Roos et al. [3] to build a concurrent transaction simulator,
which we make publicly available 1. In the simulator, each
channel is capable of locking collateral for a configurable
number of concurrent transactions. This is done through
the use of threading. Each transaction is executed in a
distinct thread that operates on a shared state in memory.
Transactions arrive uniformly and begin executing as soon
as a thread is available. For each transaction, the config-
ured routing algorithm is executed in two steps. First, a
path is found using the methods of the configured routing
algorithm. This path discovery is done hop by hop, and
with each hop, collateral along the corresponding channel
is reserved for the current transaction, which cannot be
violated by any other concurrent transaction. To simulate
the effects of network delays, a simulated network delay of
30 milliseconds is used for each hop during path finding.
The delay of 30 ms was chosen as it is similar to delay
within Europe or the US (delays vary between 30 to 50
ms depending on the provider). The end-to-end delay is
bigger than 30 ms as it is multi-hop. We experimented
with a variety of delays, but the results were similar since
the dominant factor is the griefing delay of 10 seconds.

Second, when the routing algorithm has found a path
with sufficiently high balances and has locked collateral
on each channel, it can then complete the transaction in

1. https://github.com/iowaguy/pcn-simulator

https://github.com/iowaguy/pcn-simulator


reverse order. This payment phase involves unlocking the
collateral and updating the channels’ balances.

Not only do channel updates occur on every completed
transaction, but they also occur during collateral locking.
It is necessary to track how much collateral is locked, as
locked collateral is not available for other transactions.
Thus, the important aspect in deciding whether routing
via a channel is possible is not the balance but the
difference between the balance and the locked collateral.
Locked collateral leads to paths being diverted by insuf-
ficient available funds or even to failures if a path with
sufficiently high available balances cannot be found. A
secondary reason for this information to be maintained is
that we need to be able to rollback transactions that have
claimed some collateral but were unable to be completed
for some reason. Upon aborting such a partial transaction,
the channel must be returned to its prior state, while still
retaining any changes from any other partial or complete
transaction that may have occurred concurrently.

4.2. Attack Implementation

We implement two types of attacks: dropping and
griefing by delaying, as introduced in Section 3. For a
dropping attack, transactions are executed normally unless
they encounter an adversarial party on the path. If an
adversary is selected as the next hop, the payment is
immediately marked as failed and any collateral locked
for that payment will be rolled back.

For a griefing attack, upon encountering an adversary,
the transaction is delayed for a configurable amount of
time. For our simulations, we find that the ratio between
attack delay and simulated network delay is decisive, and
therefore choose a value of attack-delay to be 10 seconds.
With a simulated network delay of 30 ms, the attack does
not increase in effectiveness with longer than 10 second
delays. After the delay time has elapsed, the payment is
allowed to continue.

For each of these attacks, we consider three attacker
placement methods: random, tree-based, and centrality-
based, i.e., by the fraction of shortest paths going through
a node [27]. The networkx [30] Python library was used
for calculating betweenness centrality. Finally, we also
evaluate an ideal attacker placement as an oracle for the
maximum damage an attack can create on a given dataset.

We implemented the tree-based attacker placement as
follows. As described in Section 3, an attacker can gain
a high position in the tree by opening connections and
closing them again if he is not sufficiently close to the
root. In our experiments, we assume that the node has
already achieved a favorable position by the time the
simulation starts. Concretely, if we have x attackers and
t trees for our attack, we select the x attackers as the x/t
nodes closest to the root for each tree.

5. Evaluation

In our evaluation we set out to answer three questions:
1) How effective are dropping and griefing by delaying

attacks?
2) How does the attacker placement in the topology

influence its attack power?

3) How effective are the tree-based and centrality-based
attack placement strategies when compared to the
ideal attacker that has complete information about
transaction values and available balances?

5.1. Methodology

As we are interested in the effects of these attacks
on large-scale networks, we are forced to simulate — it
would be unethical to perform such attacks on operational
financial networks. Testbeds are also insufficient for our
purposes because they do not let us evaluate at scale. In
response to these shortcomings, we generated synthetic
datasets with representative network conditions to evaluate
our attacks as described in Sec. 5.2.

In all scenarios, we vary the number of attackers. For
randomly selected attackers, that amount is varied between
5–30% of total nodes in the network. For the centrality-
based and tree-based attackers, we vary the fraction of
attackers between 0.1-5% of nodes in the network.

We consider the success ratio to gauge the effective-
ness of our attacks, i.e., the fraction of payments for
which paths with sufficient funds have been discovered.
Results for each transaction are grouped into simulated
time buckets called epochs; this is based on when the
transaction was started, not when it finished. In other
words, the results for epoch i contain all transactions
initiated in epoch i, regardless of when they terminate.
For maximum time-step granularity, we consider each
transaction to be started in a distinct epoch unless stated
otherwise. All results are presented as a running average
over 1500 epochs, unless stated otherwise. Note that our
success ratios are considerably lower than those reported
in [3] as their data was cleaned such that all transactions
were possible. In addition, all the presented success ratios
drop over time — this is expected because channels
become depleted as transactions traverse them. This has
been previously shown in [5], [31], [32].

5.2. Generated Datasets

Existing datasets suffer from either a dearth of suc-
cessful transactions, a lack of information about transac-
tions, or a small number of nodes. The Raiden Network,
for instance, has 37 nodes [33] and Lighting 2337 [34].
Thus, we devise a methodology to generate representative
datasets. Our datasets consist of three components: i) the
PCN topology, ii) the transaction set, and iii) the initial
channel balances.

To generate topologies, we used the ready-made im-
plementations of the Barabási-Albert algorithm [35] for
the scale-free graph generation and the Newman-Watts-
Strogatz algorithm [36] to generate small-world graphs.
Both implementations are from the Python module net-
workx [30]. We also used a measured topology from the
Lightning Network as collected by Rohrer et al. [34].

Transaction sets were generated by sampling from rep-
resentative distributions. For the transaction values, we use
a Pareto distribution as it has been shown to reliably rep-
resent consumer spending patterns [37]. Sender/recipient
pairs were generated by sampling a Poisson distribution
independently for both the sender and recipient. A Poisson
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Figure 2: Success ratios during a dropping attack.

Name Graph Generation Transaction Set

Scale-Free Barabási-Albert 10k nodes, 100k transactions, 0.5 multiplier
Small-World Newman-Watts-Strogatz 10k nodes, 100k transactions, 0.5 multiplier
Lightning Network Measured[34] 2337 nodes, 100k transactions

TABLE 1: Description of datasets used in experiments.
Unless otherwise stated, our simulations use the scale-free
dataset.

distribution was chosen as prior work has shown it to be
good for modeling consumer transaction rates [38].

Initial channel balances were generated with the fol-
lowing procedure. Start by assuming that all channels have
balance of zero, then calculate the shortest path between
each transaction’s sender and recipient. For each channel
used in the shortest path, add the value of that transaction
to its current balance. This process is akin to starting with
a fully depleted network, and then routing transactions in
reverse time. As a real network is unlikely to have the
exact amount of funds needed to route all transaction, we
reduce the balances of a fraction of channels by a 0.5
multiplier.

Unless otherwise stated, we used the the scale-free
dataset for all experiments. All datasets used are presented
in Table 1. More details on limitations of existing datasets
and on our generation techniques can be found in Ap-
pendix A.

5.3. Impact of Dropping and Griefing

We start by analyzing the dropping attack on both
Ford-Fulkerson and SpeedyMurmurs comparing random
and tree-based attacker placement. In Fig. 2a, where Ford-
Fulkerson is evaluated with a random attacker selection,
we see significantly degraded performance for each in-
crease in the number of attackers with no diminishing
returns. With more attackers, the success ratio may eventu-
ally drop to zero. As displayed in Fig. 2b, which evaluates
random attacker selection against SpeedyMurmurs, the
success ratio is impacted significantly in the early epochs
with more than 5% attackers. Increasing the number of
attackers gives rise to a concomitant increase in the at-
tack’s effectiveness. Note that in both these plots, as well
as all that follow, the success ratio has a consistently
negative slope. This is expected because payment senders
and recipients are selected randomly from non-uniform
distributions, so most channels will be used more in
one direction than the other and will, therefore, end up
depleted.

We present the results of our tree-based attacker in
Fig. 2c. This attack is specific to the spanning-tree struc-
ture of the SpeedyMurmurs routing algorithm, and there-
fore cannot be attempted against non-tree based algo-
rithms such as Ford-Fulkerson. The results show a much
stronger attack than when nodes are chosen randomly. We
start to see a noticeable drop in performance with only
0.5% attackers, and with 1% attackers, the performance
has dropped to only slightly above zero. The difference
in attack severity results from the tree-based attack strate-
gically selecting nodes with a high probability of being
involved in many transactions.

Fig. 3 shows the results of our griefing by delaying
attack. Against Ford-Fulkerson (Fig. 3a), the griefing by
delaying attack shows no effectiveness until the later
epochs, and requires at least 10% of the network to be
attackers. Fig. 3b shows the results from performing this
attack against SpeedyMurmurs. Having 5% attackers leads
to a slightly lower success ratio initially but then stabilizes
at roughly the same success ratio as a network without
adversaries. A higher fraction of attackers leads to a lower
success ratio but follows the same pattern of an initially
high success ratio dropping and then stabilizing. At some
point, the effect per additional attacker seems to decrease.
For instance, 30% attackers is only barely more effective
than 20%. This is not surprising, because once such large
swaths of the network are controlled by attackers, most
paths already contain one adversary so that an additional
attacker does not increase the number of affected paths.

The tree-based attack is more effective than a random
one, the random attacker requires 30% of the nodes to
achieve the same impact as the tree-based attack with only
3%.

We also present our result for the dropping and
griefing by delaying attacks on the Lightning Network
topology. Due to space constraints, we include only the
griefing attack with attackers selected randomly (Fig. 4)
— however, in all cases, the results were consistent with
the attacks against synthetic datasets.

We observe, in all scenarios, that dropping is a more
effective attack than griefing by delaying. However, net-
work operators can more easily detect it than the griefing
attack. This is because in a griefing attack, a transaction
may fail due to an attacker delaying a transaction on
a partially overlapping path, whereas with dropping, the
transaction must be directly routed through the attacker’s
node.
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Figure 3: Success ratios during a griefing by delaying attack.

(a) SpeedyMurmurs (b) Ford-Fulkerson

Figure 4: Griefing attack against the Lightning topology
with generated transactions. Attackers selected randomly.

(a) SpeedyMurmurs (b) Ford-Fulkerson

Figure 5: Success ratios during a dropping attack when
selecting attackers by betweenness centrality.

5.4. Centrality-based Attacker Nodes Selection

If the attacker has the ability to strategically choose
which nodes to corrupt, it can use the available topology
information to corrupt the nodes with the highest between-
ness centrality. We next evaluate our graph-oriented attack
for both SpeedyMurmurs and Ford-Fulkerson (Fig. 5).
Against SpeedyMurmurs, this attack reaches maximum
efficacy with only 0.1% attackers. As the success ratio
is brought down to zero by so few attackers, adding more
attackers does not offer any additional benefit. We see a
similar increase in efficacy for Ford-Fulkerson in Fig. 5b.
With just 0.1% attackers, the success ratio drops more than
70% in the early epochs. More attackers offer diminishing
returns, but still bring down the success ratio to almost
zero with only 5% attackers.

Fig. 6 displays the effects of griefing by delaying
against both SpeedyMurmurs and Ford-Fulkerson when
selecting attackers by highest betweenness centrality. For
SpeedyMurmurs (Fig. 6a), 0.1% attackers are sufficient
to reduce the success ratio to almost zero. Given that the
success ratio is already so low, additional attackers do
not considerably decrease it further. The effects on Ford-

(a) SpeedyMurmurs (b) Ford-Fulkerson

Figure 6: Success ratios during a griefing by delaying
attack when selecting attackers by betweenness centrality.

Fulkerson are less pronounced (Fig. 6b), as it can more
easily route around failures.

The effectiveness of the centrality-based attacks indi-
cates conclusively that a node’s position in the topology
does impact attacker power. As SpeedyMurmurs is a tree-
based algorithm, it may seem surprising that the tree-based
attacker is less effective than the tree-agnostic centrality-
based attacker. However, the most important factor in
whether an attacker will be effective is how many trans-
actions pass through it. This in turn is affected by the
sender and recipient locations within the topology. In our
datasets, we used a Poisson distribution for assigning the
sender and recipient of each transaction, which means
that many of the transaction senders and recipients will
be concentrated in relatively few nodes. An attacker near
one of those would be much more likely to impact many
payments. A transaction from a sender or to a recipient
farther from the root may be able take shortcuts before
reaching the attackers that are closer to the root (see
Section 2.3 for details about SpeedyMurmurs routing),
which means that an attacker close to the root will not
necessarily be involved in more transactions than other
nodes. A centrality-based attacker is not as affected by
the distribution of payment senders and recipients, because
the high number of paths passing central nodes includes
paths with short cuts as well as those without.

Fig. 7 shows a comparison of the number of malicious
nodes needed to make an attack effective. With enough
attackers, all three selection methods (random, centrality,
and tree-depth) achieve optimal efficacy, however, the
centrality-based attack is able to do so with nearly as few
malicious nodes as the oracle (0.1%), whereas the tree-
depth attack requires 3% and the random attacker requires
20%.
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Figure 7: Comparison of how many malicious nodes are
needed to reach the maximum attack efficacy for dropping
and griefing by delaying attacks.

5.5. Attack Cost

There are two ways to insert corrupt participants into a
payment channel network: i) corrupting existing nodes or
ii) inserting new malicious nodes into the network. Both
come at a monetary cost and probably relate to a party’s
centrality, meaning that achieving a more central position
is more expensive. We speculate this is the case because a
node with more valuable channels may employ stringent
security measures. This assumption only affects our cost
analysis, and has no bearing on the attack.

Intuitively, corrupting influential participants, e.g.,
through malware, should be more costly if nodes invest in
better protection, however, to the best of our knowledge,
there is no study on the costs of protections employed
by blockchain users. Hence, we focus on the scenario
when the attacker integrates nodes into the network by
establishing channels.

Centrality-based Attacks. As in other
approaches [24], we assume that honest nodes are
willing to accept requests to open channels, which offer
more payment opportunities and potential income in the
form of fees, but only if the party initiating the channel
opening provides all necessary funds. Thus, for each
channel, the attacker has to provide the blockchain fee
for a channel opening f topen with t indicating that the
fee depends on the time of the opening. In addition,
they have to supply the channel capacity cap, which has
to be high enough that parties choose this channel. In
Lightning, the average and median channel capacity are
0.03 and 0.05 Bitcoin, which is more than 500 and 900
US dollars as of Dec 6, 2020 2. So, cap should be on the
order of hundreds of dollars. In comparison, f topen varies
from about half a dollar to more than 10 dollars. Hence,
the cost to initialize K channels of the same capacity at
time t is

costBET (K) = K · (f topen + cap). (2)

When closing the channel, the adversary regains the funds
locked in his direction, i.e., funds they can still spend.
However, for a node to forward a payment to the attacker,
funds in the other direction are needed, meaning that the
attacker has to make payments to achieve a suitable chan-
nel balance, optimally with most of the funds available
to its partners. As a consequence, the attacker is unlikely
to receive a considerable amount of the invested funds
back. For our experiments, the total number of channels

2. https://1ml.com/statistics
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Figure 8: Mitigation against griefing by delaying; attackers
selected by betweenness centrality.

of the adversary is K = 1376 for 0.1% attackers, i.e.,
the attacker amount in Fig. 7b, meaning the attack cost is
close to 1 million US dollars when inserting new nodes.

Tree-based Attacks. In a tree-based attack, the
attacker can establish a channel with another node and
immediately tear it down upon learning that the node is not
a suitable partner due to its position in the tree. Let X be
the random variable indicating the number of connections
attempts needed to connect to a root node. In addition,
let f tclose be the fee for closing the channel. Hence, if a
node aims to establish T connections in total with one
connection to a root node, the expected cost of the attack
are

costTree(T ) = T · (f topen + cap) +E(X)(f topen + f tclose).
(3)

We observe an average of T = 3307.7 for 3% attackers in
our experiments. The random variable X depends on the
node’s knowledge of the topology. Therefore, to achieve
the same effect as the centrality-based attack, the cost for
the tree-based attack is higher.

5.6. Mitigation

We focus on the centrality-based attack as it was the
most effective attack. Intuitively, the absence of nodes
with a high centrality should reduce the attack severity.
We first check if this intuition holds true and then name
incentives for nodes to form networks with less central
nodes.

We generate a Newman-Watts-Strogatz (NWS) net-
work [36], a connected small-world graph where all nodes
have a very similar degree. The parameters for the NWS
algorithm are p, the probability of a node adding a con-
nection to a node that is not one of its neighbors, and k,
the number of close neighbors to connect to. We choose
a value of 0.01 for p and 20 for k. For assigning initial
balances, we used the algorithm from Section A, with the
addendum that if a channel had a balance below some
minimum value, then we increased it to that minimum
value to avoid having too many channels with no capac-
ities. Channels of capacity 0 are unlikely due to the fact
that opening a channel costs a fee.

As expected, the effect of our attacks are considerably
lower in a small-world network with attackers selected by
highest betweenness centrality. For the griefing attack, the
attack has almost no impact for both SpeedyMurmurs and
Ford-Fulkerson, as can be seen in Figure 8. When drop-
ping, there is necessarily an effect as at least the dropped
payments fail. However, the fraction of payments routed
via the nodes with the highest betweenness centrality are

https://1ml.com/statistics
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Figure 9: Mitigation against dropping; attackers selected
by betweenness centrality.

tiny in number in comparison to the scale-free network.
Hence, the effect of dropping only becomes visible when
a higher number of nodes is corrupted, as can be seen in
Figure 9 for 5%.

Thus, incentivizing a more homogeneous topology is
a suitable mitigation. A simple incentive is to warn partic-
ipants not to form channels with strangers that are willing
to pay the complete fees as such behavior often precedes
an attack. Indeed, there are blockchain congestion attacks
that can lead to monetary loss due to delayed disputes that
have a similar attack setup [39], further emphasizing the
need for preventing an attacker from establishing channels
to random nodes.

6. Related Work

We refer to an in-depth survey for a detailed review
of payment channel networks [2] and focus on the work
related to attacks and defense mechanisms.

Payment Griefing and Channel Exhaustion. Rohrer
et al. introduce various attacks on Lightning, namely
denial-of-service, channel exhaustion, payment griefing
and node isolation, as well as combinations of these [7].
Their attacks leverage the same broad ideas as ours
but focus on fundamentally different routing algorithms,
datasets, and threat model. They focus on the attacker
initiating payments rather than affecting payments which
they are on the path of. Our attacker model is more
realistic as well. Rohrer et al.’s node isolation assumes
that a node will not take action if its channels are nearing
depletion. In fact, a node can rebalance its channels using
either the blockchain or a circular payment. Perez et al.
design and analyze a more effective payment griefing
attack [8]. However, the attack is not applicable for local
routing algorithms.

The effects of payment griefing can be mitigated by
replacing the LN’s collateral-locking protocol, Hashed-
Timelock Contracts (HTLC). Lightning’s current protocol
might lock a payment for time O(l∆) if the path length
is l and an upper bound for initiating a dispute is ∆.
Several approaches could reduce this maximal timeout
[29], [40], [41]. As all approaches still require timeouts
in the order of minutes, our griefing by delaying attack
remains applicable.

Dropping and congestion. Dropping attacks have
been evaluated in the context of Lightning, finding that
Lightning’s hub and spoke topology as well as the pre-
dictable routing algorithm results in a high rate of failed
payments if attackers are integrated into the network
strategically [42]. Protections against dropping are ran-
domization [42] and redundancy [18].

An alternative attack is network congestion [10]. In
addition to the above attacks on Lightning, there are
attacks on its privacy, indicating that channel balances
and payment relations can be revealed [43], [44], [45].
Suddenly closing many channels can lead to congestion
on the underlying blockchain and hence loss of funds due
to disputes not being raised [39].

7. Conclusion

We examined the effectiveness of attacks against pay-
ment channel networks that use local routing to complete
transactions. The performance of such routing algorithms
degrades gracefully when the number of randomly placed
attackers increases. However, they are very vulnerable if
the attacker controls nodes of a high centrality and hence
controls the majority of paths. We propose to incentivize
payment channel networks with homogeneous node de-
grees.
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Appendix
The effectiveness of PCN routing algorithms, and at-

tacks against them, is highly dependent on the topology,
channel balances, transactions pairs, and transaction-value
distributions. We discuss limitations of existing datasets
and then describe our approach.

1. Limitations of Existing Datasets

Due to the lack of available data sets for PCNs, early
approaches [3], [12] relied on data from Ripple’s credit
network [46] for topology, capacities, and transactions.
This dataset was collected by crawling the Ripple network,
taking note of which accounts are funded, (i.e., can make
payments to other accounts) and removing inconsistencies.
Early approaches not based on Ripple do not consider
transaction and capacity distributions at all [20].

Unfortunately, the Ripple dataset has a very small ratio
of transactions that are successful as seen in Figure 10a,
where we show SpeedyMurmurs and Ford-Fulkerson with
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sequential transactions. Performance for concurrent trans-
actions would be even worse. Previous work addresses the
issue by excluding transactions that were not successful
for Ford-Fulkerson, leading to a very limited transaction
set [3]. As shown in Figure 10b, the majority of initial
channel balances are zero or very close to zero. While zero
balances make sense for a credit network, where credit
corresponds to trust and channel establishment does not
come at a fee, it is unrealistic in the context of payment
networks such as Lightning. Opening a channel requires
paying the fees for one blockchain transaction, which is
the same regardless of the amount locked in the channel.
Thus, channels with little or no funds are unattractive as
they do not provide the opportunity to make payments
and hence users are unlikely to invest the fee for opening
them.

After Lightning data became available, many studies
relied on the Lightning topology and capacities for their
evaluation [5], [7], [8], [42], [10], although some used
synthetic random graphs and scale-free topologies either
as their main dataset [18] or in addition to Lightning
data [5].

The Lightning data set does not contain transactions.
A dataset for transactions requires both sender-recipient
pairs and values. Prior works have chosen sender-recipient
pairs uniformly at random [18], [42], [7]. Only the evalu-
ation of the Spider routing algorithm uses an exponential
distribution [5], indicating that few senders and recipients
are very active whereas the majority of nodes participate
only occasionally. Transaction values have been modeled
on real-world data unrelated PCNs, e.g., Ripple transac-
tions in [7], [18] and credit card transactions in [5], [47].
Using data from the Raiden Network [17] is a non-starter
as it only has 37 unique accounts [33].

In summary, there are no real-world datasets available
for payment channel networks capturing all the informa-
tion about transactions and with realistic initial balance
sets. As a result, it has become common in the literature
to use synthetic graphs in lieu of the smaller LN graphs
in addition to the synthetic transactions [18], [5].

2. Our Approach

A payment channel system is defined by the network
graph, G, created by the channels between participants
in the system, the transactions performed between these
participants, T , the set of balances available on each
channel, B, and the routing algorithm, R, used to find
payment paths; we write PC =< G,T,B,R >. B is
initialized with a set of initial balances B0. Our high-level
approach to generate datasets is as follows:

(1) Channel network: We first generate the channel
network, modeled as a graph G =< N,C,B >, where
N is the set of participants, C the set of channels, and
B is the set of balances on each channel. Note that
B is undefined at this point, we will assign an initial
balance set B0 later. We use scale-free graphs as they
were shown to be representative for PCNs [7] and we
write G = SF (n, c), where SF is the scale-free graph
generation algorithm, n is the total number of participants
and c is a connectivity parameter that models how many
channels a party forms when added to the graph.

(2) Transaction set: We then select a transaction set.
A transaction is defined by a pair of sender and recipient
and the value of the transaction. We separate the selection
of the transaction pair from the selection of the value of
the transactions and write T = GT (N,nt, vfix, Dv, Dn),
where GT is our procedure of generating a transaction
set and T = {ti, ti =< si, ri, vi >} is the resulting
transaction set with si and ri as the sender and recipient,
respectively, for transaction ti of value vi. The parameters
of GT are the set of participants, N , the number of
transactions, nt, sampled from distribution Dv, vfix is
an additional parameter determining Dv (e.g., minimum,
maximum, average, etc.), and Dn is the distribution used
to sample pairs of parties.

(3) Initial balance set: Finally, we generate the set
of initial balances for each channel. Our approach starts
with a balance set of channels with capacity 0, a given
set of transactions, and a percentage, tc, of transactions
for which we want to have the guarantee that they can
be successfully completed. We iterate over the set of
transactions, and, with probability tc, execute the rout-
ing algorithm R to find one or several channels in the
graph between sender and recipient. For each channel
along the paths returned by R, we add the transaction
value v to the balance. In this manner, we know that
there is a possibility for the transaction to be successful.
Formally, we write B0 = CIB(T,G,R, tc,mc, pc) and
B = {bi, bi = (si, ri) 7→ vi}, where CIB is our algorithm
to compute the initial balance set, T is transaction set, G
is the channel network, R is the routing algorithm and tc
is the percentage of completed transactions. In addition,
we might reduce the final channel balance by a factor,
mc, to generate a network with less liquidity. pc is the
probability of applying such a multiplier to a channel,
e.g., pc = 1 indicates the multiplication is applied to
all channels. We also write Pi, Gi+1 = R(ti, Gi), where
routing a transaction ti using algorithm R on network Gi

results in finding a path Pi = {c, c =< e1, e2, b >}, and
a network with updated balances, Gi+1. For each channel
in Pi, e1 and e2 are the endpoints of the channel, and b
is the value being routed through that channel.

3. Generating Datasets

3.1. Generating Transaction Sets. Each transaction is a
tuple of the transaction value, the sender, and the recipient,
with the latter two forming the transaction pair. We treat
the selection of transaction values and transaction pairs
independently.

Transaction value. We consider five distributions: con-
stant, Pareto, exponential, normal, and Poisson. For the
experiments presented below, we only show results using
Pareto distributions as it has been shown to most reliably
represent consumer spending patterns [37].

Transaction pair. We sample the sender and recipient
independently according to a distribution Dn. For this,
we first randomize the order of the nodes and then map
each of them to the index they have in this random order.
We then sample the node based on its index according
to the distribution. In particular, we focus on the Poisson
distribution as existing literature has shown it to be the
best model for consumer transaction rates [38].



3.2. Generating Initial Balance Set. The initial balance
of a channel represents its expected use. Channels with
higher balances are expected to have a higher volume
of transacted funds and vice versa for lower balances.
This is a result of the opportunity cost to escrowing
funds in payment channels. A rational actor will want to
participate in as many transactions as possible to collect
fees. Also, larger channels will permit transactions that
may have been too large for smaller channels to route,
thus participating in more transactions. The ratio between
the balance from A → B to the balance from B → A
represents the ratio of transacted funds from A → B to
the transacted funds from B → A.

We assign balances to channels as follows. We con-
sider a PCN, which is some graph G0 = (N = {u}, C =
{(u, v)}). A transaction in a PCN can occur between a
sender, s, a recipient, r, and with a value, v—the full
transaction ti is written as (si, ri, vi). A routing algorithm,
R, is run on a graph, G, and with a transaction ti;
it returns a route, Pi, which is the set of all modified
channels, and also Gi+1, the graph after all channels are
modified. We write this as Pi, Gi+1 = R(ti, Gi). The
routing algorithm, R, may return multiple paths and may
also be randomized. If a route with sufficient balances
cannot be found, i.e., there is not a high enough funds on
the channels connecting si to ri, R returns ⊥ and Gi (Gi

is not modified). The modified graph, Gi+1, is equivalent
to, for each hop (a, b,m) ∈ P , either subtracting m from
the channel (a, b)’s funds in G or adding m to the channel
(b, a)’s funds.

Reducing Graph Weights. Generating the perfect chan-
nel balances is useful for testing the system, but to sim-
ulate certain concurrency scenarios, we need some of the
channels to have insufficient credit to complete all of the
transactions in T . To achieve this, we simply take all edge
weights in the graph, and scale them by some multiplier,
i.e., E′ = {(u, v, k · w)}(u,v,w)∈E , where k is a constant
scale factor.

We also experimented with the option of only applying
the factor k probabilistically, i.e., applying it only with
probability pc. A complementary approach for reducing
the capacity of the network is to select transactions for
the generation of the initial balance generation randomly,
with probability tc.

3.3. Generated Datasets. We used the implementation of
the Barabási-Albert algorithm [35] for the scale-free graph
generation from the Python module networkx [30]. The
datasets were generated according to the methodologies
discussed above and are shown in Table 2. In deciding
the number of nodes to model, we settled on a value of
10k as it was larger size than the current number of active
LN nodes but still small enough that it would reflect the
network in the near future. While we experimented with
all datasets in the table, we present our results for the
scale-free dataset.

Name Topology Transaction Set Initial Balance Set

0 SF(100k, 5) GT(100k, 1m, 1, Pareto, Pareto) CIB(T, G, shortest path, 100%, 1, 1)
6 SF(100k, 5) GT(100k, 1m, 1, Pareto, Pareto) CIB(T, G, shortest path, 100%, 0.5, 1)
7 SF(100k, 2) GT(100k, 1m, 1, Pareto, Pareto) CIB(T, G, shortest path, 100%)
8 SF(10k, 2) GT(10k, 1m, 1, Pareto, Pareto) CIB(T, G, shortest path, 100%, 0.5, 1)
10 SF(10k, 2) GT(10k, 1m, 1, Pareto, Pareto) CIB(T, G, shortest path, 100%, 1, 1)
12 SF(10k, 2) GT(10k, 1m, 1, Pareto, Constant) CIB(T, G, shortest path, 100%, 1, 1)
13 SF(10k, 2) GT(10k, 1m, 1, Poisson, Poisson) CIB(T, G, shortest path, 100%, 1, 1)
14 SF(10k, 2) GT(10k, 1m, 1, Exp, Exp) CIB(T, G, shortest path, 100%, 1, 1)
15 SF(10k, 2) GT(10k, 1m, 1, Poisson, Poisson) CIB(T, G, shortest path, 100%, 0.5, 0.5)
16 SF(10k, 2) GT(10k, 1m, 1, Normal, Normal) CIB(T, G, shortest path, 100%, 1, 1)
17 SF(10k, 2) GT(10k, 1m, 1, Normal, Normal) CIB(T, G, shortest path, 100%, 0.5, 0.5)
18 SF(10k, 2) GT(10k, 1m, 1, Normal, Normal) CIB(T, G, shortest path, 100%, 0.5, 0.5)
19 SF(10k, 2) GT(10k, 1m, 1, Normal, Normal) CIB(T, G, shortest path, 80%, 1, 1)
20 SF(10k, 2) GT(10k, 1m, 1, Poisson, Pareto) CIB(T, G, shortest path, 100%, 1, 1)
21 SF(10k, 2) GT(10k, 1m, 30, Poisson, Normal) CIB(T, G, shortest path, 100%, 1, 1)
22 SF(10k, 2) GT(10k, 1m, 1, Poisson, Constant) CIB(T, G, shortest path, 100%, 1, 1)
23 SF(10k, 2) GT(10k, 1m, 1, Poisson, Pareto) CIB(T, G, shortest path, 100%, 0.5, 0.5)
24 SF(10k, 2) GT(10k, 1m, 1, Poisson, Pareto) CIB(T, G, shortest path, 100%, 0.5, 1)
Scale-Free SF(10k, 2) GT(10k, 100k, 1, Poisson, Pareto) CIB(T, G, shortest path, 100%, 0.5, 0.5)
Small-World NWS(10k, 20, 0.01) GT(10k, 100k, 1, Poisson, Pareto) CIB(T, G, shortest path, 100%, 0.5, 1, 100)
Lightning Measured GT(2337, 100k, 1, Poisson, Pareto) CIB(T, G, shortest path, 100%, 1, 1, 100)

TABLE 2: Description of datasets we generated and ex-
perimented with. Unless otherwise stated, our simulations
use the scale-free dataset. The datasets analyzed in this
paper are highlighted.
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