
The Bandit’s States: Modeling State Selection for Stateful Network Fuzzing
as Multi-armed Bandit Problem

1st Anne Borcherding
Fraunhofer IOSB

Karlsruhe, Germany
anne.borcherding@iosb.fraunhofer.de

0000-0002-8144-2382

2nd Mark Giraud
Fraunhofer IOSB

Karlsruhe, Germany
mark.giraud@iosb.fraunhofer.de

0000-0002-2972-2758

3rd Ian Fitzgerald
Karlsruhe Institute of Technology

Karlsruhe, Germany
ian.fitzgerald@student.kit.edu

4th Jürgen Beyerer
Fraunhofer IOSB,

Karlsruhe Institute of Technology, and
KASTEL Security Research Labs,

Karlsruhe, Germany
juergen.beyerer@iosb.fraunhofer.de

Abstract—Network interfaces of Industrial Control Systems
are a common entry point for attackers, and thus need
to be thoroughly tested for vulnerabilities. One way to
perform such tests is with network fuzzers, which randomly
mutate network packets to induce unexpected behavior and
vulnerabilities. Highly stateful network protocols pose a
particular challenge to fuzzers, since a fuzzer needs to be
aware of the states in order to find deep vulnerabilities.
Even if a fuzzer is aware of the states of a stateful network
protocol, there are still several challenges to overcome. The
challenge we focus on is deciding which state to test next.
To make this decision, the fuzzer needs to strike a balance
between exploiting known states and exploring states not
yet tested. We propose to model this exploration versus
exploitation dilemma using a Multi-armed Bandit. In this
work, we present two modeling approaches and prelimi-
nary experiments. We choose to model the state selection
problem with (I) a stochastic Multi-armed Bandit, and (II)
an adversarial Multi-armed Bandit. The latter takes into
account that coverage can only be discovered once, and
that the underlying reward probability therefore decreases
over time. Although the adversarial Multi-armed Bandit
models the state selection problem more accurately, our
experiments show that both approaches lead to statistically
indistinguishable fuzzer performance. Furthermore, we show
that the baseline fuzzer AFLNet leads to significantly better
results in terms of coverage. Building on these unintuitive
preliminary results, we aim to investigate the behavior of
the agents in more detail, to include additional modeling
approaches, and to use additional Systems under Test for
the evaluation.

1. Introduction

Securing Industrial Control Systems (ICSs) requires to
consider security in all steps of the development lifecycle.
This includes ensuring the robustness and resilience of
the used components, such as Programmable Logic Con-
trollers (PLCs) and Human Machine Interfaces (HMIs).

One way to reveal weaknesses in robustness and resilience
is to perform security testing. In particular, security tests
should include tests against the network interfaces of
the System under Test (SUT). On the one hand, this
allows to test the SUT from the attacker’s perspective in
an automated way. On the other hand, it is one of the
requirements formulated by IEC 62443, the standard for
security in automation and control systems [12, part 4-1].
Amongst various testing techniques, this should include
fuzzing of the network interfaces. Fuzzing is a testing
technique in which random input is generated and sent
to the SUT. The behaviour of the SUT in response to the
input is analyzed to identify anomalies, potential bugs and
vulnerabilities, or to guide the fuzzing process.

Most network protocols, however, are highly stateful.
This is especially true for industrial network protocols,
such as OPC UA. The stateful nature of network protocols
presents a challenge for thorough testing and fuzzing, as
vulnerabilities may be hidden in deep states of the SUT.
One approach to this issue is stateful fuzzing, which uses
state models to guide the fuzzing process (see e.g. [3],
[7], [14]). Nevertheless, stateful fuzzers have additional
challenges to overcome. One of these challenges is to
decide which state to select for the next testing phase
(see Section 2.1). This decision can be seen as an explo-
ration versus exploitation problem since the probability of
success per state is not known a priori. A success would
be, for example, to find new coverage in the SUT, or to
trigger a crash of the SUT.

Approach. An instance of the exploration versus exploita-
tion problem is the Multi-armed Bandit (MaB) problem,
where a non-contextual reinforcement learning agent re-
peatedly needs to choose between several actions. Each
action results in a certain reward for the agent. The goal
of the agent is to maximize their reward (see Section 2.2).
Various algorithms for agents solving the MaB problem
have already been proposed [19]. Thus, we propose to
model the state selection problem as a MaB problem, and
to leverage these existing algorithms.



Contributions. This work makes two main contributions:
(I) We present a novel approach to model the state selec-
tion problem of stateful network fuzzers as an instance
of the MaB problem, and (II) we conduct preliminary
experiments analyzing whether this improves the fuzzing
performance.

Research Goals. The overall goal of our work is to
understand whether the state selection problem can be
successfully modeled as a MaB problem and whether
this improves the performance of a stateful fuzzer. We
formulate the following two research questions:

RQ1 Does the modeling approach for the MaB problem
affect the performance of stateful fuzzers based on
a MaB state selection?

RQ2 How do stateful fuzzers using a MaB based state
selection compare to the state of the art fuzzer
AFLNet?

Preliminary Results. For our preliminary experiments,
we implemented four graybox MaB fuzzers using two dif-
ferent modeling approaches and used the stateful network
protocol OPC UA as fuzzing target (see Section 5). These
experiments showed the following two main insights: On
the one hand, the experiments suggest that the four MaB
based fuzzers show no statistically significant performance
increase over one another (RQ1). On the other hand, the
baseline fuzzer AFLNet performs significantly better than
all MaB fuzzers (RQ2). These preliminary results support
results from literature [14], and build a starting point
for further investigations on modeling the state selection
problem as MaB problem. These further investigations
could include, in particular, an analysis of the learning
behavior of the agents, and the use of different modeling
approaches and SUTs (see Section 6).

2. Background and Related Work

Our work combines two different domains: state se-
lection in stateful network fuzzing and the MaB problem.
The following provides an overview of those two domains.

2.1. State Selection in Stateful Network Fuzzing

Generally, fuzzing can be divided into blackbox, gray-
box, and whitebox fuzzing, depending on the information
that is available to the fuzzer [15]. Our work is concerned
with graybox fuzzers. Thus, we assume that the fuzzer
has access to the information which code was covered
by a certain test case (code coverage). The goal of state-
ful network fuzzing is to improve the fuzzing of highly
stateful systems such as network protocols. To achieve
this, state of the art fuzzers extract a state model and
use this model to guide the fuzzing process [18]. Several
approaches to represent and extract the state model have
been proposed (e.g. [3], [17]). Next to other challenges
that need to be solved for stateful fuzzing, the fuzzer
needs to decide which state should be used for testing
in the next fuzzing phase (state selection) [14]. Liu et
al. show that current state selection algorithms do not
increase performance in a significant manner [14]. In our
work, we therefore investigate whether this is also the case
if the state selection is modeled as MaB problem.

2.2. Multi-armed Bandit Problem

Figuratively speaking, in the MaB problem, an agent is
presented with multiple slot machines (one-armed bandits)
to choose from and has the goal of maximizing the total
winnings over several rounds. To be more formal, in
the MaB problem, a non-contextual agent is repeatedly
presented with a choice between several actions. These
actions lead to rewards which are drawn from a probability
distribution that depends on the chosen action. The aim of
the agent is to maximize the expected total reward [20].
As the agent has no prior knowledge of the probability
distributions of the rewards, they must decide whether to
exploit known actions or to explore unknown actions. Note
that the agent is non-contextual, i.e. the environment in
which the agent operates has no state. Thus, the agent
only receives the information about the reward and no
additional information about the environment, the fuzzer,
or the SUT. Several approaches to formulate MaB prob-
lems have been proposed (see e.g. [2], [19], [20]). For our
setting, we choose two different approaches: a stochastic
MaB and an adversarial MaB. The main difference is that
for a stochastic MaB, the reward is based on stationary
probability distributions whereas for an adversarial MaB
these distributions can change over time.

The adversarial approach is especially interesting for
the modeling of the state selection in fuzzing. In general,
the success in fuzzing is based on the new coverage or new
bugs the fuzzing test discovers. Note that this explicitly
refers to new coverage or bugs. Finding the same coverage
or bugs several times will not lead to new insights and will
consequently usually not lead to a reward for the agent.
Thus, the probability distribution for the reward changes
over time, and an adversarial MaB should be able to model
the state selection problem more accurately.

For both modeling approaches, various algorithms for
the agent’s interaction with the MaB have been proposed.
In our work, we choose the following common algorithms.
For the stochastic MaB, we choose

(1) the ϵ-Greedy algorithm (EPS), which chooses the
action with the highest expected reward with a prob-
ability of ϵ, and a random action with the probability
1− ϵ [20],

(2) the UCB1 algorithm (UCB), which is based on the
optimism under uncertainty principle and chooses the
best action based on optimistic estimates [20], and

(3) a tuned version of UCB1 (UCBT) which additionally
takes the variance of an action into account [1].

For the adversarial MaB, we choose

(1) the Exp3 algorithm (EXP) presented by Auer et al.
which makes no statistical assumptions about the
distributions of rewards [2].

2.3. Related Work

The MaB problem or reinforcement learning in general
has been successfully used to model various other parts
of the fuzzing process (see e.g. [22] for an overview). For
example, it has been used for seed selection [8], [23], [24],
coverage metric selection [21], and mutation selection [4],
[5]. All of these publications show an improvement of the



fuzzing process by leveraging reinforcement learning for
one or several decisions. However, to our knowledge, there
is no publication trying to pass the state selection problem
to a reinforcement learning agent.

3. Methodology

The goal of our work is to understand how the state
selection can be modeled as a MaB problem and whether
this modeling improves the overall fuzzer performance.
Liu et al. showed that current approaches to state selection
do not increase the overall performance [14]. However,
approaches based on reinforcement learning and the MaB
problem showed good performance in other decisions in
fuzzing (see Section 2.3), and provide a good approach
to the exploitation versus exploration problem. Based on
these observations, we aim to investigate whether mod-
eling the state selection using the MaB problem can
improve the overall fuzzer performance. Especially, we
aim to focus on different modeling approaches, including
stochastic and adversarial approaches, and on how the
modeling choices affect the fuzzer’s performance.

3.1. Research Questions

We formulate two research questions. The first re-
search question is concerned with the choice of the mod-
eling approach for the MaB problem.

RQ1 Does the modeling approach for the MaB problem
affect the performance of stateful fuzzers based on
a MaB state selection?

As presented in Section 2.2, one can choose from various
approaches to model the MaB problem. For this work, we
choose a stochastic approach and an adversarial approach.
One would expect the agent in the adversarial setting to
perform better since it takes the changing reward distribu-
tions into account. The rewards distributions change over
time since coverage that has been found earlier in the
fuzzing process will not be rewarded again. In addition
to the general modeling approach, the reward and the
hyperparameters of the agents need to be modeled (see
Section 4). To evaluate the performance of the various
configurations for the agents, we measure the code cover-
age a fuzzer based on the respective agent achieves during
fuzzing.

The second research question is concerned with the
overall performance of fuzzers which base their state
selection on a MaB agent.

RQ2 How do stateful fuzzers using a MaB based state
selection compare to the state of the art fuzzer
AFLNet?

As a baseline for our experiments, we choose AFLNet,
a state of the art stateful graybox network fuzzer [18].
AFLNet is based on AFL1 and extends it with a state
machine. The state machine identifies states via the re-
sponse codes to messages that were sent by the fuzzer.
Before fuzzing, the SUT is set to a specific state by
sending the messages required to reach this specific state
first. After this, the mutated input is sent to the SUT.

1. https://github.com/google/AFL

The input mutation is almost identical to AFL, except
for a new mutation operation that concatenates different
network messages as a whole. AFLNet requires a trace
of a full network communication with the target in order
to extract a reasonable starting state machine and valid
inputs. For state selection, AFLNet by default uses its
own schedule based on a manually crafted heuristic based
on the number of times a state has been used and on how
successful the fuzzer was in finding new coverage in this
state [18]. For the experiments, we use the coverage to
compare the performance of the fuzzers again.

3.2. Potential Impact

Our work will provide insights on how to model the
state selection problem of a stateful network fuzzer as a
MaB problem. In addition, our work will provide insights
on what agents can learn regarding the state selection and
how this information can be leveraged to provide a more
efficient state selection. With a more efficient state selec-
tion, fuzzers can find vulnerabilities in different depths of
a SUT faster and more accurately. This can improve the
overall performance of a fuzzer regarding code coverage
and found vulnerabilities. As a result, vulnerabilities can
be found faster and closed earlier, and thus the affected
SUT can be made more secure.

3.3. Evaluation Strategy

In general, we base our evaluation on the recommen-
dations by Klees et al. [13]. This includes executing each
of the fuzzing runs for at least 24 hours, and to repeat each
configuration at least 30 times to account for the random-
ness of the fuzzer and the agents. To ensure transferable
and robust results, the fuzzers will be evaluated against
several stateful network protocols. As a baseline, the state
of the art graybox fuzzer AFLNet will be used.

This work includes preliminary experiments of the
two research questions. Note that this only includes four
different agents, one stateful network protocol as SUT,
and 10 repetitions of each configuration. AFLNet is used
as a baseline for the evaluations. As has been stated, we
will expand our evaluation by including more agents and
a broader set of evaluation SUTs in the future. Note that a
state machine for each of the SUTs needs to be constructed
first.

4. Modeling

We model the state selection problem in stateful net-
work fuzzing as MaB problem to be able to leverage
existing algorithms. The agent’s task is to select the state
of the SUT to be tested in the next testing phase. Overall,
the goal is to find new coverage and crashes. For the
preliminary evaluation presented in this work, we decided
on a modeling approach that is presented in the following.
In the future, we plan to propose and evaluate more
approaches, especially for modeling the reward.

Actions. For the definition of actions in the MaB problem,
we assume that

(1) a deterministic finite-state machine with states S of
the SUT is available,



:Agent :Fuzzer :SUT

select action()

action selected()

go to state()

mutate input()

input()

feedback

evaluate feedback()

reward

LoopLoop

Figure 1. Abstract sequence diagram of the interaction between the agent,
the fuzzer, and the SUT.

(2) each state in S is reachable from the start state, and

(3) that the SUT can be coerced into a specific state.

With this, the specifics of state machine itself can be
transparent to the agent. Consequently, we define the set
of possible actions A to be the set of states S. Note that S
represents the states of the SUT, whereas the agent itself
is stateless since it is non-contextual. In each round, the
agent selects one of the states of the SUT’s state machine
by choosing one action. This state is then used by the
fuzzer in the next fuzzing iteration.

The interaction between the agent, the fuzzer, and the
SUT is shown in Figure 1, and a corresponding description
follows. By selecting an action, the agent selects the next
state of the SUT to be tested. After the agent’s decision,
the SUT is put into the chosen state. In our setting, this
task is done by the fuzzer, but in principle it could be
done directly by the agent. Next, the fuzzer generates the
fuzzing input and sends it to the SUT. The SUT executes
based on the input, and it measures the code coverage and
crashes produced by the fuzzing input. The code coverage
and crashes are the feedback that is sent back to the fuzzer.
Note that we assume a graybox setting in which the fuzzer
has access to code coverage information during fuzzing.
Based on the feedback, the fuzzer calculates the reward
for the agent and rewards the agent accordingly. After
that, one round of the fuzzing process is finished and the
agent starts again with selecting the next state. Note that
this process is non-deterministic since the fuzzer performs
non-deterministic mutations and the agent might make
non-deterministic decisions.

Reward. In the abstract sequence diagram (see Figure 1),
the reward for the agent is calculated by the fuzzer, based
on the feedback of the SUT. The agent receives a reward
of 1 if new coverage was achieved, a reward of 10 if

a new crash was observed, and 0 otherwise. Note that
the agent is only rewarded if it finds previously unseen
coverage or crashes, resulting in non-stationary probability
distributions for the rewards.

5. Preliminary Experiments

In order to gain first insights into the topic and the re-
search questions, we performed preliminary experiments.
These experiments include three stochastic MaB agents,
one adversarial MaB agent, and one SUT. In future work,
we aim to extend the variation of the agents as well as
the number of SUTs (see Section 6 for details).

5.1. Setup

Based on AFL++ [9] and the algorithms discussed in
Section 2.2, we implemented the four MaB based fuzzers
EPS, EXP, UCB, and UCBT. The three fuzzers EPS, UCB,
and UCBT are fuzzers using a stochastic MaB, whereas
EXP is a fuzzer using an adversarial MaB (see Section 2.2
for details on the algorithms). As baseline, we used the
state of the art stateful greybox fuzzer AFLNet [18]. We
executed each of the five fuzzers 10 times for 24 hours
to accommodate for the fuzzers’ randomness. We sped
up the resulting 1200 hours of runtime by using docker
to enable parallel evaluation runs. We ran our evaluation
on an Ubuntu 20.04 LTS Server with an Intel® Xeon®
CPU ES-1650 v3 @ 3.50GHz (12 physical cores) with
64 GB of RAM. As SUT, we chose open625412, an open
source implementation of the stateful network protocol
OPC UA. For our experiments, we included and modeled
five different states of the OPC UA protocol (see e.g.
the OPC UA standard3 for more details on OPC UA).
We chose the five states that are needed to establish
a connection successfully and model them as the state
machine shown in Figure 2. The SUT starts in an initial
state. By sending OPC UA messages to the SUT, the
internal state of the SUT can be changed. Since this state
machine is only used to coerce the SUT into a specific
state instead of representing the full behavior of the SUT,
it does not need to include all possible error cases and
error transitions. Note that the fuzzers also implement
the corresponding closing messages which allow to go
back in the state machine. However, for our preliminary
experiments, we chose to only include the establishment
of the connection in the intended order.

5.2. Results

The results of the evaluation are presented in Figures 3
and 4. Figure 3 shows the final coverage which has been
achieved by 10 runs of the MaB fuzzers on the SUT
open62541 as a box plot. Based on the box plot, one
can come to the conclusion that the MaB fuzzers show
no statistically significant performance increase over one
another (RQ1). To verify this, we present the p-values
calculated using a Mann-Whitney U Test in Table 1. Being
greater than 0.05, these values indicate that we cannot
reject the null hypothesis that all fuzzers result in the

2. https://www.open62541.org/
3. https://reference.opcfoundation.org/



Initialstart Hello Channel Session Activated

Hello OpenSecureChannel CreateSessionRequest ActivateSessionRequest

Figure 2. States of the OPC UA protocol used during the preliminary experiments. The text on the transitions represent the OPC UA message needed
for the transition. The MaB agent selects one of the states for the next fuzzing phase and the fuzzer send the necessary messages to the SUT before
sending the mutated fuzzing input.

Figure 3. Box plot of the final coverages achieved by 10 runs of the MaB
fuzzers. The boxes extend from the lower quartile to the upper quartile,
the line in the boxes corresponds to the median, the whiskers represent
1.5 times the interquartile range, and outliers are shown as single circles.
No MaB fuzzer leads to significantly different results.

Figure 4. Coverage comparison of the MaB fuzzers and AFLNet (mean
of 10 runs). The MaB fuzzers perform similarly, while AFLNet performs
significantly better.

same performance. This result is interesting, since the
adversarial MaB models the state selection problem more
accurately, and we should thus expect the corresponding
algorithm (EXP) to lead to better results. Nevertheless, this
result is in line with the results by Liu et al. [14]. Liu et al.
show in their work that previously existing approaches for
state selection as well as the new approach they propose
lead to indistinguishable fuzzing performances in most
cases.

The plot in Figure 4 depicts the mean of the coverage
in basic blocks of the different MaB fuzzers in comparison
to AFLNet on the SUT open62541 over time. The orange
dotted line is the baseline AFLNet, whereas the solid lines
correspond to the different fuzzers implementing the MaB

TABLE 1. RESULTING P-VALUES OF A MANN-WHITNEY U TEST
REGARDING THE STATISTICAL SIGNIFICANCE OF THE DISTANCE OF

THE RESULTING COVERAGES. NO ALGORITHM PERFORMS
SIGNIFICANTLY BETTER.

UCB UCBT EPS EXP

UCB - 0.545 0.364 0.879
UCBT 0.545 - 0.198 0.449
EPS 0.364 0.198 - 0.542
EXP 0.879 0.449 0.542 -

algorithms. Overall, AFLNet performs significantly better
than all the MaB fuzzers (RQ2). Our analysis shows that
one reason for this is the difference in inputs. AFLNet
requires one full sequence of input messages, while the
MaB fuzzers only receive information about individual
states (see Section 2.3). This knowledge allows AFLNet
to start analyzing deep states directly, while the MaB
fuzzers need to identify the deep states first. This insight
represents one starting point for further research and on
how to make MaB fuzzers more efficient.

6. Future Work

Based on the preliminary experiments, we aim to
extend the approaches and experiments to provide deeper
insights into the modeling of the state selection problem
as a MaB problem. On the one hand, this will include
different approaches on modeling the reward, and choos-
ing the MaB algorithm and inputs for the agent. In par-
ticular, we aim to further investigate why the adversarial
MaB approach did not perform better than the stochastic
MaB models. In order to provide a modular structure
for the various approaches, we aim to re-implement our
approaches building upon the modular fuzzing framework
LibAFL [10]. On the other hand, we aim to perform the
evaluation with more SUTs. This will include, amongst
others, SUTs similar to the ones used by Liu et al. [14], in
order to achieve comparable results. In addition, this will
provide the possibility to analyze the protocol-depenent
behavior of the agents in more detail. In order to gain
deeper insights into how and what the agents learn, we
also aim to perform in-depth analysis of the agents and
to perform hyperparameter tuning.

The next step, building upon the insights on modeling
the state selection problem as MaB, would be to combine
the state selection with an automated learning of the
state graph. Automated learning of a protocol state graph
has been done for graybox settings (e.g. [16]), and for
blackbox settings (e.g. [6], [7]). With this, we could omit
the assumption of a given state graph. On top of this, one
could look into other modeling approaches for the states
of the SUT (e.g. Markov chains [11]).



7. Conclusions

Our work contributes further to the question of
whether or not the state selection algorithm has a sig-
nificant impact on the results achieved by the fuzzer.
Our preliminary experiments show that the choice of the
agent’s algorithm has no statistically significant impact,
which supports results from literature. Nevertheless, we
plan to analyze the modeling using MaB in greater depth
to fully understand its implications and potentials. For
this, we plan to perform in-depth hyperparameter tuning to
understand the impact of hyperparameters on the fuzzer’s
performance. This includes providing additional knowl-
edge, such as the depth of states, to the MaB fuzzers.
In addition, we aim to analyze the learning phase of the
agents to see what they learn during their interaction with
the SUT. To go a step further, state selection could be
combined with state graph learning, omitting the assump-
tion of a given state graph.

With this, we contribute to more efficient stateful
network fuzzing approaches. As a result, fuzzing can find
vulnerabilities in ICS faster and thus the vulnerabilities
can be closed earlier.

References

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47:235–256, 2002.

[2] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E
Schapire. The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002.

[3] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roy-
choudhury. Stateful greybox fuzzing. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3255–3272, 2022.

[4] Lorenzo Binosi, Luca Rullo, Mario Polino, Michele Carminati, Ste-
fano Zanero, et al. Rainfuzz: Reinforcement-learning driven heat-
maps for boosting coverage-guided fuzzing. In Proceedings of the
12th International Conference on Pattern Recognition Applications
and Methods-ICPRAM, pages 39–50. SciTePress, 2023.

[5] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. Deep
reinforcement fuzzing. In 2018 IEEE Security and Privacy Work-
shops (SPW), 2018.

[6] Joeri De Ruiter and Erik Poll. Protocol state fuzzing of TLS
implementations. In 24th USENIX Security Symposium (USENIX
Security 15), pages 193–206, 2015.

[7] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Gio-
vanni Vigna. Enemy of the state: A state-aware black-box web
vulnerability scanner. In Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12), pages 523–538, 2012.

[8] Kaiming Fang and Guanhua Yan. Emulation-instrumented fuzz
testing of 4g/lte android mobile devices guided by reinforce-
ment learning. In Computer Security: 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona,
Spain, September 3-7, 2018, Proceedings, Part II 23, pages 20–
40. Springer, 2018.

[9] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
Afl++ combining incremental steps of fuzzing research. In Pro-
ceedings of the 14th USENIX Conference on Offensive Technolo-
gies, pages 10–10, 2020.

[10] Andrea Fioraldi, Dominik Christian Maier, Dongjia Zhang, and Da-
vide Balzarotti. Libafl: A framework to build modular and reusable
fuzzers. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 1051–1065, 2022.

[11] Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel
Arp, and Konrad Rieck. Pulsar: Stateful black-box fuzzing of pro-
prietary network protocols. In Security and Privacy in Communi-
cation Networks: 11th EAI International Conference, SecureComm
2015, Dallas, TX, USA, October 26-29, 2015, Proceedings 11,
pages 330–347. Springer, 2015.

[12] IEC 62443 Security for Industrial Automation and Control Sys-
tems. Standard, Internation Electrotechnical Commission, Geneva,
CH, 2009-2020.

[13] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security,
pages 2123–2138, 2018.

[14] Dongge Liu, Van-Thuan Pham, Gidon Ernst, Toby Murray, and
Benjamin IP Rubinstein. State selection algorithms and their
impact on the performance of stateful network protocol fuzzing.
In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 720–730. IEEE,
2022.

[15] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil
Cha, Manuel Egele, Edward J Schwartz, and Maverick Woo.
The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, 47(11):2312–2331, 2019.

[16] Chris McMahon Stone, Sam L Thomas, Mathy Vanhoef, James
Henderson, Nicolas Bailluet, and Tom Chothia. The closer you
look, the more you learn: A grey-box approach to protocol state
machine learning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages
2265–2278, 2022.

[17] Roberto Natella. Stateafl: Greybox fuzzing for stateful network
servers. Empirical Software Engineering, 27(7):191, 2022.

[18] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury.
Aflnet: A greybox fuzzer for network protocols. In 2020 IEEE
13th International Conference on Software Testing, Validation and
Verification (ICST), pages 460–465, 2020.

[19] Aleksandrs Slivkins. Introduction to multi-armed bandits. Foun-
dations and Trends® in Machine Learning, 12(1-2):1–286, 2019.

[20] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[21] Jinghan Wang, Chengyu Song, and Heng Yin. Reinforcement
learning-based hierarchical seed scheduling for greybox fuzzing.
In Network and Distributed Systems Security (NDSS) Symposium
2021, 2021.

[22] Yan Wang, Peng Jia, Luping Liu, Cheng Huang, and Zhonglin
Liu. A systematic review of fuzzing based on machine learning
techniques. PloS one, 15(8):e0237749, 2020.

[23] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David
Brumley. Scheduling black-box mutational fuzzing. In 2013 ACM
SIGSAC conference on Computer & communications security,
pages 511–522, 2013.

[24] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai
Lu, and Xu Zhou. EcoFuzz: Adaptive Energy-Saving greybox
fuzzing as a variant of the adversarial Multi-Armed bandit. In
29th USENIX Security Symposium (USENIX Security 20), pages
2307–2324, 2020.


