
Assessing and Exploiting Domain Name Misinformation

Blake Anderson
Cisco

blake.anderson@cisco.com

David McGrew
Cisco

mcgrew@cisco.com

Abstract—Cloud providers’ support for network evasion
techniques that misrepresent the server’s domain name is
more prevalent than previously believed, which has serious
implications for security and privacy due to the reliance on
domain names in common security architectures. Domain
fronting is one such evasive technique used by privacy
enhancing technologies and malware to hide the domains
they visit, and it uses shared hosting and HTTPS to present a
benign domain to observers while signaling the target domain
in the encrypted HTTP request. In this paper, we construct
an ontology of domain name misinformation and detail a
novel measurement methodology to identify support among
cloud infrastructure providers. Despite several of the largest
cloud providers having publicly stated that they no longer
support domain fronting, our findings demonstrate a more
complex environment with many exceptions.

We also present a novel and straightforward attack that
allows an adversary to man-in-the-middle all the victim’s
encrypted traffic bound to a content delivery network
that supports domain fronting, breaking the authenticity,
confidentiality, and integrity guarantees expected by the
victim when using HTTPS. By using dynamic linker hijacking
to rewrite the HTTP Host field, our attack does not generate
any artifacts that are visible to the victim or passive network
monitoring solutions, and the attacker does not need a
separate channel to exfiltrate data or perform command-and-
control, which can be achieved by rewriting HTTP headers.

Index Terms—Domain Fronting, Censorship Circumvention,
TLS Proxy, Command-and-Control

1. Introduction

Domain name-based intelligence has long been used by
the security research community to identify and remediate
malware infections and other attacks. For example, Ma et
al. extracted domain names from Mirai binaries and then
used passive and active DNS datasets to perform DNS
expansion in order to construct a graph highlighting the
shared infrastructure used by Mirai variants [16]. Roberts
et al. use domain names in TLS certificates to identify
domain impersonation attacks [40].

The above investigations relied on the fact that the
domain names in DNS responses and TLS certificates
accurately represented the identity of the servers that the
clients intended to communicate with. This assumption is
not necessarily true. Evasive software can misrepresent its
servers’ domain names in DNS and TLS, a feature utilized
by both privacy enhancing tools and malware.

Domain fronting is a popular method that applications
use to misrepresent their target server’s domain name. It
leverages shared hosting and HTTPS to present a benign
domain in the DNS request, TLS client_hello, and
TLS certificate, while signaling the target domain in
the encrypted HTTP request. Domain fronting is possible
when shared hosting providers use a TLS termination
proxy, providing themselves visibility into the HTTP Host.
Section 3 provides an in-depth description of domain
fronting and related techniques.

Many cloud providers have stated that they no longer
support domain fronting [19], [35]. To verify these state-
ments and to better understand the domain name misin-
formation ecosystem, we developed a novel measurement
system that identifies candidate sets of domain name/IP
address tuples related to each other by increasingly specific
measures. In this paper, we first analyze candidate sets
based on their autonomous systems. We then use the
insight that, when a provider supports domain fronting,
the target and front domains are both from a specific set
of domains associated with that provider. These sets of
candidate domains can be constructed through passive
DNS monitoring, and then scanned to characterize what
domain misinformation techniques, if any, are supported.
We construct DNS-related candidate sets using the domain
name and fully qualified domain name (FQDN) returned
in DNS CNAME records.

As an example, the measurement system identifies
candidate sets related by Fastly using the FASTLY au-
tonomous system, the *.fastly.net. canonical do-
main name, and the j.sni.global.fastly.net.
canonical FQDN. As we demonstrate in Section 4.2, the
increasing level of specificity allows one to have a much
clearer view into the conditions in which hosting providers
support domain name misinformation.

Once we have the candidate sets of domain name/IP
address tuples, we then investigate pairs of tuples belonging
to the same set to identify support for domain name
misinformation. For each pair of destinations, several scans
are initiated to retrieve baseline values as well as to exercise
different techniques such as domain fronting. We present
the scanning methodology in Section 4.1.

Our results show that many cloud providers support do-
main fronting; sometimes intentionally, sometimes option-
ally, and sometimes unwittingly. For example, while you
cannot use www.google.com to front domains hosted
by Google App Engine, the set of domains mapping to
the ghs.googlehosted.com canonical name creates
an equivalence class of domains that can all be used to
front between each other.

ar
X

iv
:2

30
7.

07
61

0v
1

 [
cs

.C
R

]
 1

4
Ju

l 2
02

3

Complicating the situation further, many popular ser-
vices are hosted by multiple, unrelated providers. For
example, ctldl.windowsupdate.com is hosted by
at least Azure, Akamai, StackPath, and Limelight. While
you cannot perform domain fronting with this domain
through Azure or Akamai, you can through StackPath and
Limelight. A security model that trusts the domain name,
without considering the provider and its support for domain
evasion, is vulnerable to evasion.

After measuring support for domain name misinforma-
tion, Section 5 shifts the focus towards how an attacker can
co-opt domain fronting, which was put forward as a pri-
vacy enhancing technology that allows political dissidents
of repressive regimes access to an uncensored Internet
[25]. While these privacy goals of domain fronting are
unequivocally altruistic, it would be irresponsible to ignore
how these same regimes can leverage domain fronting to
stealthily maintain a surveillance state.

A feature of modern content delivery networks (CDNs)
is the decoupling of a domain’s TLS certificate and origin
server. When the CDN does not verify that the domain
name appearing in the HTTP Host field is represented
in the certificate, the core tenet of trust between the user
and origin server is broken. In past examples of domain
fronting, broken trust has not been an issue because the
user is a willing participant in the deception. But, if an
attacker were to modify the HTTP Host without the
victim’s knowledge, the end-to-end security guarantees of
HTTPS no longer hold.

We have developed a proof-of-concept attack that
leverages dynamic linker hijacking [11] through the Linux
LD_PRELOAD trick [27] to rewrite the HTTP Host field
immediately preceding the encryption of the HTTP request.
While the proof-of-concept requires an attacker to have a
presence on the endpoint, there are other ways to achieve
the intended functionality, e.g., by using a supply chain
compromise [14] of popular browsers or TLS libraries.

In the attack, the victim first initiates a TLS handshake
with the target domain, and the CDN establishes the
TLS connection with the target’s proper certificate. When
the victim makes an HTTP request, the HTTP Host is
overwritten to point to the attacker controlled domain. A
CDN that supports domain fronting will then route the
HTTP request to the origin server specified by the attacker.
The attacker can now view all the decrypted traffic and
modify or otherwise censor the decrypted traffic. This
behavior clearly violates the authenticity, confidentiality,
and integrity guarantees that HTTPS claims to provide.
The attacker can optionally create a stealthy command-
and-control channel by rewriting request headers and
adding HTTP response headers. Unlike simply overriding
DNS responses on the endpoint or directly exfiltrating the
decrypted data to an attacker-owned server, our attack does
not modify the IP address or generate additional network
connections, making the attack significantly more stealthy.

2. Background and Related Work

The domain name misinformation techniques discussed
in Section 3 rely on several network protocol standards
along with the general mechanics of CDNs, both of which
are introduced in this section. We conclude this section by
reviewing relevant related work.

2.1. Network Protocols

The Domain Name System (DNS) [30] provides var-
ious mechanisms to associate information with domain
names, e.g., it can translate human-readable domain names
into routable IP addresses. The extension mechanism
around DNS, EDNS0 [22], allows for larger message
sizes and more advanced handling of DNS requests. In
the context of this paper, EDNS0 is important because it
facilitates DNS responses that optimize the returned IP
addresses based on geography in order to reduce latency.

A DNS CNAME record maps an alias domain to
the true, canonical name. CNAME records are useful
when a single server hosts multiple subdomains, e.g., both
foo.example.com and bar.example.com will be
aliases of example.com. CNAME records are also useful
in the context of CDNs as described below.

After the client obtains an IP address via DNS, the
client then begins to directly communicate with the server.
For our purposes, we assume the client uses Transport
Layer Security (TLS) 1.3 [38]. After the TCP handshake,
the client sends a TLS client_hello handshake record
specifying its supported cryptographic parameters and sup-
plying some additional data such as the server_name ex-
tension, which provides the domain name of the server the
client wishes to communicate with. The server_name
is particularly useful in virtual hosting environments, like
CDNs, to help route the connection to the backend server
without the CDN’s load balancer having to man-in-the-
middle the connection.

The server responds with a server_hello hand-
shake record selecting a set of cryptographic parameters
based on the client’s preferences. Older versions of TLS
negotiate the remainder of the handshake in the clear, while
TLS 1.3 begins to encrypt the handshake records.

A TLS 1.3-capable server then sends an encrypted
certificate handshake record. This record contains
a chain of certificates that allows the client to verify the
identity of the server. Wildcard certificates use a wildcard
character (∗) as a subdomain in either the subject or
subjectAltName field and allows the certificate to
secure multiple subdomains belonging to the same domain
name. Finally, the client and server finish the key exchange
and begin to exchange application_data records
encrypted with the negotiated keys.

For the purpose of this paper, we assume the client and
server exchange encrypted messages using HTTP/1.1 [24]
or HTTP/2 [17]. The intended server’s domain name is lo-
cated in the Host (HTTP/1.1) or :authority (HTTP/2)
field, and the target URI is in the Request-Line
(HTTP/1.1) or :path (HTTP/2) field. HTTP/3 [18] is the
latest incarnation of HTTP and it uses the QUIC transport
[33], [41]. QUIC uses TLS for key negotiation and many
of the observations in this paper are directly applicable,
but deeper analysis is out-of-scope for the current work.

Because any on-path observer can view and potentially
modify plaintext DNS traffic, encrypted DNS protocols
were developed to take advantage of the above protocols
to secure DNS. DNS-over-HTTPS (DoH) [29] is one such
protocol that maps DNS requests and responses to HTTP
and encrypts the connection using TLS. Other encrypted
DNS protocols include DNS-over-TLS (DoT) [31] and
DNS-over-QUIC (DoQ) [32].

In summary, from the point-of-view of a passive
network observer and the above protocols, domain names
would appear in the unencrypted DNS request and response,
the TLS client_hello handshake record, and the TLS
certificate handshake record for non-1.3 versions of
TLS. Domain names are opaque in DoH and TLS 1.3
certificate handshake records.

2.2. Content Delivery Networks

Content delivery networks have the goals of reducing
latency and improving redundancy for hosted artifacts,
while also protecting against security threats, e.g., denial
of service attacks. The CDN’s servers are geographically
dispersed and placed at strategic locations to reduce latency.
If a client requests content from a domain that uses a CDN,
the DNS response will typically contain a CNAME record
where the IP address belongs to the CDN.

The client will then initiate a TLS handshake with the
CDN, which hosts the intended domain’s certificate. After
the TLS handshake, the CDN will proxy the HTTP traffic
on behalf of the origin server, which maintains the content
requested by the user. If the requested content is not stale,
the CDN will return a cached version of the content, and
otherwise will request and cache the latest version from
the origin server.

2.3. Related Work

Fifield et al. [25] presented the first academic treatment
of domain fronting as a censorship circumvention tool.
They described 7 CDNs that supported domain fronting
at the time of publication. They additionally implemented
and studied the deployment of domain fronting in Tor [3],
Lantern [2], and Psiphon [6]. The authors also examined
some detection mechanisms based on network traffic
analysis, e.g., packet lengths, and concluded that there
were no reliable traffic characteristics that would allow
one to detect domain fronting.

Wang et al. [42] studied the ability to detect several
network protocol obfuscators including Tor/meek leverag-
ing Google and Amazon for domain fronting. One of their
detection strategies included machine learning classifiers
that used entropy-based, timing-based, and packet-header
data features. Similarly, Li et al. [34] evaluated a convolu-
tional neural network and features based on packet lengths
to detect Tor/meek leveraging Azure and Fastly for domain
fronting. Both papers found that a well-resourced censor
could reliably detect meek using domain fronting with a
low false positive rate. Importantly, Wang et al. note, “the
detection techniques we explore can be, in turn, easily
circumvented in almost all cases with simple updates to
the obfuscator” [42].

Instead of viewing domain fronting through the lens of
a privacy enhancing technology, Dunwoody [23] examined
meek/Google domain fronting as it is used by a nation-state
attacker, APT29 [9], in order to evade detection. Similarly,
McLellan et al. [37] investigated how the UNC2465
ransomware group used a legitimate Microsoft domain
as a front for their hard-coded domain, max-ghoster1.
azureedge[.]net.

DNS

a.a.a.a

CDN

b.b.b.b

c.c.c.c

blocked.org

DNS: allowed.org

DNS: b.b.b.b

TLS SNI: allowed.org

TLS cert: allowed.org

HTTP Request: blocked.org

HTTP Response

Figure 1. A visual representation of domain fronting. Domain name and
IP addresses are not meant to be representative of any real-world services.
Note that the allowed domain name is visible in DNS and the TLS
handshake, and the blocked domain is not visible within the encrypted
HTTP request.

3. Misinformation Ontology

While we have mainly highlighted domain fronting as
a domain name misinformation technique up to this point,
there are several related techniques worth noting. In this
section, we review the techniques investigated in Section
4.2: domain fronting, domain faking, and domainless
fronting. We additionally review two similar techniques
that do not cleanly fit the misinformation characterization:
wildcard certificate fronting and domain shadowing. For the
purposes of this paper, an evasion technique is considered
to be domain name misinformation if the encrypted HTTP
Host value does not match the TLS server_name value
and is not covered by the TLS certificate’s subject or
SubjectAltName extension.

3.1. Domain Fronting

Domain fronting is the misinformation technique that
has garnered the most attention from the privacy research
[25], [42] and incident response [23], [37] communi-
ties. Figure 1 illustrates the key features of domain
fronting, where the client wishes to communicate with
blocked.org by fronting allowed.org. Domain
fronting starts with a DNS request for some popular,
allowed domain, in this example: allowed.org. This
hypothetical domain is hosted by a CDN that supports
domain fronting and has an edge device that maps to the
b.b.b.b IP address, which the DNS server returns.

The client then initiates a TLS handshake with the
CDN and sets the client_hello’s server_name to
allowed.org. Because the CDN controls the certifi-
cates for both of the unrelated domains, blocked.org
and allowed.org, it returns the proper certificate for
allowed.org. After the TLS handshake, the client
sends an encrypted application_data record with
an HTTP request where the HTTP Host field is set
to blocked.org. The edge device then decrypts the
record and extracts the Host field. Depending on the
cache configuration and state, the edge device will then
reach out to the origin server of blocked.org, ignoring
the value presented in the TLS server_name, and return
the requested content; successfully evading DNS and TLS-
layer enforcement of blocked.org.

Domain fronting is possible because the origin server
allows the CDN to host their domain’s TLS certificate and
to decrypt all traffic destined to the origin server. Domain
fronting may be an intended feature or an architectural
flaw, i.e., the CDN may not keep state associating the
server_name of the original TLS client_hello
with the value present in the HTTP Host. If that state is
not present or is purposefully ignored, then the CDN can
route the HTTP request at its discretion.

3.2. Domain Faking

Domain faking occurs when the server or edge device
returns the same certificate and serves content for domains
secured by that certificate irrespective of the value present
in the TLS server_name. From the perspective of a
passive network observer, domain fronting appears to be
legitimate because the edge device returns a valid certificate
and serves content for the fronted domain. In contrast,
a device supporting domain faking does not return a
valid certificate for the fronted domain because it is not
authorized to serve content on behalf of the fronted domain.
Similarly, a DNS request for the fronted domain will not
point to the domain faking device.

For domain faking to appear reasonable to passive
network observers, the operator needs to leverage recently
developed standards to obfuscate the exchanges in Figure
1 that cannot be modified, i.e., the DNS exchange and the
TLS certificate. A client begins domain faking by initiating
an encrypted DNS request containing the blocked domain,
e.g., by using DNS-over-HTTPS [29].

The client then sends a TLS 1.3 client_hello with
the server_name set to the allowed domain. The server
is configured to ignore the server_name extension and
returns its default certificate, which is encrypted with TLS
1.3 [38]. The client is configured to ignore the returned
certificate. The client and server then complete the TLS
handshake and begin exchanging encrypted records.

Domain faking is successful for two reasons. First, the
same entity has some control over the client and server,
which allows it to ignore errors that would otherwise
result in a TLS handshake failure. Second, domain faking
requires the censor to perform significantly more work
in the form of either blocking all encrypted/unsanctioned
DNS, scanning the server to retrieve its certificate, or
maintaining state that maps IP addresses to domains.

Telegram [7] serves as a real-world example of an
application that supported domain faking. It used en-
crypted DNS, primarily to dns.google.com, and a
TLS 1.3 handshake. Telegram set the server_name
to www.google.com, but the visited IP addresses
are entirely unrelated to Google’s infrastructure, e.g.,
5.28.195.163 belongs to the CW Vodafone Group
PLC autonomous system. Telegram appears to have depre-
cated this behavior in November 2022.

3.3. Domainless Fronting

Fifield et al. [25] put forth the concept of domainless
fronting, which has many of the same limitations as
domain faking. Its main feature is purposefully omitting the
server_name extension or leaving it blank. We consider
domainless fronting to misinform when it is used to evade

censorship, as opposed to when the server_name is
omitted due to the client using an obsolete version of TLS.
Similar to domain faking, it must either use hard-coded
IP addresses or rely on encrypted DNS.

TLS 1.3 is helpful to obfuscate the certificate but is
not always necessary depending on the hosting infras-
tructure and configuration. For example, Alibaba’s CDN
will return a generic certificate with the subject set to
*.alicdn.com, which provides little information, but
many Akamai-hosted domains will return an informative
certificate. Unsurprisingly, this difference is typically re-
lated to whether the hosting provider allows domains to
be hosted on static IP addresses.

Domainless fronting is appealing because it is relatively
simple to configure and does not need to rely on a domain
name owned by another entity, reducing the likelihood of
collateral damage. Additionally, TLS sessions that naturally
omit the server_name are relatively common but may
be trending lower. Fifield et al. reported that 16.5% of
TLS connections lacked the server_name extension in
June 2014 [25], Anderson et al. had that number at ∼10%
in the first half of 2019 [15], and we observed that number
to be 7.7% in October 2022. While these numbers may
not be methodologically comparable, the potential trend is
interesting and deserves further investigation.

3.4. Odds and Ends

Wildcard certificate fronting takes advantage of the de-
fault domain names and certificates provided by CDNs and
cloud infrastructure providers to allow fronting between
subdomains secured by the default certificate, despite there
being no relation between the owners of those subdomains.
For example, if you create a public S3 bucket without
a custom domain, AWS assigns a generic domain name
of the form <bucket-name>.s3.amazonaws.com
and provides a default TLS certificate which covers
*.s3.amazonaws.com and s3.amazonaws.com.
Google Cloud provides similar mechanics for their storage
service, *.storage.googleapis.com.

While wildcard certificates are not inherently a security
risk in the general case, wildcard certificates that secure
many subdomains are worth investigating. This is especially
true for the case of subdomains that are unrelated, i.e.,
the organizations that own and maintain the resources are
distinct entities and are only related by the fact that they
pay to use the same infrastructure. We further discuss
the security risks of wildcard certificate fronting with
*.cloudfront.net domains in the context of our
novel attack in Section 5.

Another related technique is domain shadowing, which
was recently introduced by Wei [43]. Domain shadowing
relies on a popular CDN feature: rewriting the HTTP
Host field. The user first registers a new domain that will
be used to access blocked resources, shadow.com, then
binds that domain to the target domain, target.com,
and finally creates a rule to rewrite the Host field from
shadow.com to target.com for incoming requests.

Domain shadowing has the clear advantage of the
HTTP Host field not indicating the target domain until
it is rewritten, which could potentially evade decrypting
firewalls. But, for the current topic, we do not consider
it misinformation because the shadowed domain has a

Scan IP Addr TLS server_name HTTP Host

baseline-0 target ip target domain target domain
baseline-1 front ip front domain front domain
fronting front ip front domain target domain
faking target ip front domain target domain
domainless target ip - target domain

TABLE 1. SUMMARY OF THE 5 EXECUTED SCANS FOR EACH PAIR OF
DESTINATION TUPLES.

one-to-one relationship with the target domain and the
shadowed domain would match the TLS certificate when
the HTTP request arrived at the CDN.

4. Measuring Domain Name Misinformation

We developed a scanning methodology to detect the
domain name misinformation techniques of Section 3
and to better understand their support on the Internet.
The results are presented in progressively more granular
groupings of destinations, first assessing an autonomous
system-wide grouping of destinations and finishing with
a grouping based on the fully qualified domain name
(FQDN) of the DNS canonical name. As we will show,
much of the ambiguity around organizations’ support for
these techniques erodes with more specific groupings. The
last subsection finishes by discussing the prevalence of
this support among the most popular domains.

4.1. Methodology

Given a pair of related (domain, ip)-tuples, one
marked as the target and the other as the front, our scanning
system is designed to identify if the techniques described
in Section 3 apply. The relationships examined in Section
4.2 are based on autonomous systems, and the domain
name and FQDN of the canonical name present in the
DNS CNAME record. The system generates a candidate
set of related destination tuples by grouping them based
on these criteria.

For each destination tuple, the scanner generates 5
pairs of tuples by randomly selecting other destinations
in the candidate set. Table 1 describes the 5 scans that
are executed given a pair of destination tuples, where the
target is (target_ip, target_domain) and the front
is (front_ip, front_domain). For each scan, Table
1 lists the IP address, TLS server_name, and encrypted
HTTP Host used for the connection.

baseline-0 and baseline-1 are used to deter-
mine if the misinformation techniques were successful and
simply scan the target and front IP/domain, respectively.
The three remaining scans attempt to use the two desti-
nations to perform domain fronting, domain faking, and
domainless fronting, setting the protocol fields as given in
Table 1.

To determine if the misinformation techniques were
successful, the scanner collects several response features
for each scan:

• a JSON representation of the TLS certificate
• the HTTP status_code
• the full list of HTTP response headers and values
• the length of the returned content

If either of the TLS certificates associated with the baseline
scans secures both domains, e.g., both domains appear in
the subjectAltName extension, domain fronting is not
applicable, and the results are ignored. If either of the
baseline scans returns a non-200 HTTP status_code,
the results are also ignored. This pruning may be overly
aggressive, but it helps to remove ambiguity, which made
analyzing the results more straightforward.

After the above pruning, the analysis considers the
non-baseline scans to be successful if the scan:

1) returns a 200 HTTP status_code, and
2) the length of the returned content matches that of

baseline-0 but not baseline-1.

To better handle dynamic content, the system makes two
exceptions to the second criteria. First, if the length of
the returned content for a misinformation scan is within
5% of baseline-0’s length and not within 20% of
baseline-1’s length, it is considered successful. All
manually inspected instances of dynamic content satis-
fying this exception were correct. Second, if the HTTP
response header names and ordering for a misinforma-
tion scan exactly matches those of baseline-0 and
not baseline-1, it is considered successful. Roughly
87% of the successful misinformation scans maintained
ordering for HTTP response headers. In most failure cases,
the server responds with either 403 Forbidden, 421
Misdirected Request, or 400 Bad Request.

The scanning code was written in Python and PySpark
and was deployed on an Amazon EMR cluster with 300
executors. The scanner uses the Python requests library
to make connections and specified the following HTTP
headers for each scan:

headers = {’Host’: http_host,
’User-Agent’: USER_AGENT,
’Connection’: ’close’}

where http_host is given in Table 1 and USER_AGENT
described a Chrome 104 client running on Windows 10.

To have more control over the destination IP
address, the scanner uses a monkey patch for
socket.getaddrinfo before each scan that hardcodes
the returned IP address:

socket.getaddrinfo = (lambda *args:
[(socket.AddressFamily.AF_INET,
socket.SocketKind.SOCK_STREAM,
6, ’’, (dst_ip, 443))])

where dst_ip is given in Table 1.
To make the scanning more efficient, the system runs a

prefiltering scan immediately before grouping destination
tuples and running the scans in Table 1. The system scans
each destination and filters destinations that do not return
a 200 HTTP status_code. Despite this filtering step,
some baseline scans would return a non-200 code. Most of
these cases were explained by distributed denial-of-service
protections, unsurprising given the parallel nature of the
PySpark scanning infrastructure. The system re-ran these
failed scans sequentially with a pure Python scanner, and
applied the rules listed above to the results.

Details of the specific datasets for each experiment are
given in the subsections of Section 4.2. To find the initial
set of labels, we analyzed passive DNS data collected

Autonomous System Number of Domain Fronting Domain Faking Domainless Fronting
Observed Domains Support Support Support

ACE 387 91.45% 100.00% 99.15%
AKAMAI-AS 4,612 4.44% 99.38% 99.32%
Akamai International B.V. 4,169 2.55% 56.06% 56.11%
AMAZON-02 16,841 4.97% 45.30% 55.32%
AMAZON-AES 9,437 4.02% 69.27% 75.33%
Beijing Baidu Netcom 186 17.39% 97.67% 97.67%
Chinanet 1,565 34.48% 86.02% 95.75%
CLOUDFLARENET 24,025 0.00% 0.77% 6.88%
Datacamp Limited 1,259 73.00% 99.61% 100.00%
DIGITALOCEAN-ASN 3,837 2.07% 84.70% 96.79%
EDGECAST 1,260 83.59% 100.00% 100.00%
FASTLY 5,874 62.62% 98.76% 98.61%
GOOGLE-CLOUD-PLATFORM 6,471 12.82% 88.53% 90.94%
Hangzhou Alibaba Advertising Co.,Ltd 2,772 7.66% 93.57% 97.86%
INCAPSULA 1,872 100.00% 100.00% 98.05%
LLNW 157 91.53% 100.00% 100.00%
MICROSOFT-CORP-MSN-AS-BLOCK 6,867 3.31% 88.29% 94.72%
OVH SAS 4,426 2.88% 74.26% 97.55%
QUANTILNETWORK 298 82.62% 98.32% 98.66%
STACKPATH-CDN 1,380 100.00% 100.00% 100.00%
Wix.com Ltd. 12,248 100.00% 100.00% 1.21%
Zhejiang Taobao Network Co.,Ltd 1,360 100.00% 100.00% 100.00%

TABLE 2. SCAN RESULTS WHEN USING AUTONOMOUS SYSTEMS TO GROUP DESTINATIONS. THE COLOR LEGEND IS AS FOLLOWS: GREEN (< 5%),
YELLOW (5% ≥ AND < 95%), AND RED (≥ 95%)

from ∼80 geographically dispersed sites all belonging to
a single multinational enterprise.

The passive DNS data was filtered to only include
DNS CNAME records. We then grouped alias domain
names by the canonical name’s domain name and sorted
the canonical name by the number of unique alias domain
names that map to it. The most common domains found
with this method are reported in Section 4.2. We omitted
some domains that were related and behaved similarly,
e.g., Edgecast has a series of canonical names that begin
with a Greek letter and end in cdn.net, but we only
report results for *.omicroncdn.net.

Given the list of domain names associated with canon-
ical names, we generated both more generic and more
specific labels. For the more generic autonomous system
labels, we collected all IP addresses in the DNS CNAME
records for a given canonical name and mapped those IP
addresses to their autonomous systems. We report results
for the two most prevalent autonomous systems for each
canonical name, which covered almost all observed records.

For the more specific canonical name FQDNs, we
performed an analysis similar to that of the canonical
name’s domain name, i.e., we grouped all alias domains
by canonical name FQDNs and sorted the FQDNs by their
number of unique alias domain names. Some CDNs like
Baidu and Fastly have a relatively well-defined, small set
of canonical names that service a large number of distinct
customers. Other CDNs, like Cloudflare and StackPath,
often encode a customer-specific domain or a unique ID
as a subdomain of the canonical name. The FQDN mea-
surement also explains the ambiguity of misinformation
support when looking at more generic relationships.

4.2. Results

In this section, we present the results of scanning
Internet infrastructure to determine support for domain
name misinformation. All destination tuples used for

scanning in these subsections were collected from the
same ∼80 geographically dispersed sites belonging to
the single multinational enterprise mentioned above, but
the type of data varies as discussed below. We used our
open-source tool, mercury [36], to collect the necessary
network metadata, which was collected between January
22nd, 2023 and February 21st, 2023, and is referred to as
enterprise-0.

4.2.1. Autonomous Systems. To generate the list of
destinations to scan, we extract the TLS server_name
value and destination IP address from all passively ob-
served packets containing a TLS client_hello from
enterprise-0. We then map the IP addresses to their
respective autonomous systems, group the destination
tuples based on their autonomous system, and filter data
that does not belong to a tracked autonomous system. For
efficiency reasons, we keep the 100,000 most prevalent
destination tuples per autonomous system.

These scan results are presented in Table 2. The number
of observed domains is after the filtering step described in
Section 4.1. The cells are highlighted to indicate how
much ambiguity there is in the results. Green/red is
used when there is less than 5% or greater than 95%
support for a given technique. Yellow is used for the
remaining range and indicates competing architectures
within the same autonomous system, where only some
support the misinformation technique. For example, only
62.62% of the domain fronting scans for destinations that
map to the FASTLY autonomous system were successful,
despite Fastly being known to support domain fronting.
We investigate this discrepancy and similar issues in the
following subsections.

The relatively high support for domain faking and
domainless fronting among most autonomous systems is
partly explained by server autonomy, i.e., many of the
domains are not associated with a CDN and are responsible

DNS CNAME Domain Number of Domain Fronting Domain Faking Domainless Fronting
Observed Domains Support Support Support

*.akamaiedge.net. (Akamai) 58,821 1.65% 40.47% 39.64%
*.cdngslb.com. (Alibaba) 4,961 99.80% 98.96% 99.69%
*.kunlunar.com. (Alibaba) 1,330 100.00% 100.00% 100.00%
*.cloudfront.net. (AWS) 92,369 2.72% 1.89% 0.99%
*.amazonaws.com. (AWS) 43,777 14.35% 94.96% 74.72%
*.jomodns.com. (Baidu) 1,462 94.51% 100.00% 100.00%
*.b-cdn.net. (Bunny CDN) 4,135 100.00% 100.00% 100.00%
*.cdn77.org. (CDN77) 1,565 100.00% 100.00% 100.00%
*.cloudflare.net. (Cloudflare) 67,170 0.00% 0.53% 11.69%
*.ovscdns.com. (DNStination) 2,697 92.43% 100.00% 99.71%
*.omicroncdn.net. (Edgecast) 653 98.02% 100.00% 100.00%
*.edgecastcdn.net. (Edgecast) 1,125 87.79% 100.00% 100.00%
*.fastly.net. (Fastly) 56,609 72.09% 99.31% 99.30%
*.googlehosted.com. (Google) 7,640 100.00% 100.00% 0.00%
*.google.com. (Google) 12,894 65.45% 99.97% 5.36%
*.impervadns.net. (Imperva) 5,118 99.82% 99.10% 96.60%
*.incapdns.net. (Imperva) 9,646 99.73% 98.99% 97.28%
*.kxcdn.com. (KeyCDN) 1,526 100.00% 100.00% 100.00%
*.llnwi.net. (Limelight) 377 100.00% 100.00% 100.00%
*.fdv2-t-msedge.net. (Microsoft) 12,077 91.96% 91.91% 100.00%
*.cloudapp.net. (Microsoft) 24,401 1.75% 95.00% 95.05%
*.netlifyglobalcdn.com. (Netlify) 499 100.00% 100.00% 100.00%
*.netlify.com. (Netlify) 923 100.00% 100.00% 100.00%
*.stackpathcdn.com. (StackPath) 4,559 100.00% 100.00% 100.00%
*.hwcdn.net. (StackPath) 2,466 100.00% 100.00% 100.00%
*.vercel-dns.com. (Vercel) 4,767 100.00% 100.00% 100.00%
*.wswebpic.com. (Wangsu) 1,385 78.96% 98.44% 97.66%
*.wswebcdn.com. (Wangsu) 897 85.25% 96.30% 96.63%
*.wixdns.net. (Wix) 73,402 100.00% 100.00% 0.00%

TABLE 3. SCAN RESULTS WHEN USING THE DOMAINS IN CANONICAL NAMES TO GROUP DESTINATIONS.

for their own server configurations. In this case, most of
the IP addresses only map to a single domain.

Unfortunately, there is not always an obvious ex-
planation for the support numbers in Table 2 because
grouping destinations by autonomous system conceals a
large amount of diversity in the underlying infrastructure,
which motivates the following sections.

4.2.2. DNS CNAME Domain. To address some of the
limitations from the previous subsection, we now investi-
gate domain name misinformation support when we group
destination tuples based on their canonical name’s domain
name. We first collect all DNS CNAME records from
the enterprise-0 dataset, and then extract the alias
domain, canonical domain, and IP address of the canonical
name from each record. Again, we keep the 100,000 most
prevalent destination tuples per canonical domain.

The results in Table 3 seem to be converging towards
more clear answers, but there still exists caveats. Some of
the support numbers slightly less than 100% for a given
technique are explained by network failures in the scanning,
but the support close to zero is more difficult to explain
without intimate knowledge of the platforms.

*.cloudflare.net.’s modest support for domain-
less fronting is also surprising given Cloudflare’s depen-
dence on the server_name extension. After investigat-
ing specific examples, the primary pattern was related to
destinations that were hosted on autonomous systems not
related to Cloudflare but did use a *.cloudflare.net.
canonical name in their DNS records. Microsoft’s
*.cloudapp.net. will sometimes support domain
fronting and faking when the domains map to the same

IP address. In these cases, they appear to share the same
load balancer, but do have unrelated TLS certificates.

Viewing the scanning results based on canonical do-
mains does make the hosting providers’ support for differ-
ent misinformation techniques very clear in some cases,
e.g., alias domains mapping to *.googlehosted.com.
and *.wixdns.net. will support domain fronting and
faking, but will not support domainless fronting. But
some popular canonical domains remain unclear, e.g.,
*.akamaiedge.net., *.amazonaws.com., and *.
google.com..

4.2.3. DNS CNAME FQDN. We are again addressing the
previous subsection’s limitations by using a more granular
grouping of destinations, the canonical name’s FQDN. The
data preparation was the same as the previous subsection’s
except for using the canonical name’s FQDN.

Table 4 presents the results, where some of the FQDNs
have been shortened if it appeared that they were specific
to a customer as opposed to specific to the provider.
Support, or lack thereof, for the different misinforma-
tion techniques has become much clearer. For instance,
*.google.com.’s uncertainty for domain fronting sup-
port can now be explained by prohibiting fronting between
customer-owned properties (ghs.google.com.) and
Google-owned properties (www3.l.google.com.) but
allowing fronting within those groups.

Like the above observation, Fastly’s mixed support
for domain fronting when using *.fastly.net. to
group destinations is explained by looking at the more
specific canonical FQDNs. For example, we found that
domain fronting, domain faking, and domainless fronting
are all possible between alias domains that map to the

DNS CNAME FQDN Number of Domain Fronting Domain Faking Domainless Fronting
Observed Domains Support Support Support

[customer].dscx.akamaiedge.net. (Akamai) 1,099 0.00% 0.00% 0.00%
tinyglobalcdnweb.[xxx].cdngslb.com. (Alibaba) 119 100.00% 100.00% 100.00%
globalcdnweb.[xxx].kunlunar.com. (Alibaba) 143 100.00% 100.00% 100.00%
[multiscreensites].elb.us-east-1.amazonaws.com. (AWS) 8,993 100.00% 100.00% 0.00%
[wshopon].elb.us-east-2.amazonaws.com. (AWS) 248 100.00% 100.00% 100.00%
opencdn.jomodns.com. (Baidu) 377 100.00% 100.00% 100.00%
sni1gl.wpc.omicroncdn.net. (Edgecast) 119 100.00% 100.00% 100.00%
j.sni.global.fastly.net. (Fastly) 1,877 100.00% 100.00% 100.00%
ghs.google.com (Google) 2,747 100.00% 100.00% 0.00%
www3.l.google.com. (Google) 280 100.00% 100.00% 100.00%
part-xxx.t-xxx.fdv2-t-msedge.net. (Microsoft) 1,311 91.21% 91.15% 100.00%
waws-prod-xxx-xxx.cloudapp.net. (Microsoft) 165 100.00% 100.00% 100.00%
cname.vercel-dns.com. (Vercel) 4,687 100.00% 100.00% 100.00%
td-ccm- [...] .wixdns.net. (Wix) 36,336 100.00% 100.00% 0.00%

TABLE 4. SCAN RESULTS WHEN USING THE FULLY QUALIFIED CANONICAL NAMES TO GROUP DESTINATIONS.

j.sni.global.fastly.net. canonical FQDN. On
the other hand, there were some *.fastly.net. canon-
ical FQDNs that contained customer-specific identifiers as
subdomains that did not support any of the misinformation
techniques.

*.amazonaws.com. is interesting due to the large
number of distinct services that are mapped to it, in-
cluding third-party groups that take advantage of Ama-
zon’s Elastic Load Balancing (ELB) service. The two
*.amazonaws.com. FQDNs in Table 4 are companies
that use ELB to host their customers’ websites. Their
backend environments must be configured differently
because of the discrepancy in domainless fronting.

Microsoft’s fdv2-t-msedge.net. was the one
outlier whose domain name misinformation support isn’t
clear. In November 2022, Azure began to prohibit domain
fronting for newly created Azure Front Door resources and
created a support system for customers to prohibit domain
fronting on older resources [10]. Azure will discontinue
domain fronting for all resources in November 2023. Table
4 provides a snapshot of this policy’s effects, and Azure’s
fronting support should converge to 0 in November 2023.

4.3. Discussion

Using candidate sets based on the CNAME FQDN
clearly provides the most information, but these sets
are limited because they are not always applicable. As
discussed above, many popular canonical FQDNs are
specific to a single customer, in which case candidate sets
constructed through the canonical domain name would be
more informative. Candidate sets based on autonomous
systems or subnets are useful when CNAME records do
not exist for a given domain.

While we do know the possibilities and constraints with
respect to misinformation techniques for some popular
canonical names, there are many caveats that deserve
further attention. For example, a small set of Akamai-
hosted domains will allow domain fronting, which may be
related to custom software stacks like Drupal [1], which we
observed running US government sites that allow domain
fronting. In any case, the complexity of this type of analysis
is likely to continue to grow with the complexity of CDNs
and deserves further research.

Domain fronting is in part successful due to its se-
lection of a popular domain to use as a front. To better

understand popular domains’ support for domain fronting,
we analyze the freely available Umbrella Popularity List
[8], which lists the top-1 million queried domains based
on their global DNS infrastructure. Using the popularity
list from February 21st, 2023, we ran dig on each
domain from AWS EC2 instances in the us-east-1 and
ap-southeast-1 regions. We used the default DNS
resolver and mercury [36] to collect all DNS responses.

331 thousand domains from the top-1 million list
mapped to a canonical name. 133 thousand of the domains
mapped to a canonical name that was analyzed in Table
3. Using the domain fronting support from Table 3, we
estimate that at least 19.4% of these 133 thousand and
2.5% of the top-1 million domains can be used as a front.

The DNS resolutions across regions were relatively
stable, perhaps unsurprising given the global presence
of most CDNs. But there were minor differences be-
tween the two regions that may be explained by the
need for redundancy and load balancing configurations
as opposed to geography. The most notable example be-
ing ctldl.windowsupdate.com, which was ranked
14th in the Umbrella list and is used by Microsoft to
update its list of trusted and untrusted root certificates.
The canonical name returned in the us-east-1 region
was related to Azure, but it was related to Limelight
in the ap-southeast-1 region. Within our datasets,
we observed the ctldl.windowsupdate.com alias
domain mapped to canonical names belonging to Azure,
Akamai, Limelight, and StackPath, where the latter two
CDNs have broad support for domain fronting.

5. Exploiting Domain Name Misinformation
As we have shown in the previous section, domain

fronting support among many of the popular CDNs is
not particularly rare. We now shift the focus of this paper
towards how a well-resourced adversary can exploit domain
fronting to break the end-to-end security guarantees of
HTTPS and stealthily man-in-the-middle network sessions
that connect to a CDN supporting domain fronting. We
implemented a proof-of-concept attack against Fastly
and AWS [*].cloudfront.net domains, which will
succeed against any of the providers that we report as
supporting domain fronting.

Our attack injects a small module into the victim’s
browser to rewrite selected Host fields, and then greatly

*.cloudfront.net ec2-d1.amazonaws.com
(reverse proxy)

ec2-d0.amazonaws.com

Endpoint

intercept libnspr4

Host: d0.cloudfront.net TLS: d0.cloudfront.net

HTTP: d1.cloudfront.net

Content: ec2-d0.amazonaws.com

Also include original Host

User-Agent: d0.cloudfront.net...

Figure 2. Proof-of-concept attack against [*].cloudfront.net domains. In response to a preprint of this paper, AWS quickly implemented a fix
to prevent this attack, but the same concepts apply to other cloud vendors supporting domain fronting.

amplifies its effect by implementing the proxying and
monitoring functions externally. Our proof-of-concept uses
dynamic linker hijacking [11], but many other techniques
could be used, including the more generic execution flow
hijacking [12], process injection [13], or a supply chain
compromise [14].

We note that in response to a preprint of this paper,
AWS promptly implemented a fix to prevent this attack and
domain fronting between CloudFront distribution points is
no longer possible.

5.1. Threat Model

The main goals of the attacker are two-fold: 1) per-
form a man-in-the-middle attack to catalog or censor a
victim’s targeted traffic, where “targeted” is defined as
traffic destined to interesting sites hosted by CDNs that
support domain fronting, e.g., www.reddit.com, and 2)
establish a stealthy command-and-control channel through
HTTP header manipulation.

To execute the attack, the attacker only needs to have
the ability to 1) modify HTTP headers either through
hijacking the execution flow of a process or by successfully
executing a supply chain attack, and 2) create an account
on a CDN that supports domain fronting. While the first
point is far more onerous than the second, we note that
dynamic linker hijacking [11] is a standard attack technique
not uncommon in malicious software and is facilitated by
attack tools like metasploit [4].

The attacker does not have the ability to di-
rect the victim towards domains that can be inter-
cepted. If the attacker’s goal was to man-in-the-middle
www.reddit.com traffic, the victim’s traffic destined
to www.reddit.com would need to arise organically
through the victim’s actions. From the point-of-view of
establishing a command-and-control channel, this may not
be a restriction in practice because a small set of popular do-
mains are visited hundreds of times per day by a given user.
In the enterprise-0 dataset, *.cloudfront.net
domains were visited ∼27 times per day per user.

The primary benefits of this attack to the adversary
include:

1) There is no need for a separate channel to per-
form data exfiltration or command-and-control.
As is common in remediation efforts, incident
responders heavily rely on IP address and domain

name-based indicators of compromise to identify
infected hosts (e.g., see log4shell [20]), which
are not present.

2) From the point-of-view of the victim and passive
network observers, there are no abnormal artifacts
associated with the network connection that could
lead to detection.

3) Dynamic linker hijacking and supply chain attacks
will result in a computationally efficient method
to rewrite HTTP requests, lowering the risk of
abnormal memory or CPU spikes typically asso-
ciated with decrypting and processing network
traffic.

While overriding DNS responses on the endpoint or
directly exfiltrating the decrypted data to an attacker-owned
server may accomplish similar goals to our attack, both
methods would introduce artifacts that make identifying
the attacker’s actions possible.

5.2. Attack

Before AWS addressed the proposed attack, we verified
that the end-to-end attack worked on AWS CloudFront
domains of the form [*].cloudfront.net using Fire-
fox, and it should also work with any hosting provider that
supports domain fronting or wildcard certificate fronting,
and any client application susceptible to execution flow
hijacking or supply chain attacks. This section focuses on
CloudFront, but we have also verified that the attack works
against most Fastly domains, e.g., we were able to success-
fully intercept Firefox connections to www.reddit.com.

In our proof-of-concept illustrated in Figure 2, the
goal of the attacker is to create a stealthy command-
and-control channel while also eavesdropping on all the
victim’s encrypted connections to a domain of the form
[*].cloudfront.net in a way that is completely
opaque to the user and network monitoring tools. The
attack is straightforward:

1) The attacker creates an EC2 instance to act as the
origin server and installs a webserver capable of
proxying traffic, e.g., nginx. The origin server
can run on any hosting provider, preferably closer
to the CDN to reduce latency.

2) The attacker then creates a CloudFront distribu-
tion point, configures the above EC2 instance as

the origin server, and configures CloudFront to
forward all request headers to the origin server.

3) In the Fastly case, the attacker would then register
a domain name of the same length as the domains
to be intercepted and configure the CNAME
record to point to Fastly.

4) On the victim’s endpoint, the attacker uses dy-
namic linker hijacking to intercept popular func-
tion calls related to encryption, e.g., PR_Write
and PR_read. We modified mercury’s [36]
intercept functionality for this step and provide a
code sample in Appendix A.

5) During interception, if the HTTP Host contains
a pattern consistent with default CloudFront dis-
tribution points, the attacker rewrites the Host
to point to the attacker-owned distribution point.

6) In order to know the victim’s original destination,
the attacker identifies common HTTP headers
such as the User-Agent field and rewrites the
data associated with those headers to include the
original destination. The nginx configuration
code to extract this value is given in Appendix A.

7) The attacker optionally rewrites more data in
the HTTP request/response headers to facilitate
stealthy command-and-control.

8) When the request reaches the attacker’s origin
server, the attacker records all relevant information
and proxies the request on behalf of the victim.

When testing this attack, Firefox would segfault if we
attempted to create a larger HTTP request by changing
the length of the HTTP Host or creating additional
HTTP headers. The proof-of-concept worked around this
constraint by not modifying the length of the initial HTTP
request. This constraint is easily overcome if the attacker
registers multiple domains of varying length and replaces
the HTTP Host with a domain of appropriate length. From
the point-of-view of the victim and non-CDN network
monitoring tools, all data features will be legitimate:
the TLS client_hello contains the victim’s intended
CloudFront domain, CloudFront returns a valid certificate,
the IP address is the same, the response content exactly
matches what the victim requested, and the browser/OS
would not be able to log the malicious domain.

The CDN may have enough information to detect this
attack, but we are unaware of any CDN that currently
makes this data available to end users.

6. Discussion

The scanning results presented in Section 4.2 were
meant to be representative, but not necessarily exhaustive.
For example, there are many AWS services that map to the
*.amazonaws.com. canonical name, but we only gave
specific results for Elastic Load Balancer. The methodology
of Section 4 can be used for future studies that further
characterize domain name misinformation and its support.

We have shown that many popular CDNs support
domain fronting in Section 4.2, and that malicious actors
can abuse that support to man-in-the-middle a victim’s
traffic as described in Section 5. Again, the attack is
possible because the unwitting victim is presented a valid
certificate by the CDN and the attacker-proxied traffic is

what the victim expected. New and developing standards
may achieve the same goals as domain fronting without
exposing users to the risks of our attack. For example,
the Encrypted Client Hello (ECH) [39] Internet draft
results in an encrypted server_name. When used in
combination with DNS-over-HTTPS [29] and TLS 1.3
[38], passive network observers would only be able to
extract the destination’s IP address, which would only
provide CDN-level information. Importantly, privacy en-
hancing technologies would not need to misrepresent the
domain name in the server_name extension, and CDNs
could more comfortably discontinue support for domain
fronting. The connections between an earlier version of
ECH, encrypted SNI, and censorship circumvention were
previously established [21], [26], [28].

6.1. Ethics

The study of domain name misinformation is naturally
divisive because these techniques obfuscate key data fea-
tures used by incident response teams to identify malware
infections, while at the same time furthering privacy
enhancing technologies. It is our hope that these results
motivate the security and privacy research community to
develop privacy enhancing technologies that are less prone
to abuse by malicious actors.

While the attack in Section 5 may not be considered
a traditional vulnerability, we do believe that hosting
providers should be made aware that their support for
domain fronting can facilitate such an attack. To further
that goal, we sent a preprint of this paper to each named
company in December 2022. Most companies responded
within two months. We were able to provide additional
data around the attack that helped AWS confirm and fix
the root cause in CloudFront. Companies such as Vercel
and Fastly acknowledged the attack and said that they are
in the process of implementing additional controls.

7. Conclusion

Domain fronting, domain faking, and domainless
fronting are domain name misinformation techniques,
which all have serious implications for security and privacy
due to the reliance on domain names in common security
architectures and the importance of these techniques in
privacy enhancing technologies. We have presented a novel
measurement methodology to identify support among cloud
infrastructure providers and shown that many content de-
livery networks and cloud infrastructure providers support
domain name misinformation techniques; sometimes inten-
tionally, sometimes optionally, and sometimes unwittingly.

We have also presented a straightforward attack that
leverages dynamic linker hijacking and domain fronting
in a way that would allow malicious actors to stealthily
maintain a surveillance state. With our attack, the attacker is
able to man-in-the-middle all the victim’s encrypted traffic
bound to a content delivery network that supports domain
fronting, breaking the authenticity, confidentiality, and in-
tegrity guarantees expected by the user when using HTTPS.
We have successfully demonstrated a working attack
on most Fastly domains and [*].cloudfront.net
domains, and the attack should apply to all domains hosted
by a provider that supports domain fronting.

References

[1] Drupal - open source cms. https://www.drupal.org/.

[2] Lantern. https://github.com/getlantern/.

[3] Meek. https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek.

[4] metasploit. https://www.metasploit.com/.

[5] Netscape Portable Runtime (NSPR). https://firefox-source-docs.
mozilla.org/nspr/index.html.

[6] Psiphon. https://psiphon.ca/.

[7] Telegram. https://telegram.org/.

[8] Umbrella popularity list. http://s3-us-west-1.amazonaws.com/
umbrella-static/index.html.

[9] APT29. https://attack.mitre.org/groups/G0016/, 2022.

[10] Generally available: Block domain fronting behavior on newly
created customer resources. https://azure.microsoft.com/en-
us/updates/generally-available-block-domain-fronting-behavior-
on-newly-created-customer-resources/, 2022.

[11] MITRE ATT&CK - Dynamic Linker Hijacking. https://attack.mitre.
org/techniques/T1574/006/, 2022.

[12] MITRE ATT&CK - Hijack Execution Flow. https://attack.mitre.
org/techniques/T1574/, 2022.

[13] MITRE ATT&CK - Process Injection. https://attack.mitre.org/
techniques/T1055/, 2022.

[14] MITRE ATT&CK - Supply Chain Compromise. https://attack.mitre.
org/techniques/T1195/, 2022.

[15] Blake Anderson and David McGrew. TLS Beyond the Browser:
Combining End Host and Network Data to Understand Application
Behavior. In Proceedings of the Conference on Internet Measure-
ment Conference (IMC), pages 379–392. ACM, 2019.

[16] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman,
Luca Invernizzi, Michalis Kallitsis, et al. Understanding the Mirai
Botnet. In USENIX Security Symposium, pages 1093–1110, 2017.

[17] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). https://www.rfc-editor.org/rfc/rfc7540, 2015.

[18] M. Bishop. HTTP/3. https://www.rfc-editor.org/rfc/rfc9114, 2022.

[19] Russell Brandom. A Google update just created a big problem
for anti-censorship tools. https://www.theverge.com/2018/4/18/
17253784/google-domain-fronting-discontinued-signal-tor-vpn,
2018.

[20] Edmund Brumaghin. Threat Advisory: Critical Apache Log4j vul-
nerability being exploited in the wild. https://blog.talosintelligence.
com/2021/12/apache-log4j-rce-vulnerability.html, 2021.

[21] Zimo Chai, Amirhossein Ghafari, and Amir Houmansadr. On the
Importance of Encrypted-SNI (ESNI) to Censorship Circumvention.
In FOCI@ USENIX Security Symposium, 2019.

[22] J. Damas, M. Graff, and P. Vixie. Extension Mechanisms for DNS
(EDNS(0)). https://www.rfc-editor.org/rfc/rfc6891, 2013.

[23] Matthew Dunwoody. APT29 Domain Fronting With TOR. https:
//www.mandiant.com/resources/blog/apt29-domain-frontin, 2017.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
https://www.rfc-editor.org/rfc/rfc2616, 1999.

[25] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and
Vern Paxson. Blocking-Resistant Communication through Domain
Fronting. In Proceedings of the 12th Privacy Enhancing Technolo-
gies Symposium (PETS), number 2, pages 46–64, 2015.

[26] Sergey Frolov and Eric Wustrow. The use of TLS in Censorship
Circumvention. In Network and Distributed System Security
Symposium (NDSS), 2019.

[27] Peter Goldsborough. The LD PRELOAD Trick.
http://www.goldsborough.me/c/low-level/kernel/2016/08/29/16-48-
53-the -ld preload- trick/, 2016.

[28] Nguyen Phong Hoang, Arian Akhavan Niaki, Nikita Borisov,
Phillipa Gill, and Michalis Polychronakis. Assessing the Privacy
Benefits of Domain Name Encryption. In Proceedings of the Asia
Conference on Computer and Communications Security (ASIACCS),
pages 290–304. ACM, 2020.

[29] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH).
https://www.rfc-editor.org/rfc/rfc8484, 2018.

[30] P. Hoffman, A. Sullivan, and K. Fujiwara. DNS Terminology.
https://www.rfc-editor.org/rfc/rfc8499, 2019.

[31] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and
P. Hoffman. Specification for DNS over Transport Layer Security
(TLS). https://www.rfc-editor.org/rfc/rfc7858, 2016.

[32] C. Huitema, S. Dickinson, and Mankin A. DNS over Dedicated
QUIC Connections. https://www.rfc-editor.org/rfc/rfc9250, 2022.

[33] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. https://www.rfc-editor.org/rfc/rfc9000, 2021.

[34] Zeyu Li, Meiqi Wang, Xuebin Wang, Jinqiao Shi, Kexin Zou, and
Majing Su. Identification Domain Fronting Traffic for Revealing
Obfuscated C2 Communications. In Proceedings of the 6th
International Conference on Data Science in Cyberspace (DSC),
pages 91–98. IEEE, 2021.

[35] Colm MacCarthaigh. Enhanced Domain Protections for Amazon
CloudFront Requests. https://aws.amazon.com/blogs/security/
enhanced-domain-protections-for-amazon-cloudfront-requests/,
2018.

[36] David McGrew, Brandon Enright, Blake Anderson, Lucas Mes-
senger, Adam Weller, Andrew Chi, Shekhar Acharya, Anastasiia-
Mariia Antonyk, , Oleksandr Stepanov, Vigneshwari Viswanathan,
and Apoorv Raj. mercury: Network Metadata Capture and Analysis.
https://github.com/cisco/mercury, 2023.

[37] Tyler McLellan, Robert Dean, Justin Moore, Nick Harbour,
Mike Hunhoff, Jared Wilson, and Jordan Nuce. Smoking
Out a DARKSIDE Affiliate’s Supply Chain Software Compro-
mise. https://www.mandiant.com/resources/blog/darkside-affiliate-
supply-chain-software-compromise, 2021.

[38] E. Rescorla. The transport layer security (tls) protocol version 1.3.
https://www.rfc-editor.org/rfc/rfc8446, 2018.

[39] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood. TLS Encrypted
Client Hello. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-
15, 2022.

[40] Richard Roberts, Yaelle Goldschlag, Rachel Walter, Taejoong
Chung, Alan Mislove, and Dave Levin. You Are Who You Appear
to Be: A Longitudinal Study of Domain Impersonation in TLS
Certificates. In Proceedings of the Conference on Computer and
Communications Security (CCS), pages 2489–2504. ACM, 2019.

[41] M. Thomson and S. Turner. Using TLS to Secure QUIC. https:
//www.rfc-editor.org/rfc/rfc9001, 2021.

[42] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and
Thomas Shrimpton. Seeing through Network-Protocol Obfuscation.
In Proceedings of the Conference on Computer and Communications
Security (CCS), pages 57–69. ACM, 2015.

[43] Mingkui Wei. Domain Shadowing: Leveraging Content Delivery
Networks for Robust {Blocking-Resistant} Communications. In
USENIX Security Symposium, pages 3327–3343, 2021.

A. Attack Source Code

The interception source code for the attack presented
in Section 5 is based on intercept.cc in mercury’s
GitHub’s repository [36]. Figure 3 presents the modifi-
cations we made to the Netscape Portable Runtime’s [5]
PR_Write intercept function. A regular expression is
used to match all Host headers containing a CloudFront
domain of a specific length, which is then overwritten with
the attacker controlled CloudFront domain. The victim’s
intended domain is written into the User-Agent string
before invoking the original PR_Write function.

https://www.drupal.org/
https://github.com/getlantern/
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://www.metasploit.com/
https://firefox-source-docs.mozilla.org/nspr/index.html
https://firefox-source-docs.mozilla.org/nspr/index.html
https://psiphon.ca/
https://telegram.org/
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://attack.mitre.org/groups/G0016/
https://azure.microsoft.com/en-us/updates/generally-available-block-domain-fronting-behavior-on-newly-created-customer-resources/
https://azure.microsoft.com/en-us/updates/generally-available-block-domain-fronting-behavior-on-newly-created-customer-resources/
https://azure.microsoft.com/en-us/updates/generally-available-block-domain-fronting-behavior-on-newly-created-customer-resources/
https://attack.mitre.org/techniques/T1574/006/
https://attack.mitre.org/techniques/T1574/006/
https://attack.mitre.org/techniques/T1574/
https://attack.mitre.org/techniques/T1574/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/techniques/T1195/
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc9114
https://www.theverge.com/2018/4/18/17253784/google-domain-fronting-discontinued-signal-tor-vpn
https://www.theverge.com/2018/4/18/17253784/google-domain-fronting-discontinued-signal-tor-vpn
https://blog.talosintelligence.com/2021/12/apache-log4j-rce-vulnerability.html
https://blog.talosintelligence.com/2021/12/apache-log4j-rce-vulnerability.html
https://www.rfc-editor.org/rfc/rfc6891
https://www.mandiant.com/resources/blog/apt29-domain-frontin
https://www.mandiant.com/resources/blog/apt29-domain-frontin
https://www.rfc-editor.org/rfc/rfc2616
http://www.goldsborough.me/c/low-level/kernel/2016/08/29/16-48-53-the_-ld_preload-_trick/
http://www.goldsborough.me/c/low-level/kernel/2016/08/29/16-48-53-the_-ld_preload-_trick/
https://www.rfc-editor.org/rfc/rfc8484
https://www.rfc-editor.org/rfc/rfc8499
https://www.rfc-editor.org/rfc/rfc7858
https://www.rfc-editor.org/rfc/rfc9250
https://www.rfc-editor.org/rfc/rfc9000
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://github.com/cisco/mercury
https://www.mandiant.com/resources/blog/darkside-affiliate-supply-chain-software-compromise
https://www.mandiant.com/resources/blog/darkside-affiliate-supply-chain-software-compromise
https://www.rfc-editor.org/rfc/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://www.rfc-editor.org/rfc/rfc9001
https://www.rfc-editor.org/rfc/rfc9001

PRInt32 PR_Write(PRFileDesc *fd, const void *buf, PRInt32 amount) {
int native_fd = PR_FileDesc2NativeHandle(fd);
if (fd_is_socket(native_fd)) {

// stealthy domain front
char *buffer_cast = (char *)buf;
std::string fronted_buffer(buffer_cast);
// set up regex and our CloudFront domain name
std::string cloudfront_domain(".cloudfront.net");
std::string attack_domain("d-------------.cloudfront.net");
std::string user_agent_str("Mozilla/5.0 (X11; Ubuntu; Lin");
std::regex cloudfront_regex("Host: ([a-z0-9]{14})[.]cloudfront[.]net");
std::smatch match;
if (std::regex_search(fronted_buffer, match, cloudfront_regex)) {

std::string original_domain = match.str(1) + cloudfront_domain;
if (fronted_buffer.find(original_domain) != std::string::npos) {

fronted_buffer.replace(fronted_buffer.find(original_domain),
original_domain.length(),
attack_domain);

fronted_buffer.replace(fronted_buffer.find(user_agent_str),
user_agent_str.length(),
original_domain);

const void *fronted_buffer_c_str = fronted_buffer.c_str();
invoke_original(PR_Write, fd, fronted_buffer_c_str, amount);

}
}

}
invoke_original(PR_Write, fd, buf, amount);

}

Figure 3. Interception code based on mercury’s [36] intercept functionality to identify *.cloudfront.net domains and rewrite the HTTP
request accordingly.

map $http_user_agent $new_host {
default "";
"˜ˆ(?<victim_host>.{14})"

$victim_host;
}

location / {
resolver 8.8.8.8;
proxy_pass https://

new_hostrequest_uri;
proxy_set_header Host $new_host;

}

Figure 4. nginx configuration to extract the victim’s intended domain
from the User-Agent field and proxy the victim’s original connection.

The nginx configuration to extract the victim’s in-
tended domain from the User-Agent string and proxy
the victim’s traffic is given in Figure 4.

	Introduction
	Background and Related Work
	Network Protocols
	Content Delivery Networks
	Related Work

	Misinformation Ontology
	Domain Fronting
	Domain Faking
	Domainless Fronting
	Odds and Ends

	Measuring Domain Name Misinformation
	Methodology
	Results
	Autonomous Systems
	DNS CNAME Domain
	DNS CNAME FQDN

	Discussion

	Exploiting Domain Name Misinformation
	Threat Model
	Attack

	Discussion
	Ethics

	Conclusion
	References
	 A: Attack Source Code

