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ABSTRACT
Effectively solving many inverse problems in engineering

requires to leverage all possible prior information about the
structure of the signal to be estimated. This often leads to
tackling constrained optimization problems with mixtures of
regularizers. Providing a general purpose optimization al-
gorithm for these cases, with both guaranteed convergence
rate as well as fast implementation remains an important
challenge. In this paper, we describe how a recent primal-
dual algorithm for non-smooth constrained optimization can
be successfully used to tackle these problems. Its simple
iterations can be easily parallelized, allowing very efficient
computations. Furthermore, the algorithm is guaranteed to
achieve an optimal convergence rate for this class of prob-
lems. We illustrate its performance on two problems, a
compressive magnetic resonance imaging application and
an approach for improving the quality of analog-to-digital
conversion of amplitude-modulated signals.

Index Terms— Constrained Non-Smooth Optimization,
Inverse Problems, Compressive Sensing, MRI, ADC.

1. INTRODUCTION

Many inverse problems in engineering, from signal denois-
ing [1] to compressive imaging [2] and from tomographic
reconstruction [3] to brain decoding [4], require solving op-
timization problems that are composed of multiple convex
terms, usually a data fit term and one or more regularizers
that favour the structures that are present in the signal to be
estimated. In many cases, linear constraints that define fur-
ther properties of the signal are also imposed.

In general, we are interested in solving a constrained con-
vex optimization problem of the form:

minimize

x

f(x) :=
pX

i=0

fi(x)

subject to Ax = b

(1)

where f
0

is the data fit term, fi, i = 1, . . . , p, are possibly
non-smooth regularization terms, A is a linear operator and b
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is an observed measurement vector. For example, in compres-
sive magnetic resonance imaging, the data fit term is usually
the square loss 1

2

kAx � bk2, where A is a partial Fourier
sampling operator, b contains the compressive samples and
x is the image to be estimated. Frequently used regulariza-
tion terms for this problem are the `

1

norm computed on the
wavelet coefficients of x, i.e., kWxk

1

, where W is the dis-
crete wavelet transform, and the Total Variation norm, that is
the sum of the norms of the discrete gradients computed at
each pixel of the image, kxk

TV

=

P
i,j k(r(x))i,jk2 [2].

Since the image is described as intensity values, a positivity
constraint can also be imposed.

Researchers are often interested in combining multiple
regularization terms, in order to enforce all available prior
information about the signal to be estimated. However, it is
not straightforward to adapt optimization algorithms that have
been developed ad-hoc for a certain combination of regular-
izers to deal with new terms. Moreover, some of the pro-
posed techniques are often riddled with heuristics that, if on
one hand, allow efficient implementations, on the other hand
do not guarantee convergence to optimal solutions.

Here, we illustrate how a recently proposed optimization
framework [5, 6] for solving constrained convex optimiza-
tion problems can be leveraged for mixtures of regularizers
(1). This framework can deal with any linear equality, and
inequality, constraints and multiple regularization terms in a
principled way, with rigorous convergence guarantees, both
on the decrease of the objective function value and on the
feasibility of the constraints. It is based on smoothing the
primal-dual gap function via Bregman distances and on a par-
ticular model-based gap reduction condition. Its iterations are
efficient since they consist only of proximal computations and
matrix multiplications with easy parallelization. We demon-
strate its performance on a compressive magnetic resonance
imaging problem with three regularizers and on an approach
for improving the quality of analog-to-digital conversion of
amplitude modulated signals.

1.1. Previous work

One of the first work on solving composite and constrained
convex problems with non-smooth functions is [7], where the
authors propose the Predictor Corrector Proximal Multiplier



method which is based on Rockafellar’s Proximal Point algo-
rithm [8], whose theory is founded on inclusions of monotone
operators. The method combines proximal steps in the dual
as well as the primal problem, resembling the structure of the
1P2D algorithm proposed in [5], however its linear converge
rate is guaranteed only by assuming a strong regularity con-
dition which is impossible to check in practice.

Combettes and Pesquet [9] proposed a decomposition
method for solving (1) by involving each function fi in-
dependently via its proximity operator while the constraint
can be dealt with by an indicator function. However, the
proximity operator derived from the constraint may not be
available in closed form and could require the solution of
a smooth problem, for example by fast gradient method of
Nesterov [10]. Furthermore, although a sequence produced
by the algorithm is guaranteed to converge to a minimizer,
which is not the case in [5, 6], neither convergence rate nor
control of the feasibility gap is provided.

Combettes et al. [11] proposed an algorithm for comput-
ing the proximity operator of a sum of convex functions com-
posed with linear operators that requires to compute proxim-
ity operators of each function independently. This algorithm
could be used in combination with the proximal point algo-
rithm, but again no convergence rates are obtained.

The primal-dual algorithm developed by Chambolle and
Pock [12] for composite unconstrained convex problems with
two terms could also be extended to tackle (1). However,
since the algorithm was derived for solving a more general
class of problems, it comes with weaker guarantees than the
decomposition method of [5].

2. PRELIMINARIES

Scalars are denoted by lowercase letters, vectors by lowercase
boldface letters and matrices by uppercase boldface letters.
We say that the proper, closed and convex function f : RN !
R [ {+1} has tractable proximity operator if proxf (w) :=

argmin

u

{f(u) + (1/2)ku � wk2 can be computed effi-
ciently for any w (e.g., by a closed form or a polynomial time
algorithm) [13].

3. A PRIMAL-DUAL FRAMEWORK
We consider the general constrained convex optimization
problem

f⇤
:= min

x

{f(x) : Ax = b} , (2)

where f(x) is a convex, closed and proper function and Ax =

b is a linear constraint.
Recently, [5] proposed an efficient primal-dual optimiza-

tion algorithm for solving (2). Via Lagrange dualization, its
dual problem is

d⇤ := max

y

d(y), (3)

where d(y) := min

x

�
f(x) + hAx � b,yi . Let x⇤ and

y

⇤ be an optimal solution of (2) and (3), respectively. Under

strong duality, we have d⇤ = f⇤. The dual function d is con-
cave but in general non-smooth. We define the smoothed dual
function:

d�(y) :=min

x

�
f(x)+hAx�b,yi+ �

2

kS(x�xc)k2
 
, (4)

where � > 0 is sufficiently small, S can be either I or A, and
xc will be specified later. For given d� and � > 0, we define
the smoothed gap function:

G��(x,y) := f(x) + (1/(2�))kAx� bk2 � d�(y). (5)

The goal is to generate a sequence {(¯xk, ¯yk, �k,�k)} such
that G�k�k(

¯

x

k, ¯yk
) decreases to zero and �k,�k also tend to

0

+. It has been proved in [6] that, if the primal-dual updates
satisfy a model-based excessive gap reduction condition, then
kA(

¯

x

k
)� bk  M

1

�k and |f(¯xk
)� f⇤|  M

2

�k for given
constants M

1

and M
2

.
In [6], two different primal-dual updates that satisfy the

model-based excessive gap reduction condition were pro-
posed, with either one primal and two dual steps (1P2D), or
two primal and one dual steps (2P1D). For conciseness, we
present only the more efficient 1P2D updates.

For given xc, y, � and S, let us denote by x

⇤
�(y,xc) the

solution of the minimization problem in (4). If S = I, solving
this problem amounts to computing the proximity operator of
f . When S = A, x⇤

�(y,xc) can be computed iteratively using
FISTA, which still requires proxf . The updates are given by:

ˆ

y

k
:= (1� ⌧k)¯yk

+ ⌧k�
�1

k (A

¯

x

k � b)

¯

x

k+1

:= (1� ⌧k)¯xk
+ ⌧kx⇤

�k+1
(

ˆ

y

k
)

¯

y

k+1

:=

ˆ

y

k
+

�k+1

L

⇣
Ax

⇤
�k+1

(

ˆ

y

k
)� b

⌘
,

(1P2D)

where L = 1 if S = I and L = kAk2
2

if S = A. The
parameters are updated as �k+1

= (1 � ⌧k)�k and �k+1

=

(1�ck⌧k)�k, where also ⌧k and ck are updated appropriately,
see [6] for further details. Now, we are ready to present a
complete primal-dual algorithm for solving (2).

Algorithm 1 Primal-dual decomposition algorithm (DecOpt)
Inputs: Choose �

0

> 0 and c
0

2 (�1, 1].
1: a

0

:= (1 + c
0

+ [4(1� c
0

) + (1 + c
0

)

2

]

1/2
)/2 and ⌧

0

:=

a�1

0

.
2: Set �

0

:= ��1

0

L.
3: Compute the initial point (¯x0, ¯y0

) as described in [6].
For k = 0 to k

max

:
4: If the stopping criterion meets, then terminate.
5: Update �k+1

.
6: Update (

¯

x

k+1, ¯yk+1

) by (1P2D).
7: Update �k+1

. Also update ck+1

if necessary.
8: Update ak+1

:= (1+ ck+1

+[4a2k+(1� ck)2]1/2)/2 and
set ⌧k+1

:= a�1

k+1

.
End For

The convergence rate of DecOpt is established by the fol-
lowing theorem.



Theorem 3.1 ( [6]). Let
�
(

¯

x

k, ¯yk
)

 
k�0

be the sequence gen-
erated by Algorithm 1 after k � 1 iterations. Then, if S = A,
we have:
a) If ck := 0 for all k � 0, �

0

:= L = 1, then for all k � 0:
⇢ kA¯

x

k�bk
2

 C1
(k+1)

2 ,

� 1

2

kA¯

x

k�bk2
2

�C
2

kA¯

x

k�bk
2

 f(¯xk
)� f?  0,

(6)
where C

1

, C
2

> 0 are defined in [6]. As a consequence, the
worst-case analytical complexity of Algorithm 1 to achieve an
"-primal solution ¯

x

k for (2) is O �
"�1/2

�
.

b) Alternatively, if S = I, we have: If �
0

:=

2

p
2L

K+1

and
ck := 0 for all k = 0, . . . ,K, then:

⇢ kA¯

x

K�bk
2

 C3
K+1

,
�C

4

kA¯

x

K�bk
2

 f(¯xK
)� f?  C5

K+1

.
(7)

where C
3

, C
4

, C
5

> 0 are defined in [6]. As a conse-
quence, the worst-case analytical complexity of Algorithm
1 to achieve an "-primal solution ¯

x

k for (2) is O �
"�1

�
.

In order to accelerate Algorithm 1, we adaptively compute
x

⇤
�k+1

(

ˆ

y

k,xk
c ): The center point xk

c is updated as x

k+1

c :=

x

⇤
�k+1

(

ˆ

y

k,xk
c ) + d

k, where d

k is the gradient descent direc-
tion obtained by linearizing the augmented Lagrangian term
hAx�b,yi+(�/2)kAx�bk2 as in preconditioned ADMM
[12]. We also set ck = 1.05 [6].

4. VARIABLE SPLITTING

In order to solve problem (1) with DecOpt, we formulate it as

minimize

x

f(x) :=
pX

i=0

fi(Aix+ bi)

subject to Ax = b.

(8)

For example, kWxk
1

can be seen as fi = k·k
1

with Ai = W

and bi = 0. We now consider the splitting xi = Aix + bi,
which leads to

minimize

x,˜x=[x

T
0 ,...,xT

p ]

T
f(˜x) :=

pX

i=0

fi(xi)

subject to Ax = b,

Aix+ bi = xi, 8i

(9)

where each function fi now depends only on the variable
xi. As seen in Algorithm 1, we need to compute the proximal
operators of f(˜x), which due to the splitting in (9), amounts
to calculating the proximal operator of each function fi(xi)

and concatenating them:

prox�f (˜x) = argmin

˜y=[y0...yp]
T

pX

i=0

�fi(yi) +

pX

i=0

1

2

kyi � xik2
2

= [prox�f0(x0

)

T , . . . , prox�fp(xp)
T
]

T (10)

With this approach we can add as many penalties as we wish
as long as their proximal operators are tractable. Furthermore,
each prox�fi(xi), can be computed in parallel, leading to sig-
nificant computational gains.

5. COMPRESSIVE MAGNETIC RESONANCE
IMAGING

Here, we describe a mixture of regularizers used in compres-
sive Magnetic Resonance Imaging (MRI) and how the pro-
posed approach can deal with these formulations. MRI is
based on reconstructing an image from its Fourier samples.
There are three types of structures that are currently used to
improve the quality of MR images: smoothness, captured by
the total variation semi-norm [14], sparsity in wavelet do-
main, measured by `

1

norm of the wavelet coefficients and
hierarchical structures over the wavelet quad-tree encoded by
group structures over the wavelet coefficients [15, 16]. Com-
bining these terms together with a standard data fit terms and
a positivity constraint leads to the following problem:

min

x�0

1

2

kMx�yk2
2

+↵kxkTV+µkWxk
1

+�kWxk
tree

, (11)

where M 2 Cm⇥N is the measurement matrix, y 2 Cm is
the measurement vector, W is the wavelet transform matrix
and x is the vectorized image that we wish to recover. The
tree norm is defined as:

kxk
tree

:=

sX

i=1

kxgik2, (12)

where gi, i = 1, . . . , s are all the parent-child pairs according
to the wavelet tree and kxgik2 is the 2-norm of the vector
consisting of the elements x indexed by gi.

To fit (11) to our model in (9), we coin the components
of the objective function as f

0

(x

0

) = kx
0

k2
2

, f
1

(x

1

) =

↵kx
1

kTV and f
2

(x

2

) = µkx
2

k
1

, whose proximal opera-
tors are well known and easy to compute. However, the
computation of proxk·ktree

is not straightforward because
the parent-child groups overlap with each other. The repli-
cation approach [17] is to define an auxiliary variable z of
size

Ps
i=1

|gi| such that z is the concatenation of xgi for all
i = 1, . . . , s and then define non-overlapping groups g̃i over
z. The matrix G performs the mapping from x to z, that is
z = Gx. We then define:

kWxk
tree

=

sX

i=1

k (GWx)g̃i
k
2

, (13)

f
3

(x

3

) = �
sX

i=1

k (x
3

)g̃i
k
2

, (14)

with the additional constraint x
3

= GWx

1

. The remain-
ing constraints are Wx

1

= x

2

and x

4

= Mx

1

� y. We



can then impose x

3

= Gx

2

. Therefore, the linear constraint
Ax = b in (9) encodes the variable splittings:

A =

2

64
W �I 0 0

0 G �I 0

M 0 0 �I

3

75 and b =

2

64
0

0

y

3

75 . (15)

Based on the Fast Composite Splitting Algorithm [18],
Chen and Huang [19] proposed the Wavelet Tree Sparsity MRI
(WaTMRI) algorithm for solving (11). However, since their
method cannot directly deal with constraints, instead of z =

GWx, they added the augmented Lagrangian term �
2

kz �
GWxk

2

with a fixed value of �, which does not guarantee
that the constraint will be met at convergence.

We compare the performance of DecOpt for solving (11)
to WaTMRI. Note that although we use the same coefficient
values for ↵, �, µ as in [19], WaTMRI addresses the aug-
mented problem without the constraint. We consider a N =

128 ⇥ 128 MRI brain image sampled via a partial Fourier
operator at a subsampling ratio of 0.2. In Fig. 1, we show
that DecOpt converges both in the objective value and in the
constraint feasibility gap. We also report the objective func-
tion obtained for WaTMRI (without including the augmented
term), which is observed to achieve a slightly lower objective
value at the expense of violating the constraint z = GWx.
We observe that our solution gives a more stable Signal-to-
Noise Ratio (SNR) performance.

6. ANALOG-TO-DIGITAL CONVERSION

We describe an application of a mixture of regularizers with
inequality constraints for improving the quality of the digital
signals obtained by analog-to-digital converters (ADC).

We consider a continuous time signal x(t) as input of
the ADC. The output is the discrete signal x[ti], where ti =
t
1

, ..., tN are the sampling times. Since the ADC has a fixed
output resolution, the output signal x[ti] is between two con-
secutive quantization levels: the low level `i and the upper
level ui. We call this range bucket. For instance, an 8 bit
ADC has 256 levels, then x[ti] can be in one of 255 buckets.
We consider 1024 samples from a random band-limited sig-
nal with cut off frequency f

cut

= 30MHz, which is amplitude
modulated (AM) with carrier frequency f

car

= 1GHz. To
simulate a real ADC with jitter noise, we add white noise to
the original signal before sampling to obtain a SNR of 30dB.
Due to quantization, the sampled signal has SNR of 28.9dB.
We expect the spectrum of the original signal to be sparse and
clustered around the carrier frequency f

car

. These properties
can be favoured by two regularization terms f

1

(x) = kDxk
1

and kDxk
TV

, where D is the Discrete Cosine Transform op-
erator and k · k

TV

is the discrete 1D Total Variation norm.
Moreover, we allow the values x[ti] to be occasionally cor-
rupted and hence lie between `i�si and ui+si, where si > 0

is a variable that accounts for bucket correction and which we

assume to be sparse. Combining all these terms, we obtain
the following optimization problem:

argmin

x,s2R1024 �
1

ksk
1

+ �
2

kDxk
1

+ kDxk
TV

subject to `� s  x  u+ s, s � 0,
(16)

where we set �
1

= 2 and �
2

= 1. The above problem can
be cast in the mixture model (9) as follows:

argmin

x,x1,x2,s,r`,ru
2ksk

1

+ kx
1

k
1

+ kx
2

k
TV

+ ��`(r`) + �u

(ru)

subject to s � 0, x

1

= Dx, x

2

= Dx

r` = x+ s, ru = x� s,

where ��`(r`) = 0 if (r`)i � `i, 8i and +1 otherwise.
Likewise for the last term.

In Fig. 2, we report the distributions of the errors for the
ideal ADC, the jittery ADC and the estimate via (16). It can
be seen that the convex estimate obtains a distribution which
is more concentrated around zero. The signal via the con-
vex problem (16) achieves a SNR of 34dB, an improvement
greater than 5dB over the quantized signal.

7. CONCLUSION

We presented the application of a general primal-dual method
for solving inverse problems via mixtures of regularizers. The
described approach not only allows a fast implementation, but
also has theoretical convergence guarantees on both the ob-
jective residual and the feasibility gap. The numerical experi-
ments show that this approach can constitute a reliable and ef-
ficient framework for dealing with decomposable constrained
convex signal processing problems in a principled and uni-
fied way. We are currently developing a general convergence
theory that explains the effects of the adaptive enhancements.
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