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ABSTRACT
The task of forensic facial experts is to assess the likelihood

whether a suspect is depicted on crime scene images. They

typically (a) use morphological analysis when comparing

parts of the facial region, and (b) combine this partial evi-

dence into a final judgment. Facial parts can be considered

as soft biometric modalities and in recent years have been

studied in the biometric community. In this paper we focus

on the region around the eye from a forensic perspective by

applying the FISWG feature list of the eye modality. We

compare existing work from the soft biometric perspective

based on a texture descriptor with our approach.

Index Terms— Soft biometrics, eye region, forensics,

FISWG

1. INTRODUCTION

The biometric community traditionally has focused on highly

discriminative modalities such as fingerprint and iris. The dis-

criminative property of fingerprints and DNA trace material

is utilized in forensic case work for (a) inclusion/exclusion

of suspects and (b) assessment of the likelihood whether a

suspect is the source of the trace material. However, in prac-

tice, trace material might only consist of for example CCTV

footage. In that case, forensic facial experts can use mor-

phological analysis on parts of the facial region and combine

the outcome of this analysis into a final assessment of the

likelihood whether a suspect is depicted on the crime scene

images. The Facial Identification Scientific Working Group

(FISWG) [1] has published several recommendations for this

comparison process, including a one-to-one checklist [2] that

summarizes properties of facial parts. Irrespective of the used

facial comparison procedure, its core feature is that it com-

bines a multitude of so-called soft biometric modalities in-

stead of one highly discriminating biometric modality. In re-

cent years, soft biometric modalities have been studied exten-

sively in the biometric community.

This paper focuses on the eye region and combines the foren-

sic approach as described in [2] with a texture based approach

as found in biometric literature on the periocular region. A

formal anatomical definition of the periocular region does not

exist. Often the area around the eye (possibly including the

eyebrow and the eyeball) is meant. The goal of this paper is

to assess (a) the feasibility of FISWG eye features for ver-

ification purposes and (b) how their performance relates to

existing texture based feature representation. Although real

forensic casework typically involves low quality trace mate-

rial, the feasibility assessment is done on a limited subset of

the FRGCv2 dataset. Therefore, this investigation is prelim-

inary and its results should be considered indicative. Anno-

tation of forensic characteristic details can be an eloborate

process, but is not unrealistic in a forensic setting.

This paper is organised as follows. In Section 2 we discuss a

selection of related work on the periocular region and describe

the FISWG eye features. The methodology is discussed in

Section 3, where as in Section 4 the data preparation, FISWG

descriptor extraction, and experiments are described. Section

5 discusses the results and finally in Section 6 conclusions are

drawn.

2. RELATED WORK

Before the emergence of the periocular region as a soft bio-

metric modality, the meticulously detailed eye region model

[3] was introduced as a generative model that is ”capable

of detailed analysis (...) in terms of the position of the iris,

(...) eyelid opening, and the shape, complexity, and texture

of the eyelids.” Mainstream interest in the periocular region

as a soft biometric modality was sparked by [4]. This pa-

per combines a local (SIFT) and global approach (HOG/LBP

texture description on an array of image patches) into a peri-

ocular feature set. Tests were conducted on a specially con-

structed dataset of 30 subjects and approximately 900 images

and on a subset of FRGCv2 consisting of 1704 facial images.

It was found that manually selected periocular regions that in-

clude the eyebrow area and the eyeball give the highest rank-

one accuracy rates. Subsequent research has mainly focused

on performance under non ideal conditions, alternative tex-

ture descriptors and recognition by humans. For example,

[5, 6] investigate the performance of uniform LBP (ULBP)

and the influence of image quality on the performance, [7]
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Table 1. Sublist FISWG characteristic eye components and

their descriptors. R/L denotes right/left eye. The prefix in the

enumeration refers to (D)erived or (A)nnotated Characteristic

Descriptors

Component charasteristic Characteristic Descriptors
Inter-eye distance (D1) Distance R/L eye

R/L Fissure Opening (A1) Shape

(D2) Angle

R/L Upper Eyelid (A2) Superior palperal fold

(A3) Folds

(A4) Epicanthic fold

(A5) Lashes

R/L Lower Eyelid (A6) Lashes

(A7) Folds

(A8) Inferior palperal fold

(A9) Infraorbital furrow

R/L Sclera (A10) Blood

(A11) Defects

(D3) Colour

R/L Iris (A12) Shape

(D4) Position, diameter

(D5) Colour

(A13) Shape pupil

(D6) Pupil pos., diameter

R/L Medial canthus (A14) Shape caruncle

(D7) Angle inner eye

R/L Lateral canthus (D8) Angle outer eye

uses LBP after a (frequency) transformation of the periocular

region, and [8] uses the GIST descriptor. Advanced versions

of LBP as 3P-LBP, and hierarchical 3P-LBP [9] are also uti-

lized, yielding a rank-one accuracy of 98% on the challenging

Notre Dame twins database [10]. The studies on identifying

useful recognition features [11] and the performance of hu-

man recognition [12] are particularly interesting as they give

insight into what clues humans use during their recognition

process. In this paper we choose the ULBP texture descriptor

as a representative of the texture descriptors that work well

under ideal conditions.

The FISWG description of the eye contains an extensive list

of characteristic features. In our work we have identified

a large sub set of these features. Some of the features are

dropped, because they overlap with other features or follow

implicitly from other features. The sub set is shown in Table

1. Each characteristic descriptor is either annotated or derived

from annotation. We refer to [2] for the complete list.

3. METHODS

Each annotated characteristic descriptor (A1)-(A14) listed in

Table 1 is represented by a 2D point cloud. These point

Fig. 1. Example appearance based features

Table 2. Representation of non-appearance features

Non-appearance feature Representation
(D1) Distance R/L eye R+

(D2) Angle eye [0, 360] (◦)

(D3) Colour sclera [0, 255]3(RGB)
(D4) Position, diameter iris R

2 × R+

(D5) Colour Iris [0, 255]3(RGB)
(D6) Position, diameter pupil R

2 × R+

(D7) Angle inner eye [0, 360] (◦)

(D8) Angle outer eye [0, 360] (◦)

clouds use the same coordinate system in which the right and

left medial canthi are mapped to (-1, 0) and (1,0), rectifying

the face representation. This is advantageous for the calcu-

lation of the derived characteristic descriptors since some of

them mandate a rectified face representation. Some of the

point clouds represent a shape, while other designate notice-

able artifacts. Although parametric or more general shape de-

scriptors such as Fourier Descriptors can principally be used

for the former case (see for example our work [13] on the

eyebrow modality), initial experiments yielded unsatisfactory

results. We instead adopt an appearance based approach for

all the annotated characteristic descriptors. An example of

these appearance based features is shown in Figure 1. Instead

of directly superimposing the point clouds of two images, we

define a clipping region [−4, 0]× [−2, 2] for the right eye and

[0, 4] × [−2, 2] for the left eye. By using a 2D binary bin of

size 45× 45 for each eye region, every annotated point is as-

signed to a bin. These values are found empirically: the bin

size is a trade-off between precision and robustness. In or-

der to determine the influence of the 14 constituent annotated

characteristic descriptors the same approach is used.

The derived characteristic descriptors form the non appear-

ance based features and their representation is shown in Table

2. In order to compare the verification performance with ex-

isting periocular literature we use two highly related ULBP

approaches. In the first approach we use the original 7 × 5
grid arranged around the iris as described in [4] for 35 ULBP

histograms of 59 bins each. The advantage is that we can

compare a basic version of the original descriptor with our ap-
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Fig. 2. Example annotation lower eyelid. Annotation from top

to bottom are lashes, folds, inferior palperal fold, and infraor-

bital furrow.

proach. The disadvantage is that it contains the eyebrow area,

an area with characteristic features that are not taken into ac-

count in our approach. We therefore also use a version that

operates on a region of the same size, but shifted downwards

with 1.5 bins above and 3.5 bins below the vertical position

of the iris center. The original images are gray scaled and rec-

tified based on their medial canthi using bicubic interpolation

before ULBP is applied.

4. EXPERIMENTS

4.1. Data preparation and descriptor extraction

For this paper we randomly selected a subset of the FRGCv2

database consisting of 10 persons, 4 images per person from

the Spring 2003 session. All images were taken under condi-

tioned illumination and neutral expression. A dedicated an-

notation tool has been developed in Java. The characteristic

descriptors (A1)-(A14) can be annotated in this tool. The user

can select and zoom in on parts of the face. An example an-

notation is shown is Figure 2. The user also manually selects

six landmarks on the face: (1) right earlobe connection to the

head, (2) right lateral canthus, (3) right medial canthus, (4)

left medial canthus, (5) left lateral canthus, and (6) left ear-

lobe connection to the head. Annotation is stored as a col-

lection of points together with the type of characteristic de-

scriptor. The remaining characteristic descriptors (D1)-(D8)

are calculated based on the landmarks and annotation. The

width of the face is estimated by the intra earlobe landmark

distance. The inter-eye distance (D1) is calculated as the dis-

tance between the right and left medial canthus in terms of

the width of the face. The angle of the eyes (D2) is estimated

from the medial and lateral canthi positions. The position and

diameter of the iris (D4) are calculated by minimizing the ge-

ometric distance [14] to the annotation (A12), the estimation

of (D6) is similarly based on (A13). The iris colour (D5) is

determined by averaging the colours of the pixels that lie (a)

in the fissure opening (A1), (b) in the estimated iris (D4), and

(c) outside the estimated pupil (D6). An additional automatic

post processing step removes bright artifacts in the iris caused

by studio lighting. The color of the sclera is also determined

by averaging the colours of pixels that lie (a) in the fissure

opening (A1), (b) outside the estimated iris (D5), and (c) out-

side the caruncle (A14). The inner (D7) angle is estimated by

the following procedure: the fissure shape is partitioned into

two sets that lie above and below the line segment between

the medial and lateral canthus. From those two sets the points

that lie outside the proximity of the medial canthus (radius of

10% of the eye width) are removed. The remaining two sets

are least squares linearly interpolated and the resulting slopes

determine the inner angle. The estimation for the outer angle

(D8) is similar.

4.2. Experiments

We define three experiments. In Experiment 1 we assess the

verification performance of the appearance based features as

a group and compare that with the texture based ULBP ap-

proaches. In this experiment we use the sum of squared dif-

ference and the χ2 score function. The latter score function

is often employed in the LBP case, and is equivalent to the

sum of squares differences score function in the (binary) ap-

pearance based features approach. In Experiment 2 we de-

termine the verification performance of the appearance based

features separately. In Experiment 3 we focus on the verifi-

cation performance of the non-appearance based features. In

Experiment 2 and 3 we use the sum of squares score function.

All experiments are conducted on the right and left eye. All

presented results are fused on score level by using min-max

scaling and sum fusion.

5. RESULTS

In Experiment 1, we compare the verification performance of

the appearance approach versus the ULBP and shifted ULBP

measured in terms of AUC, resulting in resp. 0.966, 0.926,

and 0.919 in the case of the sum of squares score function.

We notice that the appearance based method seems to perform

slightly better than the texture based methods. However, this

difference disappears when the three approaches use the χ2

score function. In that case the AUC’s are resp. 0.966, 0.970,

and 0.966. In both cases one might have expected a lower

AUC value for the shifted ULBP relative to the AUC value of

the original UBLP as the former contains ”less” information

than the latter one. However, the measured differences seem

insignificant. The ROC curves of Experiment 1 are shown in

Figure 3a.

The results of Experiment 2 (separate appearance based fea-

tures) are shown in Table 3. Apart from two trivial outcomes

(0.500 in the cases of (A4) Epicanthic fold and (A10) Sclera

Blood, caused by absence of annotation) the values of the
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Fig. 3. Selection of performances of Experiments 1, 2, and 3. The SSD (resp. χ2) refers to the sum of squared differences (resp.

χ2) score

Table 3. Performance appearance features in terms of AUC

Appearance feature AUC
(A1) Fissure Shape 0.851

(A2) Superior palperal fold 0.820

(A3) Upper Folds 0.758

(A4) Epicanthic fold 0.500

(A5) Upper Lashes 0.808

(A6) Lower Lashes 0.915

(A7) Lower Folds 0.754

(A8) Inferior palperal fold 0.882

(A9) Infraorbital furrow 0.824

(A10) Sclera Blood 0.500

(A11) Sclera Defects 0.787

(A12) Shape Iris 0.957

(A13) Shape Pupil 0.941

(A14) Shape Caruncle 0.762

AUCs vary between 0.754 and 0.957. Surprisingly, the shapes

of the iris and the pupil yield the top two AUC values. The

shapes reveal the position and size of these modalities and ap-

parently represent a discriminating property. Although every

(non-)appearance based feature is easily changed, especially

the iris and pupil positions can change instantaneously just

by gazing away from the camera. Also the lower lashes, in

comparison to the upper lashes, are performing well. This

difference might be explained by the fact that upper lashes

(a) tend to cover the whole upper fissure opening and (b)

are quite dense in their distribution. In contrast, lower lashes

when traversing from the medial to the lateral canthus (a) of-

ten start around the projection of the iris on the lower fissure

opening and (b) exhibit a more sparse distribution. The latter

property implies that the lower lashes have a potential to be

more ”unique”. These observations are also illustrated by the

annotation example in Figure 2. A similar difference can be

Table 4. Performance non-appearance features in terms of

AUC

Non-appearance feature AUC
(D1) Distance R/L eye 0.789

(D2) Angle eye 0.700

(D3) Colour sclera 0.726

(D4) Position, diameter iris 0.956

(D5) Colour Iris 0.714

(D6) Position, diameter pupil 0.868

(D7) Angle inner eye 0.773

(D8) Angle outer eye 0.623

observed between the two outlines of the eyelids (Superior

palperal and Inferior palperal folds): again, the lower part

seems more ”unique”. Apart from the shape of the fissure

opening, the remaining four appearance based features AUC

fall below 0.800. The study presented in [11] indicates that

humans found the eyelashes, tear duct (caruncle), eye shape

(fissure opening) and the eyelids most helpful in their identity

decision making process while using near-infrared images.

This result is clearly reproduced in this study, with one no-

ticeable exception: the caruncle. This might be explained by

the difference in the representation of this modality. In our

approach only the shape drawn on a limited resolution image

exhibiting reflection artifacts (see Figure 2) is taken into ac-

count, whereas in [11] the use of the near-infrared spectrum

and high resolution demarcates the caruncle very well. In Fig-

ure 3b ROC curves of the three best performing appearance

based features (iris, pupil, and lower lashes) are shown.

Finally, the verification performance of the non-appearance

based features are measured in Experiment 3 and are shown

in Table 4. The top two performing modalities are the iris

and pupil positions and confirm the performance of their ap-

pearance based counterparts. It also indicates that the im-

plicit location and size information contained in annotation
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data yield this performance, while other implicit information

like fissure opening contributes less. The next best perform-

ing feature is the inter-eye distance. Although a very sim-

ple measure, it performs relatively well. This is caused by

the fact that the localization of the medial canthi is very ro-

bust. However, its value expressed as a relative measure can

be hampered by approximate localization of the earlobe po-

sitions. The inner angle is much more stable than the outer

angle, as the localization of the lateral canthi is less robust.

This also explains the lower AUC value for the angle of the

eyes. Finally, the iris and sclera colours are not very convinc-

ing non-appearance features. Overall, the verification perfor-

mance of the non-appearance features is generally inferior to

the appearance based features. ROC curves of the three best

performing non-appearance based features are shown in Fig-

ure 3c.

6. CONCLUSION

In this paper, we have studied the feasibility of FISWG eye

features for verification purposes and how their performance

relates to a representative of a texture based feature repre-

sentation. We find that some of the FISWG features work

well (iris, pupil position, either appearance of non-appearance

based, lashes, fissure shape), while others are less convinc-

ing. Especially the non-appearance features that measure an

angle or colour do not perform well. This is in line with a

FISWG recommendation ”(photo-)anthropometry has limited

discriminating power”. Using semantically important infor-

mation such as the FISWG feature set can yield verification

performances comparable to texture based methods. Finally,

we are very aware that this study has been conducted on a

limited subset, so its results should considered indicative.
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