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ABSTRACT
In this paper we propose a segmentation of finite support se-
quences based on the even/odd decomposition of a signal.
The objective is to find a more compact representation of
information. To this aim, the paper starts to generalize the
even/odd decomposition by concentrating the energy on ei-
ther the even or the odd part by optimally placing the centre
of symmetry. Local symmetry intervals are thus located. The
sequence segmentation is further processed by applying an it-
erative growth on the candidate segments to remove any over-
lapping portions. Experimental results show that the set of
segments can be more efficiently compressed with respect to
the DCT transformation of the entire sequence, which corre-
sponds to the near optimal KLT transform of the data chosen
for the experiment.

Index Terms— Symmetry, 1-D segmentation, signal de-
composition, compact representation, compression.

1. INTRODUCTION

Classifying and labeling signals is of utmost importance. Ap-
plications range from anomaly detection [1] to event classi-
fication [2] and more [3]. Typically, the approach involves
steps such as extracting features, measuring stochastic prop-
erties, looking for patterns, measuring correlations, comput-
ing fractal dimensions. . . [4] [5] [6]. Traditionally, these ap-
proaches only indirectly or do not at all involve exploiting
inherent symmetry properties that may be present in many
signals, e.g. locally periodic waveforms, luminance variation
along a particular direction in a natural image. . . In addition,
exploiting inherent symmetries in signals may also improve
the signal coding efficiency.

Fourier or multiresolution representations have been con-
ceived and lead to sparse representation of the information,
hence improving compression. This has turned out also use-
ful for tasks such as denoising [7]. Even/odd decomposition
is consistent with the simplest decomposition which is pro-
posed for signal manipulation [8]. As a matter of fact, due to
the resulting intuitive geometrical interpretation and the par-
ity preservation of the Fourier transform, even/odd decompo-
sition is omnipresent in signal processing.

This paper presents a new methodology to effectively rep-
resent a 1-D signal, based on the even/odd decomposition of
the signal around its local symmetry points. To do so, a signal

is segmented into adjacent, variable length intervals in which
strong symmetry characteristics exist. We argue that operat-
ing this segmentation leads to a compact representation, and
we prove it by showing how individually compressing those
intervals achieves better performance than compressing the
whole signal using a linear transformation of the data.

The rest of the paper is organized as follows. Section 2
derives a method for finding the globally optimum symmetry
point for a 1-D continuous-time, finite support signal, in the
process extending the definition of even/odd decomposition
to arbitrary points. This analysis is extended to digital se-
quences in Section 3. Then, Section 4 presents the algorithm
that we devised to segment a discrete sequence into multiple
near-symmetric sub-sequences, using the theoretic approach
described in the previous sections and the application of an
iterative process to remove overlapping intervals. Experimen-
tal results are obtained showing the effectiveness of this type
of representation in terms of compression performance with
respect to a traditional decorrelating linear transformation of
the data: these are reported in Section 5. Conclusions are
finally drawn in Section 6.

2. GLOBALLY OPTIMAL CONTINUOUS
SYMMETRY

Let us consider a continuous-time, real-valued, finite-energy
signal x(t). For simplicity, we shall assume without loss
of generality that the signal has finite support and is time-
centered, i.e. with support [−T, T ]. The well known parity
decomposition of a signal states that x(t) can be expressed
as the sum of its even and odd parts, respectively xe(t) and
xo(t), given by:

xe(t) =
x(t) + x(−t)

2
; xo(t) =

x(t)− x(−t)
2

(1)

The energy E is defined as the squared Euclidean norm of the
signal x(t) and it is easy to see that:

E =

∫ T

−T
|x(t)|2dt =

∫ T

−T
|xe(t) + xo(t)|2dt = (2)

=

∫ T

−T
|xe(t)|2dt+

∫ T

−T
|xo(t)|2dt = Ee + Eo

since the even and odd parts are orthogonal. An example of
such decomposition is shown in Fig. 1.
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Fig. 1: An example of standard parity decomposition, T = 1.

The new representation does not increase the temporal
support needed to reconstruct the original signal. In fact, the
parity property of the even and odd parts implies that even if
they both have the same support of the original signal, only
e.g. their causal part is informative and thus sufficient to de-
scribe the entire signal. If the original signal x(t) is of a in-
herently even (resp. odd) shape, almost all of its energy will
be carried by its even (resp. odd) part (in Fig. 1 the former
case applies). It is also advisable to cancel the input mean,
since all the DC energy is carried just by the even part.

There are some cases where the parity decomposition as
defined in Eq. (1) has no effect even if the original signal has
simple parity characteristics because its center of symmetry is
not in the origin. The reason is that the parity decomposition
as defined above only considers the parity characteristics with
respect to the time origin t = 0.

So, let us extend the definition of parity decomposition to
allow an arbitrary symmetry point t = t0. In this case, we
have:

xe(t; t0) =
x(t) + x(2t0 − t)

2

xo(t; t0) =
x(t)− x(2t0 − t)

2
x(t) = xe(t; t0) + xo(t; t0) (3)

and we fall back to the standard case by setting t0 = 0. Still
assuming that the original signal x(t) has support [−T, T ],
after even/odd decomposition with respect to t0 the (non-
informative) support of both xe(t) and xo(t) is no more T
but T + 2|t0|. However, the informative support is still T
since the added support simply mirrors part of the signal con-
fined in the informative support. Thus, the price to pay for
searching for the best possible decoupling of the energies Ee

and Eo is just increased complexity using the same support
T . Note that Eq. (2) for the computation of energies is still
valid, provided that the extremes of integration are changed
to reflect the increased (non-informative) support of the even
and odd signals.

We want to find the global optimal symmetry point t0,
that represents the time instant for which there is a maximum

energy decoupling between the even and odd parts. Since the
energies Ee and Eo are now function of the parameter t0, but
still constrained by Eq. (2) to have sum E, both possess the
same extrema points. The globally optimal symmetry point
t′0 corresponds to the minimum of either Eo or Ee (i.e. the
maximum of Ee or Eo).

To find t′0, let us concentrate on the extrema points of the
energy of the even part. Its derivative w.r.t. t0 is:

dEe

dt0
=

d

dt0

∫ +∞

−∞
|xe(t; t0)|2 dt = (4)

=
d

dt0

∫ +∞

−∞

∣∣∣∣x(t) + x(2t0 − t)

2

∣∣∣∣2 dt =
=

1

4

d

dt0

∫ +∞

−∞
[ |x(t)|2 + |x(2t0 − t)|2 +

+2x(t)x(2t0 − t)]dt

where we extended the integral on the whole real axis for sim-
plicity of notation. The first two terms in the last integral give
E as a result, since reversing the time axis and the origin do
not influence the energy value, thus they are both independent
from t0. Thus:

dEe

dt0
=

1

2

d

dt0

∫ +∞

−∞
x(t)x(2t0 − t)dt (5)

Exchanging the order of derivation and integration and then
using the usual definition for the linear convolution of two
energy signals we obtain:

dEe

dt0
= (x ∗ x′)(2t0) = −

dEo

dt0
(6)

So, candidate extreme points can be determined by convolv-
ing the signal with the derivative of its conjugate, finding the
zero-crossing points and then dividing by 2. A local min-
imum for Ee corresponds to a local maximum for Eo and
vice-versa. To find the global minimum between Ee and Eo

it is not sufficient to look for the global minimum for Ee but
one must consider as well its global maximum (i.e. the global
minimum of Eo). t′0 is then declared to correspond to the lo-
cation that leads to the global minimum between Ee and Eo.

3. GLOBALLY OPTIMAL DISCRETE SYMMETRY

In the 1-D discrete case, Eq. (3) becomes:

xe[n;n0] =
x[n] + x[2n0 − n]

2

xo[n;n0] =
x[n]− x[2n0 − n]

2
x[n] = xe[n;n0] + xo[n;n0] (7)

The symmetry point n0 cannot be arbitrary but has to cor-
respond to either a sample (i.e. integer) or to a half-sample
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Fig. 2: Block diagram describing the whole process.

position. First, let us suppose that the input sequence x[n] has
finite duration, that is without loss of generality x[n], n =
1, . . . , L. Then n0 = k

2 , k ∈ {2, . . . , 2L}. When k is
odd (resp. even) then the folding point corresponds to a half-
sample (resp. integer) position. It is clear that the odd and
even parts may not have the same length, that depend on the
associated n0. Eq. (2) is still valid, provided the integration
operator is substituted by the summation one.

Again, searching for the optimal symmetry point consists
in choosing the position that lets either Ee or Eo be the global
minimum. For the discrete case, it is better to evaluate the
energy of the even sequence rather than its derivative. Thus:

Ee =

+∞∑
−∞
|xe[n;n0]|2 =

+∞∑
−∞

∣∣∣∣x[n] + x[2n0 − n]

2

∣∣∣∣2 =

=
1

4

+∞∑
n=−∞

|x[n]|2 + |x[2n0 − n]|2 + 2x[n]x[2n0 − n] =

=
1

2
E +

1

2

2n0∑
1

x[n]x[2n0 − n] (8)

where [1, 2n0] is the non-null support of the product in the
summation. The energy of the odd part Eo has the same ex-
pression provided the sign of the summation in the last row
is changed. Using the definition of convolution for energy
sequences yields:

Ee =
1

2
E + (x ∗ x)[2n0] (9)

Eo =
1

2
E − (x ∗ x)[2n0]

so in the end we need to compute the auto-convolution of
x[n]. The optimal candidate locations can thus be derived
from:

2n0 = arg max
m

|(x ∗ x)[m]| (10)

4. LOCALLY OPTIMAL DISCRETE SYMMETRY

In this section we use the approach proposed in Section 3 to
identify, for an arbitrary sequence x[n], maximal support seg-
ments that exhibit near perfect even or odd local symmetries.
The objective is to find non-overlapping segments displaying
strong symmetry traits that cover at least a good portion of the
sequence, so that their identification provides for a significant

information reduction. The procedure is derived from the the-
ory outlined previously. It takes four steps, as shown by the
flow diagram of Fig. 2. First, in order to locate possible even
or odd symmetry points, we compute the auto-convolution
of x[n]. All local extrema become candidate points (Fig. 3),
whose positions are stored in a list ~P .

In the second stage of Fig. 2, we determine the extent of
the symmetry degree around each candidate location, say the
i-th location Pi. Two parameters must be set for this process:
the minimum symmetry support ml and the even/odd energy
ratio threshold pt, with 0.5 < pt ≤ 1. At this point, a tentative
segment consisting of a sub-sequence y[n] with support ml

centered around Pi is selected. Then, the even/odd decompo-
sition of y[n] with respect to Pi is carried out, including mean
removal, computing the Ey , Eye

and Eyo
, which represent

the energies of y[n] and of its even and odd decomposition
respectively. To classify y[n] into an even or odd symmetric
segment, we check whether the energy ratio Eye

/Ey ≥ pt
or Eyo

/Ey ≥ pt. If neither condition is verified, Pi is re-
moved from the list of the candidate locations. Alternatively,
we gradually increase the support of the sub-sequence y[n]
and repeat the process as long as the energy ratio remains
larger than pt. The maximum support for which the latter
condition applies is stored as Mi. This operation allows to
track the exact extent of the local symmetry around the candi-
date point Pi, by that identifying a candidate segment. Thus,
the support of the considered candidate segment can assume
a value anywhere from the minimum support ml to Mi.

Intuitively, we should consider good segments for the se-
quence x[n] (that is, those with the most comprehensive local
symmetries) as the candidate segments around every surviv-
ing positions in ~P with the largest possible supports Mi. A
complete overlap, i.e. a candidate segment is entirely included
in another candidate segment, can be retained since it can of-
fer a relevant hierarchy of the symmetric nature of the data.
For example, in images an eye falls within a larger symmetric
portion of the face (see also Fig. 5). However, a partial over-
lap between candidate segments is to be avoided and therefore
we need to crop such overlapping areas.

The next step shown in Fig. 2 concerns which segments
to keep and how to choose their support, removing their over-
laps. All symmetry locations are examined, from left to right,
and each candidate segment that overlaps with one or more
neighboring segment is analyzed in turn. In particular, it is
necessary to define a priority criterion to help choosing which
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(a) Pixel luminance values of a row of the Lena image.
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Fig. 3: In (b) it is shown the auto-convolution of a row of
Lena, depicted in (a). Relative maxima and minima identify
candidates for resp. even and odd symmetry locations.

candidate segments need to be shortened or completely re-
moved to avoid partial overlapping. Possible criterions can
be (i) longest segment support (Mi), (ii) highest energy ratio
or (iii) highest energy ratio on same-support segments.

According to the first criterion, if the considered candi-
date segment presents the largest support in a set of overlap-
ping regions, the latter have their support decreased until they
are no longer overlapping with the segment of interest; oth-
erwise, the considered segment is the one that is to be short-
ened. The same happens with the second criterion, however
the deciding factor in this case is the highest energy ratio. Of
course, if the support of a given segment goes under ml, it
is altogether removed (although possibly just temporarily, see
below). The third criterion is a bit more complicated, but it
helps preserving the best local symmetry of the data. Among
the overlapping candidate segments, the largest common sup-
port is chosen and applied to the whole set (thereby shorten-
ing the other segments to the same support). Then, the second
criterion based on the highest energy ratio is applied to these
equally long segments.

After the third stage of Fig. 2, no overlapping segments
are present. One last operation remains. In fact, during the
removal of overlaps, a segment A can be deleted in favor of
segment B, and segment B, in turn, can be deleted in favor of
segment C. If in the end there is no overlap between A and
C, we must reactivate segment A because it was erroneously
canceled by a previous segment that has since been removed.
Since this procedure can recreate some overlaps, the overlap
removal algorithm must be iterated. The process ends when
the segment list converges to a stable state (i.e. when no more
changes occur during an iteration), that is guaranteed to hap-
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Fig. 4: Two cases: (a) shows a partial overlap between candi-
date segments, that is to be removed. In (b) there is a multiple
total overlap of a segment’s support w.r.t. another one, which
is instead useful to construct a hierarchy of symmetries.

pen by the algorithm structure, in general within 10 iterations.

5. EXPERIMENTAL RESULTS

First, we report in Fig. 5 the result of the algorithm for the
search of locally optimal symmetries applied to the sequence
shown in Fig. 3a. In particular we highlight the hierarchy of
local even and odd symmetries reflected by smaller segments
contained into longer segments.

Next, we perform a preliminary evaluation on how seg-
mentation of the sequence driven by local symmetries can
support the design of compact transformations for certain
types of data, which might help compacting the information.
Accordingly, we compare the traditional 1-D DCT applied
on length 8 sequences (representing rows of natural images)
with the 1-D DCT applied on the variable length segments
centered around the local symmetries. We used the length
8 DCT since it is a well-known decorrelating transform for
natural images.

The following steps have been applied to the rows of the
Lena image. First, we perform the search for local even/odd
symmetries, extracting locations and corresponding supports
(adopting one of the three priority criterions). Then, the
even/odd decomposition is applied and the first half of the
samples resulting from it are stored. Last, the 1-D DCT
is computed on all halved length even and odd sequences
present in the analyzed row. The process has been applied to
all the rows of the image to be statistically representative.

Experimental results show that, for each row, all symmet-
ric segments cover almost entirely any given row. It is a rare
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Fig. 5: Three hierarchical levels of symmetry. Here, the third
criterion has been used using ml = 8 and pt = 0.95. The
legend of Fig. 4 applies here as well.

occurrence that isolated samples are not part of any segment.
In addition, when the first priority criterion described in Sec-
tion 4 is employed, even less isolated samples occur as a re-
sult of adopting the highest possible segment support as the
deciding factor.

In Fig. 6 we show the performance of the described pro-
cedure compared to a classical 1-D DCT applied on length 8
sequences. The PSNR curve has been produced by adjusting
a uniform quantizer step size applied to the DCT coefficients.
This curve is almost identical when the first or the third crite-
rion of Section 4 are employed while the performance of the
second one is slightly lower, indicating how the energy ratio
alone is probably inappropriate to finalize segmentation. Rate
values take into account the encoding of the even or odd type
of symmetry of each segment and its location, including the
encoding of its symmetry point and its support.

6. CONCLUSIONS

In this paper we presented a method to identify segments in
a 1-D sequence connoted by inherent local symmetry. First,
local extrema of its auto-convolution are identified and then
the presence of symmetry around them is verified applying
one of three possible criterions. A segmentation is obtained
by performing an iterative procedure to remove any overlap-
ping between candidate segments. The experimental results
show that this representation achieves good compression for
the whole sequence.

Current work focuses on studying a transform for the seg-
ments to replace the DCT as a second stage, tailored in partic-
ular to deal with variable length sub-sequences and their spe-
cific correlation. In addition, the extension of the algorithm
to the 2-D domain, with the added complexity it introduces,
is the subject of currently undergoing studies.
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Fig. 6: Mean rate-distortion for the rows of Lena. Applying
1-D DCT on the even/odd decompositions provides more ef-
fective encoding if compared to a traditional 1-D DCT.
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