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ABSTRACT

Saliency prediction for Standard Dynamic Range (SDR)
videos has been well explored in the last decade. Howev-
er, limited studies are available on High Dynamic Range
(HDR) Visual Attention Models (VAMs). Considering
that the characteristic of HDR content in terms of dynamic
range and color gamut is quite different than those of SDR
content, it is essential to identify the importance of differ-
ent saliency attributes of HDR videos for designing a
VAM and understand how to combine these features. To
this end we propose a learning-based visual saliency fu-
sion method for HDR content (LVBS-HDR) to combine
various visual saliency features. In our approach various
conspicuity maps are extracted from HDR data, and then
for fusing conspicuity maps, a Random Forests algorithm
is used to train a model based on the collected data from
an eye-tracking experiment. Performance evaluations
demonstrate the superiority of the proposed fusion method
against other existing fusion methods.

Index Terms— High Dynamic Range video, HDR,
visual attention model, saliency prediction

1. INTRODUCTION

When watching natural scenes, a large amount of visual
data is delivered to Human Visual System (HVS). To
efficiently process this information, the HVS prioritizes
the scene regions based on their importance, and performs
in-depth processing on the regions according to their asso-
ciated priority [1]. Visual Attention Models (VAMs) eval-
uate the likelihood of each region of an image or a video
to attract the attention of the HVS. Designing accurate
VAMs has been of particular interest for computer vision
scientists as VAMs not only mimic the layered structure
of the HVS, but also provide means to dedicate computa-
tional resources for video/image processing tasks effi-
ciently. In addition VAMs are used for designing quality
metrics as they allow quantifying the effect of distortions
based on the visual importance of the pixels of an image
or video frame.
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Over the last decade, saliency prediction for Standard
Dynamic Range (SDR) video has been well explored.
However, despite the recent advances in High Dynamic
Range (HDR) video technologies, limited amount of work
on HDR VAM exists [2, 3]. Considering that the SDR
VAMs are designed for SDR video and do not take into
account the wide luminance range and rich color gamut
associated with HDR video content, they fail to accurately
measure the saliency for the HDR video [2, 3].

VAMs are mostly designed based on Feature Integra-
tion Theory [4]. Various saliency attributes (usually called
conspicuity or feature maps) from image or video content
are extracted and combined to achieve an overall saliency
prediction map. To combine various feature maps to a
single saliency map, it is a common practice in the litera-
ture to use linear averaging [5]. Different weights may be
assigned to different features. In a study by Itti et al. [5] to
combine various feature maps, a Global Non-Linear Nor-
malization followed by Summation (GNLNS) is utilized.
GNLNS normalizes the feature maps and emphasizes on
local peaks in saliency. Unfortunately it is not clearly
known that how the HVS fuses various visual saliency
features to assess an overall prediction for a scene. Mo-
tion, brightness contrast, color, and orientation have been
identified as important visual saliency attributes in litera-
ture [2, 5-8]. Considering that the characteristic of HDR
content in terms of dynamic range and color gamut is
quite different than SDR content, it is important to inves-
tigate the importance of these saliency attributes for de-
signing a HDR VAM.

In this paper, our objective is to model how the HVS
fuses various visual saliency features of HDR video con-
tent and identify the importance of each feature. In our
implementation, we extract motion, color, intensity, and
orientation saliency features as suggested in Dong’s bot-
tom-up HDR saliency prediction approach [2]. Once the
feature maps are extracted, we use a Random Forests (RF)
algorithm [9] to train a model using the results of an eye-
tracking experiment over a large database of HDR videos
(watched on a HDR prototype display). This model effi-
ciently combines different HDR saliency features, and
provides robustness and flexibility to add new features, or
reduce the features and keep the most important features
through feature importance analysis. The effectiveness of
the proposed Learning Based Visual Saliency (LBVS-
HDR) fusion model is demonstrated through objective
metrics and visual comparison with eye-tracking data.



The rest of this paper is organized as follows: Section
2 elaborates on our methodology, Section 3 explains the
specifications of the HDR video database and the eye-
tracking experiments procedure, Section 4 includes the
evaluation results and discussions, while Section 5 con-
cludes the paper.

2. METHODOLOGY

This section first elaborates on various saliency features
used in our study, and then describes our proposed Learn-
ing Based Visual Saliency fusion model.

2.1. HDR saliency attributes

The HDR saliency features used in our approach are mo-
tion, color, brightness intensity, and texture orientations,
as suggested by the state of the art VAMs for SDR [5] and
HDR [2]. For taking into account the color and luminance
perception under wider HDR luminance range, before the
feature channels are extracted, the HDR content is pro-
cessed using the proposed HDR HVS modeling module
by Dong [2]. This HDR HVS modeling module consists
of three different parts (see Fig. 1):
 Color Appearance Model (CAM): accounts for colors

being perceived differently by the HVS under different
lighting conditions [10-12]. The HDR HVS modeling
module uses the CAM proposed by Kim et al. [11] as
it covers a wide range of luminance (up to 16860
cd/m2) [11]. Using this CAM, two color opponent sig-
nals (red-green (R-G) and yellow-blue (B-Y)) are gen-
erated, which then form the color saliency features
(see [2, 11] for more details).

 Amplitude Nonlinearity: models the relationship be-
tween the physical luminance of a scene with the per-
ceived luma by HVS (unlike the SDR video, the lumi-
nance is not modeled by a linear curve for HDR vid-
eo). The luminance component of the HDR signal is
mapped to a so-called luma values using Just Noticea-
ble Difference (JND) mapping of [13].

 Contrast Sensitivity Function (CSF): accounts for the
variations of the contrast sensitivity at different spatial
frequencies. The HDR HVS modeling module uses the
CSF model of Daly [14].

Once the HDR content is processed by Dong’s HDR
HVS modeling module [2], different parallel feature
channels (namely motion, color, brightness intensity, and
texture orientations) are extracted. As suggested in [3], for
extracting motion feature map, an optical flow based ap-
proach is used (residual flow detection method of [15,16])
to ensure high performance in bright image areas and
minimize the effect of brightness flickering between video
frames. For each of the color, intensity and orientation
features as proposed in [2, 5], a Gaussian pyramid is built
in different scales and these pyramids are later combined
across scales to form a feature map. Once feature maps
are generated, they need to be fused to create a Spatio-
temporal Map. In our study we propose to use a Random

Forests-based fusion approach to imitate HVS Spatial-
temporal information fusion (see Fig. 1). The following
subsection elaborates on our feature fusion approach.

2.2. Our feature fusion approach

The existing visual attention models, which are based on
the Feature Integration Theory, extract several saliency
features and combine them to one saliency map. As previ-
ously mentioned, most of the existing methods represent
the overall saliency map as the average of generated fea-
tures. However, it is not known exactly how this kind of
fusion is performed by the HVS. It is likely that different
saliency features to have different impact on the overall
saliency. Therefore different weights should be assigned
to them and these weights may vary spatially over each
frame.

In this paper, we propose to train a model based on
Random Forests algorithm for the fusing feature maps. By
definition, RF is a classification and regression technique,
which combines bagging and random feature selection to
construct a collection of Decision Trees (DTs) with con-
trolled variance [9]. Although the DTs do not perform
well on unseen test data individually, the collective con-
tribution of all DTs makes RF generalize well to unseen
data. This is also the case for predicting visually important
areas within a scene based on temporal and spatial salien-
cy maps; while individual saliency features are not quite
successful in predicting the visual importance of a scene,
integration of these features provides a much more accu-
rate prediction. Random Forests Regression is of particu-
lar interest in our study, as it only needs very little param-
eter tuning, while its performance is robust for our pur-
pose. Moreover, the RF algorithm evaluates the im-
portance of each feature in the overall prediction.

We train a model of Random Forests using the training
part of our HDR video database and evaluate its perfor-
mance using the validation video set. Details regarding the
model creation procedure are provided in Section 3.

Fig. 1. Flowchart of Random Forests Fusion approach



3. EXPERIMENT SETUP

In order to train and test the model for fusing the temporal
and spatial saliency features, we prepare a HDR video
database and perform eye-tracking experiments using this
database. The following subsections provide details re-
garding the HDR videos, eye-tracking experiments, and
our RF fusion model estimation.

3.1. HDR videos
To the best of the authors’ knowledge, to this date, there is
no publicly available eye-tracking database of HDR vide-
os. To validate the performance of our proposed Learning
Based Visual Saliency Fusion model for HDR, we prepare
an HDR video database and conduct eye tracking tests
using this database. Ten HDR videos are selected from the
HDR video database at the University of British Columbia
[17-18], Technicolor [19], and Froehlich et al. [20]. The
selection of the test material is done in a way that the
database contains night, daylight, indoor, and outdoor
scenes with different amounts of motion, texture, color-
fulness, and brightness.

Next, the test HDR video database is divided to train-
ing and validation sets. Six for sequences are chosen for
training and four for validation of the Random Forests
model. Table 1 provides the specifications of the utilized
HDR video database.

3.2. Eye tracking experiments

Test material was shown to the viewers using a Dolby
HDR prototype display. This display system includes a
LCD screen in front, which displays the color components
and a projector at the back, which projects the luminance
component of the HDR signal. The projector light con-
verges on the LCD lens to form the HDR signal. Details
regarding the display system are available in [21]. The
resolution of the TV is 768×1024, the peak brightness of
the overall system is 2700 cd/m2, and the color Gamut is
BT. 709.

A free viewing eye tracking experiment was per-
formed using the HDR vides and the HDR display proto-
type. Eye gaze data was collected using SMI I View X
RED device at the sampling frequency of 250 Hz and
accuracy of 0.4±0.03o. 18 subjects participated in our
tests. For each participant, the distance and height was
adjusted to ensure that the device is fully calibrated. All
participants were screened for vision and color perception
acuity.

The eye tracker automatically records three types of
eye behavior:  fixations, saccades and blinks. Fixations
and information associated with each fixation are used to
generate fixation density maps (FDMs). The FDMs repre-
sent subjects’ region of interest (RoI) and serve as ground
truth for assessing the performance of visual attention
models. To generate FDMs for the video clips, spatial
distribution of human fixations for every frame is comput-
ed per subject. Then, the fixations from all the subjects are
combined together and filtered by a Gaussian kernel (with
a radius equal to one degree of visual angle). More details
on our Eye tracking experiment are provided in [22]. Our
HDR eye-tracking database is publicly available at [23].

3.3. RF-based fusion

In our study to fuse the temporal and spatial maps, we
train a model of Random Forests. The RF model is esti-
mated using the extracted feature maps of the HDR train-
ing data set (see Table 1) as input and the corresponding
eye Fixation Density Maps as output. For a fast imple-
mentation, we use only 10% of the training videos (equal
number of frames selected from each video, we ensured to
select representative frames from each scene). We choose
100 trees, boot strap with sample ratio (with replacement)
of 1/3, and a minimum number of 10 leaves per tree. Note
that these parameters are chosen for demonstration pur-
poses (our complementary experiments showed that using
higher percentage of training data provides better perfor-
mance, but at the price of higher computational complexi-
ty). Once the RF fusing model is trained, the saliency map
of unseen HDR video sequences – validation video set - is
predicted based on their temporal and spatial saliency
maps.

4. RESULTS AND DISCUSSIONS

To compute importance of each feature in the model-
training phase the out-of-bag error calculation is used [9].
As observed from Table 2, motion feature achieves the
highest importance. We also evaluate the performance of
each feature map individually in the saliency prediction.

Table 1. Specifications of the HDR video database used for eye tracking experiments

Sequence Frame Rate Resolution Number of Frames Source Usage

Balloon 30 fps 1920x1080 200 Technicolor [19] Training
Bistro02 25 fps 1920x1080 300 Froehlich et al. [20] Training
Bistro03 30 fps 1920x1080 170 Froehlich et al. [20] Training

Carousel08 30 fps 1920x1080 439 Froehlich et al. [20] Training
Fishing 30 fps 1920x1080 371 Froehlich et al. [20] Training

MainMall 30 fps 2048x1080 241 DML-HDR [16] Training
Bistro01 30 fps 1920x1080 151 Froehlich et al. [20] Validation

Carousel01 30 fps 1920x1080 339 Froehlich et al. [20] Validation
Market 50 fps 1920x1080 400 Technicolor [19] Validation

Playground 30 fps 2048x1080 222 DML-HDR [16] Validation

Table 2. Relative feature importance
Feature Importance
Motion 1
Color 0.96

Orientation 0.83
Intensity 0.50



Table 3 contains the result of training and validation dif-
ferent RF models when only one feature map is used.

To evaluate the performance of the proposed LBVS-
HDR method on the validation video set, we use several
saliency evaluation metrics so that our results are not
biased towards a particular metric. Specifically, we use
the Area Under the ROC Curve (AUC) [24], shuffled
AUC (sAUC) [24], Kullback–Leibler Divergence (KLD)
[25], Earth Mover’s Distance (EMD) [26], Natural Scan-
path Saliency (NSS) [24], Pearson Correlation Ratio
(PCC), and Judd et al. saliency similarity measure (SIM)
[27]. Note that in each case, the metric values are calcu-
lated for each frame of the videos in the validation video
set and then averaged over the frames. For all the metrics
except for KLD and EMD, higher values represent better
performance. Here we compare the performance of differ-
ent saliency fusion schemes for saliency prediction using
the proposed feature maps by [3]. We include the state-of-
the-art fusion methods in our comparisons. Table 4 illus-
trates the performance of different feature fusion methods
over the validation video set. As it is observed the RF
fusion achieves the highest performance using different
metrics. Table 5 demonstrates the results of various fea-
ture fusion schemes as well as the ground truth fixation
maps for one of the validation sequences.

Our study shows that motion and color are highly sali-
ent features for the observers. In addition, our proposed
LBVS-HDR fusion model is capable of efficiently com-
bining various saliency feature maps to generate an over-
all HDR saliency map.

5. CONCLUSION

In this paper, we proposed a learning-based visual salien-
cy fusion (LBVS-HDR) method for HDR videos. Several
Saliency features adapted to the high luminance range and
rich color gamut of HDR signals are extracted and effi-
ciently combined using a Random Forests-based fusion
model. Performance evaluations confirmed the superiority
of our proposed fusion method against the existing ones.
Also we found that motion and color are the most im-
portant attributes of the salient regions of HDR content.

Table 3. Individual performance of different features using the validation video set

Feature (alphabetical order) AUC sAUC EMD SIM PCC KLD NSS

Motion 0.63 0.62 0.09 0.36 0.23 0.31 1.27
Color 0.61 0.59 0.19 0.34 0.19 0.28 0.97

Orientation 0.60 0.57 0.07 0.33 0.14 0.36 0.67
Intensity 0.56 0.56 0.11 0.30 0.08 0.30 0.40

Table 4. Performance evaluation of different feature fusion methods

Fusion Method AUC sAUC EMD SIM PCC KLD NSS

Average 0.63 0.60 0.12 0.35 0.20 0.32 0.78
Multiplication 0.58 0.57 0.08 0.29 0.12 1.42 0.49

Maximum 0.60 0.59 0.19 0.33 0.16 0.39 0.64
Sum plus product 0.63 0.60 0.12 0.35 0.20 0.33 0.80
GNLNS (Itti [5]) 0.64 0.62 0.11 0.35 0.21 0.33 0.85

Least Mean Squares Weighted Average 0.62 0.60 0.13 0.34 0.18 0.32 0.71
Weighting according to STD of each map 0.63 0.60 0.15 0.35 0.20 0.30 0.77

Random Forest 0.68 0.67 0.07 0.38 0.21 0.30 0.99

Table 5. Comparison of different feature fusion methods

Fusion Method Carousel01

Video Frame

Average

Multiplication

Maximum

Sum plus product

GNLNS (Itti [5])

Least Mean Squares Weighted
Average

Weighting according to STD
of each map

Random Forest

Ground Truth
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