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ABSTRACT

The research problem of the parameter estimation of multi-
ple superimposed damped complex exponentials in noise is
of significant importance in many engineering and science
applications. In this paper, we propose a simple yet accu-
rate estimator to address the problem. By combining an ef-
ficient windowed frequency and damping estimator for a sin-
gle component with an iterative leakage subtraction scheme,
the novel method consecutively and iteratively estimates one
component at a time by gradually reducing the leakage intro-
duced by other components presented. Simulation results are
presented to verify that the proposed algorithm is capable of
outperforming state-of-art time and frequency domain algo-
rithms.

Index Terms— Parameter estimator, damped exponen-
tial, interpolation algorithm, nuclear magnetic resonance
spectroscopy.

1. INTRODUCTION

We address the parameter estimation problem of the following
signal model

AT ), n=0...N-1, (1)

I
x(n) =

i=1

where N is the total number of signal samples. [ is the number
of components and is assumed to be known a priori. A;, f; €
[-0.5,0.5] and n; > O are respectively the complex amplitude,
the frequency and the damping factor of the i component,
which we aim to estimate. w(n) are the additive Gaussian
noise terms with zero mean and variance 0.

(1) is considered to be the ideal signal model in many ap-
plications including low frequency mechanical spectroscopy
[1] and nuclear magnetic resonance spectroscopy [2]. Thus,
estimating the parameters of the signal has always been of
significant interest. Various parameter estimation algorithms
have been proposed to solve this problem [3], among which
the time-domain high resolution parametric estimators, such
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as [2, 4], are the most popular ones. They are based on the sin-
gular value decomposition (SVD) to separate the noisy signal
into pure signal and noise subspaces. They can achieve ac-
curate estimation while are also capable of resolving closely
separated components. However, the main drawback of these
algorithms comes to the high computational cost for perform-
ing the SVD operation and Hankel matrix inversion, which
has a complexity of O(N?). The frequency-domain estimators
based on interpolation on Fourier coefficients, such as those
presented in [5, 6, 7, 8] and [9], on the other hand, are com-
putationally more efficient. But they obtain biased estimates
when applied to the multiple component case. The estimation
bias can be reduced using methods in [10] and [11], where
pre-windowing the signal before interpolation is performed,
however with a trade-off of increased estimation variance. To
overcome these limitations, in this paper, we put forward a
novel efficient algorithm that operates in the frequency do-
main and at the same time can achieve accurate parameter
estimation.

The rest of the paper is organised as follows. In Section 2,
we present the novel parameter estimation algorithm. In Sec-
tion 3, we demonstrate the simulation results of the proposed
algorithm. Finally, conclusion is drawn in Section 4.

2. THE PROPOSED METHOD

The proposed method utilise the generalised Iterative Win-
dowed A&M (IWAM) estimator to estimate the frequency
and damping factor of each component in combination with
a leakage subtraction scheme proposed in [12]. We start the
section by presenting the generalised IWAM estimator.

2.1. The Generalised IWAM Estimator

From now on, we denote 1 as the estimate of 1. The gen-
eralised IWAM estimator, extended from the original IWAM
estimator presented in [5], is capable of achieving accurate es-
timation of the frequency and damping factor of an arbitrarily
zero-padded damped exponential in additive Gaussian noise.

Assuming x(n) to be a single damped exponential in the
presence of noise and K = pN(p € Z) to be the zero-padded
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signal length. The generalised IWAM estimator starts by find-
ing the maximum bin of the K-point periodogram of the sig-
nal as the coarse estimation of the frequency

i = arg max Xk, (2)

where X(k) = K — DFT[x(n)]. The true frequency is then
given by
m+6
T
where § € [-0.5,0.5] is the frequency residual. The coarse
estimation is followed by the fine estimation which finds ¢
and 7 based on iterative interpolation on Fourier coefficients.
Before each iteration, the signal is windowed by an exponen-
tial decaying function ¢™" and the previous estimate of the
frequency residual & is removed from the maximum bin. For
zero-padded signals where p > 1, according to related results
shown in [13, 14], the optimal locations of interpolation are
dependent on p and are at locations (7 + & + ’5’) of the sig-
nal spectrum. The noise-free coefficients interpolated at the
optimal locations in each iteration are computed by

f= 3)

N-1 s R
Z x(n)e—yn—jf”(mﬂ&%)n “4)

n=0

X,

]

1 + e No+»+j%6-5)

1 — o=+ (6-6%5)

Let

7= e MNTFO-0), 5)

and following similar derivation presented in [13], the estima-
tor of z is calculated as

s XXy
= = R (6)
eNXp—evX_»p
2 2
and the estimates of § and 7 in each iteration are given by
~ K 4 . R
0=—/Z+0, and f=-In|Z -v. @)
2n

Same as what has been presented in [5], to obtain the min-
imum variance that approaches the Cramer-Rao Lower Bound
(CRLB), the algorithm is run for two iterations. In the first it-
eration, y and & are set to zero. In the second iteration, y
should be chosen based on the equality y = rfy where 7 is the
estimate of damping factor from the first iteration. The ratio
ris given by

0<Nfp<3

__ [ 002N +0.02N7 +0.39 ®)
h Nf) > 3.

1 — 1.08e 041V — (0. 07¢~0-08N

The estimation procedure of the generalised IWAM estimator
is summarised in Table 1.

Table 1. The Generalised IWAM estimator
SetK=pN,p=1,2,...;
Calculate X(k) = K — FFT[x(n)];
Find /1 = arg max; |X(k)[%;
Initialise & = n=y=0;
Loop the following steps for two iterations
(1) Calculate X, ,/, by (4);
(2) Calculate Z by (6);
(3) Renew 4 and #) by (7);
(4) Calculate T = N1, find r by (8) and
renew y = rij;
6. Finally, find f using (3).

R

2.2. The Multi-tone Estimator

Now we extend the generalised IWAM estimator to the multi-
tone (I > 2) case. Letm; (i = 1,...,I) be the estimated
maximum bins of the components and are assumed in this
work to be identical to the true values. The frequencies are
now

ﬁ’l,‘ +0;

fiz == =l )

The exponential windows being applied are e™¥",i = 1...1
where vy; can vary from component to component. The win-
dowed noise-free interpolated Fourier coefficients of the i
component in each iteration are

1
wr D K (10)

where X; , » are the expected coefficients for a single exponen-
tial as shown in (4). )V(Lig(l =1...1,1 # i), on the other hand,
are the leakage terms introduced by the other / — 1 existing
components, which can be calculated by

Xi,i

I
D

N-1
= P2 (PS4 L
x(n)e” "™ JR i+0;£5)n

Xl,i

P

2
n=

—N(p+y)+jZA

l+e On+yd+js5 A

= A , 11
11 — e~y E (AFE) an

where A; = (Ay — ) + (0; — 3,-). Therefore, the reduction
of the estimation error can be performed by subtracting the
sum of leakage from the interpolated coefficients to obtain the
estimates of the expected coefficients of a single exponential.
Substituting (11) into (10) yields

I _ g j2x
l+e NGu+y)+j 5 M

A . 12
1:12,1:#,- N o Z(a%8) (12)

A ~

Xizr = Xi,ig -

A

4
2

From the expression of (12) we find the true values of J;,
n, Ay (I = 1...1,1 # i) are unknown and should also be es-
timated during the estimation process. In [12], this is solved
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Fig. 1. RMSE of f; versus frequency intervals vN when SNR
=30dB, N = 64 and ; = 1, = 0.02. 1,000 Monte Carlo runs
were used.

by iteratively estimating all the parameters of one component
at a time with leakage subtraction incorporated. During the
process, the sum of the leakage terms in (12) are constructed
by the parameter estimates of all the other / — 1 components
obtained in the previous iteration. As the leakage subtraction
process runs iteratively, it enables the reduction of the error
between X 2 and X; y The estimation of §; and n; can be
obtained using (7) by substltutmg (12) into (6), while the es-
timation of A; can be obtained by

o Do Xme TR -3 X
; T (13)
Z —o € nin
where o
. 1 — NG+ 2aNGi- i)
X =A (14)

1 — e~in+2n(fi=1)
is the leakage term at frequency f; introduced by the /" com-

ponent. The procedure of the proposed algorithm is finally
summarised in Table 2.

Table 2. The Multi-tone IWAM Estimator
1. SetK=pN,p=1,2,.
2. [Initialise f; . 5
3. Loop the following steps for Q iterations:
Fori =1 to I, do:
(D If Q = 1, find y; = arg max{|X(k)|*} where
X(k) = K = FFT (x(n) - $I2) Ace~@r2nfom);
(2) Calculate Xlip, (I=1...1,1 #i)using (11)
and calculate X o using (12);
(3) Find Z; using (6) and renew ¢;, 7}; by (7);
(4) Renew v; using (8);
(5) Estimate f, and A; by (9) and (13).
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Fig. 2. RMSE of estimates of the first component in (15)
versus SNR when v = 0.1, N = 64 and n; = 1, = 0.02. 5,000
Monte Carlo runs are used.

3. SIMULATION RESULTS

In this section, we present the simulation results of the pro-
posed multi-tone estimator and verify its performance. We
test the algorithm on the following signal

|Al|ej¢1e—mn+j2ﬂf1n + |A2|ej¢2e—772"+127f(f1+v)" + w(n),
s)
where n = 0...N — 1. v is the interval between the two fre-
quencies. |A| and |A;| are fixed to 1 and ¢, is set to zero. f
and ¢, are randomly selected in [-0.5,0.5 —v] and [, 7] re-
spectively in each Monte Carlo run. We define the (nominal)
signal to noise ratio (SNR) [15] as p = 1/02.
First we investigate the performance of the algorithm ver-
sus frequency separation v. In this test we set 7; = 1, = 0.02,
SNR = 30dB and N = 64. We vary uvN, which is the dif-
ference of the maximum bins between the two components,
from 2 to N/2 = 32. For the sake of benchmarking the
performance, the novel method is compared with the CRLB
[16], the time domain method Matrix Pencil (MP) [4] with the
pencil parameter always set to L = |[N/3] and the frequency
domain windowing method Hann Damped Interpolated DFT
(HDIDFT) [11]. The proposed algorithm in this test is imple-
mented using p = 1 and Q = 1,2 and 5. In Fig. 1 we show the
root mean square error (RMSE) of f; versus vN. The results
of the other parameters are similar and not shown here due to
the page limit. We can see that when Q > 5, the RMSE is
extremely close to the CRLB as vN > 5. As the number of
iterations Q increases, we are able to obtain lower RMSE for

x(n) =
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Fig. 3. RMSE of estimates of frequencies and damping fac-
tors in (15) versus SNR when v = 0.02, N = 64 and
12 = 10n; = 0.02. 5,000 Monte Carlo runs are used.

small vN, where the frequencies are closely separated. Notice
that the proposed method is capable of obtaining RMSE that
is marginally smaller than MP for all vN, while the HDIDFT
gives unreliable results when vN < 4 and has RMSE that are
approximately 6dB higher than CRLB when uN > 4.

Then we examine the RMSE of the parameter estimates
versus SNR. Fig. 2 shows the RMSE of f}, 7, and |A,| versus
SNR when v = 0.1, N = 64 and n; = 1, = 0.02. The pro-
posed algorithm is implemented using p = 1 and Q = 1,2.
We only show the related results of the first component as
those of the second component are similar. We can find that
for SNR > 3dB, two iterations are enough for the proposed
algorithm to outperform both MP and HDIDFT by achiev-
ing CRLB-comparable performance. In Fig. 3 we show the
RMSE of fi, 1, f> and #, obtained by various methods ver-
sus SNR when another set of signal parameters, v = 0.02 and
m = 10p; = 0.02, is used. In this test the proposed algo-
rithm is implemented using p = 1,2 and QO = 10,15. As
demonstrated in Fig. 1, when frequencies are close to each
other, the HDIDFT is not be able to obtain comparable results
with the proposed method and MP. So the results of HDIDFT
are not shown in this test. We can find from the figures that
for the proposed algorithm, when p = 1, the estimation bias
is reduced as the iteration number increases from Q = 10
to O = 15, and there is no observable bias at 20dB when
Q = 15. On the other hand, the RMSE follows the CRLB
by requiring less number of iteration when p = 2, because
coeflicients closer to the true maxima are used as the signal
is zero-padded. It is also clear from the figures that the pro-
posed algorithm can achieve smaller RMSE than MP at all
SNR, especially having a lower breakdown threshold.
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Fig. 4. RMSE of f; and #; versus N when SNR = 30dB,
v =0.1and ; = n, = 0.02. 5,000 Monte Carlo runs were
used.

We finally look at the performance of the novel estimator
versus the number of samples N. We set ; = i, = 0.02,
SNR = 30dB and v = 0.1. p = 1 and Q = 2,5 are used
in the proposed estimator. Fig. 4 shows the RMSE of f;
and 7, versus N, which varies from 32 to 512. The results
of the other parameters, which exhibit similar behaviour, are
not shown here due to the lack of space. We find that when
Q =5, the proposed method approaches the CRLB and beat
HDIDEFT for all N. Also, it attains observable lower RMSE
than MP when N < 300.

Before the end of this section, it is worth pointing out that
the computational complexity of the proposed algorithm has
the same order as that of the FFT operation, O(N log, N),
which is more efficient than the SVD based high resolution
methods, which require O(N?) for computation.

4. CONCLUSION

We presented in this paper a novel method for estimating the
frequencies, damping factors and complex amplitudes of arbi-
trarily zero-padded multiple superimposed damped complex
exponentials in additive Gaussian noise. The proposed algo-
rithm iteratively performs the generalised Iterative Windowed
A&M (IWAM) algorithm to estimate the parameters of one
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single component at a time in combination with a leakage sub-
traction scheme. During the iterative process, the leakage of
the interpolated Fourier coefficients introduced by other com-
ponents is gradually subtracted and the error between the in-
terpolated coefficients and their expected values of the sin-
gle component case is therefore reduced. Simulation results
demonstrated that the proposed algorithm can achieve estima-
tion variance that is extremely close to the CRLB.
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