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ABSTRACT

Optimal compressions in a rate-distortion sense are usually
discrete random variables, so clever discretizations of nat-
ural images might be key to developing better compression
schemes. A new image compression method achieved good
perceptual coding performance by using as primitives memo-
ries of a Hopfield network trained on discretized natural im-
ages. Here we explore why Hopfield network fixed-points
are good lossy perceptual features even though the implied
generative model (a second-order Lenz-Ising model) does not
provide a state-of-the-art match to the true probability distri-
bution of discretized natural images. Even so, we demon-
strate that this deterministic coding scheme can achieve near-
optimality by comparing with the rate-distortion function for
discretized natural image patches.

Index Terms— natural images, Hopfield network, recur-
rent neural network, image compression, Lenz-Ising model

1. INTRODUCTION

For decades, researchers have tried to find image compres-
sion schemes that can achieve rate-distortion bounds [1]. To
reduce the file size of digital images many lossy compres-
sion methods, including those based on linear coding, require
quantization of real-valued variables computed (typically lin-
early) from the intensity values of the image. However, op-
timal codings in a rate-distortion sense are usually discrete
[2, 3]. Thus, clever discretizations of natural images might be
key to optimal lossy compression.

Recently, a new efficient image compression method [4]
that uses a recurrent network of McCulloch-Pitts [5] abstract
ON/OFF neurons was found to be highly competitive with
widely-used JPEG [6] in a high-fidelity regime, according to
a standard perceptual distortion measure [7, 8]. The method
uses as discrete primitives all of the memories of a Hopfield
network [9] trained with minimum probability flow estima-
tion [10, 11] on a collection of 3 million discretized image
patches from the van Hateren natural image database [12].
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Although Hopfield networks have been used for various im-
age processing tasks by many previous researchers [13], we
could find only a few papers using such networks to find prim-
itives of natural images for lossy compression [14, 15].

At first glance, the performance of this discrete lossy com-
pression method is surprising. Our perceptual responses are
highly sensitive to the higher-order statistics of natural im-
ages [16, 17], but second-order Lenz-Ising models [18] — the
underlying probabilistic model of data for the Hopfield net-
work — are sensitive only to correlation structure. Along those
lines, high-quality coding usually requires a good fit between
the model and data, but as we show here, the probability dis-
tribution of discretized image patches is generally not well-
described by this particular statistical model.

We address aspects of these issues through a series of ex-
periments on a range of input patches used for training. First,
we show that these networks detect nontrivial local correla-
tion structure in ternarized natural image patches; moreover,
this structure is still present in networks trained on whitened
data. Then, we verify that the statistical patch model un-
derlying the learned Hopfield networks indeed does not pre-
dict the frequencies of the actual image ensemble, but does
have similar local extrema. We suspect that this qualitative
match underlies the quality of the network’s lossy encoding.
To test this hypothesis, we used the Blahut-Arimoto [19, 20]
algorithm to find the rate-distortion function for ternarized
ON/OFF natural image patches. Using this tool, we demon-
strate that this deterministic network coding is nearly-optimal.

2. BACKGROUND

In [4] it was found that high perceptual quality digital image
compression was possible by leveraging discrete local struc-
ture in natural images. One important component of that ap-
proach was to train a Hopfield network over discretized natu-
ral image patches. We briefly review the scheme.

Given a grayscale L x L digital image patch, we remove
its mean and then set the patch’s variance to be 1. We call such
a patch normalized. Next, we discretize each pixel x in such
a patch to a pair of abstract ON/OFF neurons (ON,OFF) €
{0,1}? according to a parameter o > 0. When z > «, the
discretized pixel is assigned (ON, OF F') = (1,0); similarly,
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Fig. 1. Image compression using a discrete network [4]. Image
patches are normalized, discretized, and then used to train Hopfield
networks as described in the main text. We examine different dis-
cretization procedures (binarization instead of ternarization) and dif-
ferent training ensembles (natural images versus whitened versions).

when z < —a, we have (ON,OFF) = (0,1); and finally,
when z € [—a,a], we have (ON,OFF) = (0,0). We
choose « so that 2« is the smallest pixel intensity difference
that can occur. We can thus convert any grayscale L x L im-
age patch into a binary vector of length 2L2. When no pixel
maps to (ON,OFF) = (0,0), we call the patch binary.

A Hopfield network is then trained using minimum prob-
ability flow estimation on millions of discretized normalized
patches obtained from a natural image database. After learn-
ing, the network acts deterministically on ternary patches
by converging its linear threshold recurrent dynamics (each
ON/OFF pair is viewed as a single unit for the asynchonous
dynamics). It was found that such networks have all binary
patches as fixed-points / memories, and that these primi-
tives can serve as good feature labels for image compression.
Specifically, a converged discretized normalized patch can
be remapped to a continuous patch by averaging over natu-
ral images those normalized patches giving the same binary
output. The mechanics are illustrated in Fig. 1 and Fig. 2.

To perform compression, a grayscale digital image is bro-
ken up into non-overlapping L x L patches, and then each
patch is independently decomposed into a mean, a variance,
and L? (ON, OF F) neurons. Means and variances are saved
losslessly as PNG files while converged discretized patches
are encoded with an entropy coder (e.g. Huffman) to get
bytes on disk. To reconstruct the image, each ON/OFF patch
is replaced by its continuous normalized representative and
then means and variances are restored. Such a scheme is rate-
competitive with JPEG for the same perceptual error.

We also explore here another, simpler discretization
scheme that was used by previous workers, in which im-

age pixels are set to 0 if they are below the patch mean (or
median), and set to 1 if they are above it [21, 22]. The work-
flow post-discretization was the same as for the ON/OFF
networks except that we use single binary Hopfield units to
represent data as opposed to pairs of ON/OFF neurons.

3. RESULTS

3.1. Ternary ON/OFF image patch correlations reflect
higher-order image statistics

Weights of inferred Hopfield networks (second-order Lenz-
Ising models) reflect the pairwise statistics of discretized im-
age patches. However, higher-order statistics, i.e. greater
than second-order, are crucial in explaining our perceptual
response to natural images. We examine the role of higher-
order statistics in learned parameters by estimating networks
over whitened images as well as normal ones. As whitened
images have no pairwise correlations, only higher-order im-
age statistics can lead to structure in the inferred weights of
discretized whitened images.

Fig. 3 shows learned weights for discretized 4 x4 ON/OFF
patches from the van Hateren natural image database (top
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Fig. 2. Sample patches (top) and image (bottom) discretized and
recovered using scheme from [4].
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Fig. 3. ON/OFF weights and thresholds after training on 3 mil-
lion digital image patches. a) 4 x 4 ON/OFF network trained on
natural images. i) ON-ON weights, ii) OFF-OFF, iii) ON-OFF, and
iv) single ON neuron’s weights to neighboring ON neurons. For ai
and aii, diagonal squares represent thresholds (parameters have been
rescaled so that the average threshold is 1); for aiv, threshold is at
neuron location (second from top and left in patch). b) As a using
2 x 2 ON/OFF network trained using whitened natural images.

four) and discretized 2 x 2 ON/OFF patches from whitened
versions of these images (bottom four). In both cases, non-
trivial correlation structure is being detected by the net-
works. The nearest neighbor structure of the weight matrix
in Fig. 3a suggests that comparing binarized image patches
to the ferromagnetic Lenz-Ising model makes for a surpris-
ingly good analogy [22]. Notice also that the weight matrices
are sparsely-connected, as are effective spacial connectivities
between ganglion neurons in retina [23].

3.2. Good lossy encodings not matching input statistics

Typically, natural image (and most machine learning) models
are evaluated on their likelihood [21]. High likelihood im-
plies a successful match between the model’s output statistics
and the statistics of the data. Intuitively, it seems that good
lossy encodings must implicitly require high likelihood mod-
els. Here, we describe how that view is an oversimplification.
The quality of a lossy encoding of X using codes X can
be evaluated by its proximity to the rate-distortion curve [1]:

R(D) = min

= I[X: X]. (1)
p(X|%): E[d(%,x)]<D | ]

This function gives the minimum coding rate of a codebook
p(X|x) achieving an expected distortion of no more than D
given a fixed distortion measure d. Formally, the codebook
p(x|x) is a nonnegative matrix representing the probability of
coding a state x drawn from X with the new state x from X,

Optimal lossy encodings p(X|x) satisfy, for some nonneg-
ative parameter [3, the following set of equations:

plxlx) = = %«)Z()W) e PUR,

in which Z(x, ) is a normalizing factor and p(x) is the distri-
bution over inputs x (e.g., discretized image patches X). As
B increases, we achieve less lossy encodings of the data. For
instance, the case D = 0 corresponds to 8 — oo, giving the
entropy of X as the optimal coding cost, whereas § — 0 de-
termines the trivial coding R = 0. Viewed as a mapping, ex-
pression (2) can be iterated to find an optimal point (Rg, Dg)
on the rate-distortion function for any fixed S, and by sweep-
ing out [, the rate-distortion function (1) is traced out para-
metrically (this is called the Blahut-Arimoto algorithm).

Here, we use the Hamming distance between 2L2-bit vec-
tors (L2-bit in the binary case) as our distortion measure d.
The rate of the Hopfield networks is taken to be the entropy of
the distribution of memories after converging dynamics over
discretized natural image patches.

In Fig. 5, we show both the statistical model fit and cod-
ing quality of Hopfield networks for 3 x 3 binarized image

2
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Fig. 4. Networks trained on 3 million 3 x 3 binarized patches. a)
Learned 3 x 3 binary network and weights; thresholds on diagonal
(parameters scaled so that mean absolute value of thresholds is 1).
b) Same as in a but network trained on whitened natural images.
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patches. The Lenz-Ising model is not a strong statistical
model of the input probability distribution, and the network
compression does not yield a very effective lossy code.

Fig. 6 shows the coding and statistical model quality of
the Hopfield networks for 2 x 2 ternarized ON/OFF image
patches. These networks are far better lossy encoders of the
input probability distribution (Fig. 6a); however, they clearly
provide a suboptimal statistical model (Fig. 6b). Although
the frequencies of the model do not match the data very well,
the two distributions have similar local maxima — and this, we
speculate, is the key to the high quality of the coding scheme.

’ ° j
’ 0e®°® o
/7 hd
/ o et
g £ ®e
/ L]
/ «
/
’ ?
aE)
)/ e
«p
Pdata
.000 - - - -
a 0.005 0.010 0.015 0.020

Rate Distortion (RD) non-optimal for 3x3 Binary Hopfield network

[ T [y

L4 3x3 Binary Hopfield network memories
—~ °
=)
£ °
£ 3r ° 1
£ °
© °
z .

° .

S 2l ° ° / Optimal codes same rate ]
=] °
= °
S °
=1 °
w L] °
° °

| e NI

Optimal codes same distortion

(=]

0 2 4 6 8
b Rate (bits)

Fig. 5. Model fit and coding quality of Hopfield networks
trained on 3 x 3 binarized natural image patches. a) Scatterplot
of Paate ON the X-axis VErsus pPmoder ON the y-axis, where pp,oder 18
taken to be the Lenz-Ising model underlying the Hopfield network in
Fig. 4a. Notice that the estimation method underestimates the high
probability states, while overestimating those will small probability.
b) The expected distortion (Hamming distance) and rate (entropy of
Hopfield memories) for Hopfield networks trained on 3 x 3 binarized
natural image patches, relative to rate-distortion function.
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Fig. 6. Modeling / coding 2 x 2 ON/OFF image patches. a) Com-
parison of pgqata and Pmoder by plotting both as a function of the par-
ticular binary vector. Bottom plot reveals that pgqte and pimoder have
matching local maxima, but not matching frequencies. b) Expected
distortion and rate for Hopfield networks trained on 2 x 2 ON/OFF
natural image patches, relative to the true rate-distortion function.

4. CONCLUSION

While being valuable as an abstract functional model of mem-
ory, Hopfield networks have long been dismissed as serious
candidates for real-world applications. The main shortcom-
ings that have prevented the practical use of such networks
are threefold: First and foremost, the number of generic ro-
bust memories is limited to a (small) number of fixed-points
linear in the number n of neurons (e.g. 0.15n using the outer-
product learning rule). Secondly, the application of Hopfield
networks to noisy data was limited, since the original learning
rules require supervised learning with clean patterns, while
more advanced statistical training methods involve computa-
tionally intensive iterations. Thirdly, Hopfield networks are
thought to be weak models of data because many datasets
have higher-order correlations that might not be captured
by a second-order model (i.e., determined by its means and
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covariances). Nonetheless, new probabilistically motivated
techniques to fit Hopfield networks to natural data produce
networks that can be exploited to efficiently compress images
at high perceptual quality. Here, we have explored in more
detail how such an approach can well-encode images and
demonstrate its near-optimality in the 2 x 2 case. Our work
opens new avenues for processing and understanding natural
data using discrete recurrent neural network architectures.
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