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ABSTRACT
Chromatic aberration, caused by photographic lens imperfec-
tions, results in the image of only one spectral channel being
sharp, while the other channels are blurred depending on their
wavelengths difference with the sharp channel.

We study chromatic aberration for a system that jointly
records color and near-infrared (NIR) images on a single sen-
sor. Chromatic aberration in such a system leads to a blurred
NIR image when the color image is in-focus and sharp. We
propose an algorithm that deblurs the NIR image using the
gradients of the sharp color image, as both scene representa-
tions are generally similar. However, the details of these im-
ages often exhibit significant differences due to varying scene
reflection and absorption in the corresponding bands. To ac-
count for this, we compute the correlation between color and
NIR gradients, and use the gradients of the color image in re-
constructing NIR only where the gradients are highly corre-
lated. We propose a multiscale scheme that gradually deblurs
NIR and accurately computes similarities between color and
NIR gradients. Experimental results show that our algorithm
recovers details of NIR without producing visible artifacts.

Index Terms— Axial chromatic aberration, NIR imag-
ing, similarity maps, gradient-based deblurring.

1. INTRODUCTION

The refractive index of a photographic lens depends on the
wavelength of the incoming light. Hence, light rays with dif-
ferent wavelengths converge at different distances. If the sen-
sor is placed at the focus plane of one wavelength, the image
of only that wavelength is sharp, while light rays with dif-
ferent wavelengths produce blurred images (Fig. 1-a). This
phenomenon is called axial chromatic aberration.

Any multispectral camera that uses the same optical path
to capture all spectral channels suffers from axial chromatic
aberration. We study this phenomenon in a system that simul-
taneously captures color (red, green, blue) and near-infrared
(NIR) channels. NIR is part of the electromagnetic spectrum
with a wavelengths range of approximately 700-1100 nm, ad-
jacent to the visible spectrum. Fig. 1-(b) shows a pair of color

Fig. 1. (a) A simple lens converges light rays with different
wavelengths at different distances. If the sensor is at the fo-
cus plane of green, only the image of radiation in this wave-
length is sharp. The disks illustrate the blur kernels for other
wavelengths (black rays: NIR radiation). (b) The color image
is in-focus and all color channels are sharp. The NIR image
captured with the same lens and focus is blurred. The differ-
ences are most noticeable while viewed on a screen.

and NIR images representing the same scene.
The growing interest in joint capture of color and NIR

images on a single sensor [1–4] is caused by recent devel-
opments in using these images in computational photography
and computer vision. Combining color and NIR has proven
useful in low light imaging [5], scene recognition [6], shadow
detection [7], etc. These applications are enabled as silicon-
sensors, used in most digital cameras, are sensitive to both
visible and NIR radiations. Hence, the joint acquisition of
color and NIR images on a single sensor is feasible.

Compound lenses that correct CA for both visible and
NIR bands are usually too bulky and costly to be used with
consumer cameras. Hence, our aim is to use a simpler lens
and to correct for chromatic aberration by post-processing
NIR and color images. We consider the scenario where the
color image is in-focus and sharp, and NIR is out-of-focus
and blurred, and the task of reducing CA distortions is equiv-
alent to deblurring the NIR image. Figure 1-(b) shows color



and NIR images captured with the same lens and same focus.
The lens, corrected for visible wavelengths, results in sharp
color channels, while the NIR channel is blurred.

In our problem, the sharp color image representing the
scene is available and can be used to deblur NIR assuming
that the edges of color and NIR images are strongly corre-
lated. This assumption holds for many, but not all regions
in the image. Differences of light and surface reflections in
visible and NIR bands result in intrinsic variations between
the edges of these images (see Fig. 2), and simply adding
the high-frequency details of the color image to NIR discards
these differences. This causes many of the algorithms that
fuse color and NIR and depend on the differences between
these images to fail.

To preserve the inherent differences between color and
NIR, we use the gradients of the color image in deblurring
NIR only at pixels where the gradients of these images are
similar. We propose a multiscale algorithm that accurately
estimates the similarity values between color and NIR gra-
dients at each pixel. We call the matrix that contains the
similarity values the “similarity map”. Our method iterates
between deblurring NIR and computing similarity maps. As
the maps at each scale are formed based on a deblurred NIR
image, they provide an accurate estimation of the correlation
between color and NIR gradients.

To correct chromatic aberration in color imaging, it is of-
ten assumed that the edges of color channels are strongly cor-
related. Following this assumption, the high-frequency infor-
mation of the sharp channel is used to retrieve the lost details
in the images of other channels [8–11]. As the high-frequency
components of color and NIR images are not always corre-
lated, this approach is prone to failure in our scenario.

In [12], we proposed a guided deblurring algorithm that
maintains the differences between color and NIR by roughly
estimating the similarity values from the gradients of color
and blurred NIR images. The gradients of the blurred NIR
significantly differ from the underlying sharp image. Hence,
using the blurred image results in low-accuracy estimation of
similarities degrading the performance of a guided deblurring
algorithm. In this paper, we propose a multiscale deblurring
approach that ensures the similarity values are estimated ac-
curately from a deblurred NIR image. In Section 3, we show

Fig. 2. The color pigments on the pen are transparent in NIR,
resulting in the gradients of color and NIR images being dif-
ferent. The text in the book looks the same, as carbon black
used in modern ink absorbs light in both visible and NIR.

that the proposed multiscale algorithm outperforms [12].

2. MULTISCALE GUIDED DEBLURRING

We mathematically formulate blurring of the NIR image as:

Nb = k ∗ N , (1)

whereN is the ideal sharp NIR,Nb is the blurred NIR image,
k is the lens blur kernel, and * stands for convolution.

Our algorithm is guided by a gray-scale representation of
the color image, which contains the spatial information about
the scene. We call this representation Y and compute it as the
average of the three color channels.

We form Gaussian pyramids of Y and Nb (blurred NIR)
images with p+1 scales. In each scale, the images are down-
sampled by a factor R to form the images of the next coarser
level. The full-resolution images are called N (0)

b and Y (0),
and the coarsest scale is denoted byN (p)

b and Y (p). We repre-
sent downsampling and upsampling by factorR, respectively,
as (.)↓R and (.)↑R. Fig. 3 demonstrates the notations.

Assuming that the lens blur kernel is modeled as a Gaus-
sian filter [13, 14], we estimate the kernel in the finest scale
of the pyramid by solving the following optimization problem
and computing the variance of the Gaussian filter:

k(0) = f(N (0)
b , Y (0)) , argmin

k
‖∇N (0)

b − k ∗ ∇Y (0)‖2F

s.t. k(m,n) =
1

c
exp (−m

2 + n2

2σ2
).

(2)

(m,n) are horizontal and vertical coordinates, and σ is the
standard deviation of the Gaussian filter (the blur kernel). c
is a scalar ensuring that the sum of kernel elements is 1. This
optimization is based on the assumption that in many regions
of the image, color and NIR gradients are correlated.

We start the blur kernel estimation from the finest scale
of the pyramid as the full-resolution Y and NIR images ex-
hibit larger differences compared with the downsampled im-
age pairs. After estimating k(0), the blur kernels in coarser
levels are sequentially computed by downsampling the kernel
in the previous finer scale by the factor R, i.e.,

k(1) = (k(0))↓R, k(2) = (k(1))↓R, · · · . (3)

Fig. 3. A pyramid of NIR and Y images with p+1 scales. The
kernel in each scale is obtained by downsampling the kernel
in the previous finer scale.



Fig. 4. A schematic of our multiscale deblurring algorithm for
scales p and p − 1. The procedure shown in (a) and (b) is
repeated until the full-resolution NIR is deblurred.

We first deblur the NIR image in the coarsest scale of the
pyramid by solving the following problem:

N (p)
d = g(N (p)

b , Y (p),M (p)
x ,M (p)

y )

, argmin
N (p)

λ‖N (p)
b − k(p) ∗ N (p)‖2F

+
∑

l∈{x,y}

‖∇lN (p) −M (p)
l �∇lY

(p)‖2F

(4)

where ∇l represents horizontal and vertical gradient opera-
tors, � denotes the element-wise multiplication, and λ is the
regularization parameter. M (p)

l for l ∈ {x, y} are horizontal
and vertical similarity maps in scale p.

Incorporating the similarity maps in the second term of (4)
ensures that the gradients of Y (p) are exploited in reconstruct-
ing the sharp NIR image only where the maps have high val-
ues. In those pixels the edges of NIR and Y channels are
strongly correlated.

Only for the coarsest scale of the pyramid, we compute
the similarity maps, similar to [12], by comparing the gradi-
ents of blurred NIR and blurred Y images:

M
(p)
l (m,n) = 1−

|∇lN (p)
b (m,n)−∇lY

(p)
b (m,n)|

|∇lN (p)
b (m,n) +∇lY

(p)
b (m,n)|

, l ∈ {x, y}

(5)
Here Y (p)

b = k(p)∗Y (p), and (m,n) indicates the pixel at row
m and column n.

If we use the original sharp Y image in (5), the similarity
values would be low even where Y and NIR gradients are in-
herently similar, as all NIR edges are changed by blur. How-
ever, the similar edges would have approximately the same
profile when both images (Y and NIR) are blurred. Figure 4-
(a) shows deblurring NIR in the coarsest scale of the pyramid.

The gradients of blurred NIR and blurred Y images in (5)
provide a rough approximation of similarities between sharp
color and NIR images. Hence, the output image of (4), N (p)

d ,
is still blurred compared with the underlying sharp NIR im-
age, N (p). The residual blur in N (p)

d can be formulated as:

N (p)
d = k(p)res ∗ N (p). (6)

We estimate the residual kernel, k(p)res , by solving:

k(p)res = f(N (p)
d , Y (p)). (7)

f(., .) is defined in (2). See Fig. 4-(a) for an illustration.

To deblur the NIR image in the next scale, N (p−1)
b , we

need to compute the corresponding similarity maps (M (p−1)
x ,

M
(p−1)
y ). If, similar to the previous scale, we use the blurred

NIR image, inaccurate estimations of true similarity maps are
obtained. Instead, we propose to use an upsampled version
of the image deblurred in the previous scale, (N (p)

d )↑R. This
image is more similar to the ideal sharp NIR image at scale
p − 1, and provides more accurate estimations of similarity
maps. Thus, we compute M (p−1)

x and M (p−1)
y as follows:

M
(p−1)
l = 1−

|∇l(N (p)
d )↑R −∇lY

(p−1)
b |

|∇l(N (p)
d )↑R +∇lY

(p−1)
b |

, l ∈ {x, y}, (8)

Note thatN (p)
d after upsampling by factorR and Y (p−1)

b have
the same resolution.

Similar to the previous scale, Y (p−1)
b in (8) is the Y image

deblurred by the residual blur kernel of (N (p)
d )↑R. To com-

pute this blur kernel, we upsample k(p)res in (7) by factor R.
So:

Y
(p−1)
b = (k(p)res )↑R ∗ Y (p−1). (9)

Figure 4-(b) shows the process of estimating similarity maps.
The similarity maps computed in (8) are then used in the

following optimization problem to deblur N (p−1)
b (Fig. 4-c):

N (p−1)
d = g(N (p−1)

b , Y (p−1),M (p−1)
x ,M (p−1)

y ), (10)

where function g(., ., ., .) is defined in (4).
The deblurring algorithm is applied to every scale of the

pyramid until N (0)
b (the full-resolution NIR) is deblurred to

obtain N (0)
d , which is the final output of the algorithm.



3. EXPERIMENTAL RESULTS

We captured the images used in these experiments by a
Canon Rebel T1i camera, after removing its NIR-blocking
filter. Such a camera is sensitive to both visible and NIR ra-
diations. For each scene, we sequentially captured one color
image by placing an NIR-blocking filter in front of the lens
and two NIR images using a visible-light blocking filter. The
color image is in focus, and the first NIR image captured
with the same focus is blurred. We then refocused the cam-
era to capture a sharp NIR image, used as the ground-truth.
We align all three images for each scene using feature-point
matching. Note that the ideal color and NIR camera captures
the images in one shot, and it is not possible to set the focus
differently for color and NIR. In our experiments, we created
this situation by not changing the focus settings from color to
the NIR shot. We use the downsampling factor of R = 4.

Table 1 reports the PSNR values averaged over 20 im-
ages deblurred by our method, the algorithm of [12], the blind
deblurring algorithm of [15], and the guided filtering algo-
rithm [16]. We applied the guided filtering algorithm to de-
blur the NIR image using the sharp color image as a guide.
Table 1 shows that our method outperforms other algorithms.
The following visual comparisons demonstrate the advantage
of our method more clearly.

Figure 5 compares the images deblurred by the algorithm
of [12] and our multiscale deblurring where p = 2 (an image
pyramid with three scales) is used. It is immediately observed
that more accurate similarity maps computed by our multi-
scale algorithm help recovering sharper details. At the same
time, our algorithm still successfully preserves the inherent
differences between color and NIR images.

In Fig. 6-(c), we present the results of simply adding the
high-frequency details of the color image into the blurred NIR
image at every pixel. This approach is similar to the chromatic
aberration correction algorithms that assume strong correla-
tion between the gradients of all color channels [10]. To ob-
tain the results in Fig. 6-(c), we solve the following problem:

Nd = argmin ‖Nb − k ∗ N‖2F +
∑

l∈{x,y}

‖∇lN −∇lY ‖2F .

(11)
This method cannot preserve the differences between color
and NIR images. For instance, in Fig. 6, the text on the pen is
almost invisible in the ground-truth NIR, however, the image
deblurred by (11) contains the text (the first row of the figure).

We present the results of the guided image filtering [16]
in Fig. 6-(d). The deblurred NIR image contains false edges

method of guided filtering method of Ours
[15] [16] [12]

PSNR 27.58 28.10 29.65 30.22

Table 1. The PSNR values averaged over 20 deblurred images.

Fig. 5. Crops of (a) sharp color and (b) blurred NIR images
captured with the same focus settings. (c) and (d) compare
the performance of our previous algorithm [12] and our mul-
tiscale deblurring method.

and even the pixel intensities are not similar to the ground-
truth. Our algorithm produces sharp images while preserving
the inherent differences between color and NIR images.

4. CONCLUSION

We study chromatic aberration in the joint acquisition of color
and NIR images. If the camera is focused while capturing
the color image, the NIR image recorded with the same fo-
cus is blurred. We propose a multiscale algorithm that effec-
tively uses the gradients of the color image to deblur NIR and
preserves the inherent differences between these images. To
achieve this, we estimate accurate similarities between color
and NIR gradients. Our multiscale technique provides such
accurate estimations by iterating between deblurring NIR and
updating the similarity values. Our algorithm outperforms the
guided image filtering [16], the deblurring method of [15],
and our previous method [12].

In this study, we considered the case where the NIR im-
age is uniformly blurred. However, the amount of lens blur
depends on the object depth. Addressing spatially varying
blur kernels is part of our future research.

Fig. 6. (c) Deblurring without using similarity maps intro-
duces false edges that are not present in the ground-truth NIR.
(d) The guided image filtering [16] does not preserve the dif-
ferences between NIR and color. The pen is dark in the first
row of (d), while it is bright in the ground-truth NIR image.
(e) Our algorithm maintains the intrinsic differences between
color and NIR.
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