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ABSTRACT
This paper studies a class of filter banks called the Ramanu-
jan filter banks which are based on Ramanujan-sums. It is
shown that these filter banks have some important mathemat-
ical properties which allow them to reveal localized hidden
periodicities in real-time data. These are also compared with
traditional comb filters which are sometimes used to identify
periodicities. It is shown that non-adaptive comb filters can-
not in general reveal periodic components in signals unless
they are restricted to be Ramanujan filters. The paper also
shows how Ramanujan filter banks can be used to generate
time-period plane plots which track the presence of time vary-
ing, localized, periodic components.

Index Terms— Ramanujan filter banks, Ramanujan-sum,
periodicity, comb filter banks, coprime frequencies.

1. INTRODUCTION

The problem of identifying periodicities in data has been of
significant interest for several decades. There have been many
interesting papers in the signal processing literature to address
this problem. A variety of approaches such as algebraic meth-
ods [4], [11], [12], [22], filtering-based methods [1], [6], [21],
and dictionary methods [5], [16] have in the past been re-
ported. More recently, the applicability of Ramanujan-sums
in period estimation and related problems has been studied by
a number of authors [3], [7], [8], [10], [13]–[20]. This sum-
mation was introduced nearly hundred years ago in the field
of number theory by Srinivasa Ramanujan [9]. A review of
the Ramanujan sum and its applications can be found in [17],
[18], along with a number of new results on the representation
of periodic signals using such sums. These results have since
been extended in different directions, giving rise to Ramanu-
jan dictionary based approaches [14], and multidimensional
representations [20].

Ramanujan filter banks were introduced in [15] for esti-
mation and tracking of periodicities by using a time-period
plane approach. The purpose of this paper is to point out the
suitability of such filter banks from a more fundamental point
of view. Since a periodic signal has a Fourier transform made
of harmonically related Dirac delta functions, the use of comb
filters and their extensions have in the past been suggested for
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the extraction of periodic components [6], [1]. In such meth-
ods the filters are adapted according to the measured signals.
Our goal is to use a fixed (non-adaptive) filter bank which
offers economy of computation. In the nonadaptive case we
will prove that unless the filters in the bank satisfy certain
specific conditions, it is not possible to separate out the peri-
ods. We will also show that filter banks based on Ramanujan
sums satisfy these conditions, and are ideally suited for this
purpose. This arises from the fact that the passbands of Ra-
manujan filters are centered around coprime frequencies. In
fact the only filter banks that would satisfy the required con-
ditions are those for which the filters belong to the so-called
Ramanujan subspaces [17].

Preliminaries. If x(n) = x(n + P ) for some integer P
we say that x(n) is periodic, and the integer P is a repeti-
tion number. P is called the period if it is the smallest pos-
itive integer with this property. Some signals have the form
x(n) = x1(n) + x2(n) where the components xi(n) are pe-
riodic, so that x(n) has period equal to the lcm (or a divisor
of the lcm) of the individual periods P1 and P2. If the data
record is not longer than this period, it is not possible to see
the period (say, in a plot). In fact given x(n), the components
x1(n) and x2(n) are not uniquely defined because there could
be harmonics that are common to both, and they cannot be
separated. But it is often sufficient to identify the hidden pe-
riods P1 and P2. This is the theme of many of the references
cited at the beginning of this introduction.

Notations. (k, q) denotes the greatest common divisor
(gcd) of the integers k and q, and (k, q) = 1 means that they
are coprime. lcm(a, b) stands for the least common multiple
of integers a, b. The notation q|N means that q is a divisor
(or factor) of N . Wq = e−j2π/q , and φ(q) = Euler totient
function (number of integers in 1 ≤ n ≤ q coprime to q).

Paper outline. Ramanujan sums are briefly reviewed in
Sec. 2. Filter banks for the identification of periodicities are
introduced in Sec. 3. This section also proves some unique
properties of Ramanujan filter banks, which make them ide-
ally suited for period identification and tracking. Methods to
identify periodicities with such filter banks are explained in
Sec. 4, along with illustrative examples. Sec. 5 concludes the
paper.
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2. REVIEW OF RAMANUJAN-SUMS

A detailed review of Ramanujan-sums can be found in [17].
Briefly, the qth Ramanujan sum (q ≥ 1) is a sequence in n
defined as

cq(n) =

q∑
k=1

(k,q)=1

ej2πkn/q =

q∑
k=1

(k,q)=1

W−kn
q (1)

where −∞ ≤ n ≤ ∞. Thus the summation runs over only
those k that are coprime to q. Clearly cq(n) is periodic:

cq(n+ q) = cq(n) (2)

and its DFT is given by

Cq[k] =

{
q if (k, q) = 1

0 otherwise.
(3)

The DFT is nonzero (equal to q) at the coprime frequency in-
dices k and zero elsewhere. If (k, q) = 1 then it follows that
(q − k, q) = 1 as well. Thus the DFT is real and symmetric:
Cq[k] = Cq[q − k] so that cq(n) is also real and symmetric
(cq(n) = cq(q − n)). It is well known [9], [17] that cq(n) is
integer valued in spite of the presence of trignometric func-
tions in its definition. For example,

c1(n) = 1, c2(n) = {1,−1}, c3(n) = {2,−1,−1},
c4(n) = {2, 0,−2, 0}, c5(n) = {4,−1,−1,−1,−1},
c6(n) = {2, 1,−1,−2,−1, 1}, · · · (4)

where one period is shown in each case. Finally Ramanujan
sums are orthogonal in the sense that, for any integer l,

m−1∑
n=0

cq1(n)cq2(n− l) = 0, q1 6= q2 (5)

where m is any common multiple of q1 and q2.

3. FILTER BANKS FOR EXTRACTION OF
PERIODICITIES

Is it possible to build a linear time invariant (nonadaptive)
filter such that its output is nonzero if and only if the input
has a specified period P ? If so, what kind of properties should
such a filter have?

Adaptive comb filters have in the past been proposed for
this [6], [1]. Comb filters also arise in the solution to the
maximum likelihood estimation of periods, but such a solu-
tion requires further processing (such as the application of
penalty functions) before a meaningful estimate can be ob-
tained [21]. A comb filter hq(n) (or a periodic filter) has a
periodic impulse response so that Hq(e

jω) is like a comb:
it is non zero only at the harmonically related frequencies
2πk/q (see Fig. 1 (a)). We now revisit this and show that non-
adaptive comb filters whose impulse responses are arbitrary
periodic sequences will not serve this purpose. However if
we build comb filters based on Ramanujan sums, then a non-
adaptive filter bank based on such filters can uniquely identify
periods, as well as periods of hidden periodic components.

3.1. Ramanujan filters and filter banks

If we regard the Ramanujan-sum as a digital filter with im-
pulse response cq(n) then in view of (3) its frequency re-
sponse is

Cq(e
jω) = 2π

∑
1≤k≤q
(k,q)=1

δ
(
ω − 2πk

q

)
, (6)

in 0 ≤ ω < 2π and repeating with period 2π outside. Thus
Cq(e

jω) is zero everywhere except at the coprime frequencies
2πki/q where ki is coprime to q (Fig. 1(b)). Now consider
a periodic input x(n) with period P . With X[k] denoting the
P -point DFT, we have

X(ejω) =
2π

P

P−1∑
l=0

X[l]δ
(
ω − 2πl

P

)
(7)

as demonstrated in Fig. 1(c). Suppose we apply this signal
x(n) as the input to the Ramanujan filter cq(n).By comparing
(6) and (7) we find that the output will be zero if none of the
Dirac functions in these two expressions coincide. But for
each k such that

k

q
=

l

P
(8)

for some l, there can be a nonzero output. Since (k, q) = 1,
this is possible only if P is a multiple of q (i.e., q is a divisor
of P ). In this case, we can always find l in the range 0 ≤
l ≤ P − 1 such that the above holds. Summarizing, we have
proved the following:

Lemma 1. The Ramanujan filter Cq(ejω) can produce a
nonzero output in response to a period P signal x(n) only if
q is a divisor of P . ♦

Note that the “only if” cannot be replaced with “if and only if”
because, it is possible that the lth harmonic component X[l]
is zero for every l satisfying (8), in which case the output of
cq(n) will be zero.

Now consider Fig. 2 which shows an analysis filter bank
where each filter is a Ramanujan filter with impulse response
{cq(n)}, for 1 ≤ q ≤ N . We call this the Ramanujan filter
bank. Its usefulness arises from the following theorem which
follows immediately from the preceding lemma:

Theorem 1 (Ramanujan filter banks): Consider a Ramanu-
jan analysis filter bank {cq(n)} with 1 ≤ q ≤ N and let x(n)
be a period-P input signal with 1 ≤ P ≤ N. Then nonzero
outputs can only be produced by those filters cq(n) such that
the filter index q is a divisor of P , that is, q|P . ♦

In practice, one would replace the filters with FIR versions,
and the signal x(n) would have finite duration (with local-
ized periodicities). So the Dirac passbands will spread out in
frequency, and the above result will only be approximate.
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3.2. Arbitrary comb filter banks

Suppose we replace the Ramanujan filters cq(n) in the filter
bank with arbitrary comb filters hq(n). Say, the filter hq(n)
has period q, but is otherwise arbitrary, so the DFT coeffi-
cients Hq[k] can in general be nonzero for all k. Then the
frequency responses are

Hq(e
jω) =

2π

q

q−1∑
k=0

Hq[k]δ
(
ω − 2πk

q

)
(9)

which is similar to Fig. 1(c) except that the uniform spacing
is 2π/q rather than 2π/P (see Fig. 1(a)). Assume

Hq[0] = 0, unless q = 1. (10)

Thus, the DC or zero-frequency componentX[0] of x(n) only
passes through c1(n) and not other filters. We will now argue
that a result like Theorem 1 does not hold anymore. We know
that for an arbitrary period-P input (7) the output of hq(n) is
nonzero if (8) holds for some k, l pair such that Hq[k] 6= 0
and X[l] 6= 0. If the coprimality (k, q) = 1 is true, then (8)
would hold only for filter index q a divisor of P. If coprimality
(k, q) = 1 is not true, it is possible that (8) holds for q not a
divisor of P . In fact, we can rewrite (8) as

P

q
=
l

k
(11)

where 1 ≤ k ≤ q − 1 and 1 ≤ l ≤ P − 1. If there exist l
and k such that the above is true then the lth harmonic of the
input passes through the kth passband of hq(n) to produce a
nonzero output. This of course is possible if and only if P and
q are not coprime. We summarize this important conclusion
as follows:

Theorem 2 (Comb filter banks): Consider a comb analysis
filter bank {hq(n)} with 1 ≤ q ≤ N and let x(n) be a period-
P input signal with 1 ≤ P ≤ N. Assume that all P -point
DFT coefficients X[l] of x(n) are nonzero, and that Hq[0] =
0 for q > 1. Then the period-P input produces nonzero output
if and only if the filter index q is not coprime to P. ♦
Summarizing, two things are true:

1. None of the filters whose index q is coprime to P can
produce a nonzero output.

2. If q is not coprime to P then the output of hq(n) can be
nonzero. In particular if q is either a divisor or a mul-
tiple of P , then the output of hq(n) can be nonzero.
To be more precise, it is nonzero if and only if the
lth harmonic of x(n) is nonzero for some l such that
P/q = l/k.

Let us consider some examples. Let P = 6. Then the fil-
ters which can have nonzero outputs correspond to q =
2, 3, 4, 6, 8, 9, 10, 12, . . . Again, for clearer understanding let
us examine how filter h9(n) can produce a nonzero output.
We have P = 6, q = 9. Since 6/9 = 2/3 = l/k it follows

that the 2nd harmonic (l = 2) of the input signal passes
through the 3rd passband (k = 3).

The main consequence of Theorem 2 is that by knowing
the filter indices {qi} corresponding to nonzero outputs, we
cannot in general identify the period P of the input signal
x(n), as demonstrated by the following examples: suppose
P = 2. Then all the even numbered filters hq(n) can have
nonzero output. If P = 4 or more generally P = 2m then the
same is true. Thus the filter bank cannot distinguish between
input periods P = 2 and P = 2m,m > 1. Similarly, since
P and q are coprime if and only if Pm and q are coprime, it
follows that an arbitrary comb filter bank cannot distinguish
between a period P signal and a period Pm signal (m > 1).
More generally if x(n) is a sum of periodic components, it is
not possible to identify the hidden periods.
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Fig. 1. (a) Frequency response of an arbitrary period-q filter hq(n),
(b) the frequency response of the ideal (infinite duration) Ramanu-
jan filter cq(n), and (c) the Fourier transform of a typical period-P
signal.
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Fig. 2. The Ramanujan analysis filter bank.

4. IDENTIFYING PERIODS WITH RAMANUJAN
FILTER BANKS

In view of Theorems 1 and 2 Ramanujan filter banks have
special properties when compared with arbitrary comb filter
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banks. To show how this can be utilized to identify periods,
we now prove the following:

Theorem 3 (The lcm property of Ramanujan filter banks):
Consider a Ramanujan analysis filter bank {cq(n)} with 1 ≤
q ≤ N and let x(n) be a period-P input signal with 1 ≤
P ≤ N. Let nonzero outputs be produced by the subset of
filters cqi(n) with periods q1, q2, · · · , qK . Then the period P
is given by

P = lcm {q1, q2, · · · , qK} (12)

So the least common multiple of these filter indices {qk} re-
veals the period. ♦

Proof. We already know that nonzero outputs can only be
produced by Ramanujan filters with periods q|P. So clearly
P is a common multiple of {qi}. Suppose it is not the lcm.
Then let L = lcm {q1, q2, · · · , qK} so that P = LM for some
integer M > 1. Now, x(n) has the frequency components
2πl/P for 0 ≤ l ≤ P − 1 where 1 ≤ P ≤ N. The filter
cq(n) on the other hand passes the components 2πk/q with
1 ≤ k ≤ q with (k, q) = 1. But the set of rationals l/P where
1 ≤ l ≤ P and 1 ≤ P ≤ N is the same as the set of rationals
k/q satisfying

(k, q) = 1, 1 ≤ k ≤ q, 1 ≤ q ≤ N. (13)

Thus, every nonzero frequency component in x(n) will be
seen by one or other of the filters, and will produce a nonzero
output in that filter. So x(n) can be represented as a linear
combination of W kin

qi where (ki, qi) = 1 and 1 ≤ ki ≤ qi.
Now, since L = lcm {q1, q2, · · · , qK} it follows that L =

qimi for some integer mi so that Wqi = Wmi

L . This shows
that x(n) is a linear combination of the form

x(n) =

L−1∑
m=0

βmW
mn
L (14)

That is, x(n) has a period L (or a divisor of L) which is
smaller than P . This a contradiction. 555

Some important remarks are in order:

1. Large periods. While any input period P in the range
1 ≤ P ≤ N can be identified by the Ramanujan filter bank,
larger periods cannot in general be identified. For example if
x(n) = ej2πn/(N+1) then its frequency 2π/(N + 1) is not
seen by any of the N filters, and we cannot identify it.

2. Superposition of periodic components. Consider the
case where a signal is a sum of periodic components:

x(n) = x1(n) + x2(n) (15)

where x1(n) and x2(n) have periods Pi ≤ N . In this case
the period of x(n) can be as large as lcm (P1, P2) and is
generally larger than N . However, we can still identify the
components P1 and P2 because the output of the filter bank
is the sum of the outputs due to x1(n) and the outputs due

to x2(n). In this case we can partition the set of filter in-
dices {qi} which produce nonzero outputs into two classes:
one class has lcm = P1 and the other has lcm = P2. The
periods can therefore be identified. However, the individual
component signals x1(n) and x2(n) cannot be uniquely iden-
tified because there may exist common harmonic frequen-
cies. Thus, if 2πk1/P1 = 2πk2/P2 for some k1 and k2, then
this frequency component of x(n) can be distributed arbitrar-
ily between x1(n) and x2(n). So these components are not
uniquely defined.

In practice the filters cq(n) in the Ramanujan filter bank can
be replaced with causal FIR filters

C(l)
q (z) =

lq−1∑
n=0

cq(n)z
−n (16)

Thus l consecutive periods of cq(n) are retained to form the
impulse responses. The qth filter’s duration is then ql sam-
ples, and is proportional to the period q. If the input signal
x(n) has periodic components that are localized in time, we
can track this time-varying periodicity by observing the filter
bank output. A large value of l implies that the filter responses
approximate the Dirac functions of Fig. 1(a) more accurately.
On the other hand, in order to obtain good time domain res-
olution for tracking varying periods, l has to be small. So,
l is a tradeoff parameter between time and frequency resolu-
tions. Since the filter duration ql is proportional to the period
q, smaller periods can be localized accurately. It is possible
to obtain variations of the FIR Ramanujan filter bank by in-
corporating Hamming or Kaiser windows in the time domain
instead of rectangular windows as in (16), but we keep it sim-
ple here.

We now consider an example with l = 5 and consider an
inverse chirp signal xc(t) = sin(1/at). With a = 0.01/π,
we sample this signal at the spacing T = 0.005s to obtain
x(n) = xc(nT ) in the interval 1 ≤ t ≤ 6. The signal x(n) is
shown in Fig. 3(a). A time-period plane plot is generated in
Fig. 3(b) by using x(n) as the input to the Ramanujan filter
bank. The vertical axis is the period or filter index q and the
horizontal axis is the integer time-index at the filter output.
The intensity represents the average energy at the output of
C

(l)
q (z), within a sliding window (the details are similar to

the examples in [15]). Each c
(l)
q (n) is a linear phase filter

with group delay (ql − 1)/2. Since these delays are different
for different q, the outputs are appropriately shifted so that all
filters have identical group delays, before obtaining the plot
of Fig. 3(b).

It is clear that the filter bank tracks the chirp beautifully
along time. Similar examples can be found in [15] where a
comparison is made with spectrograms based on the short-
time Fourier transform. Since the STFT has a fixed time win-
dow it cannot resolve different periodicities uniformly. The
Ramanujan filter bank, on the other hand, resolves the various
periods in the time domain and gives localization information
because the qth filter length is proportional to the period q.
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Fig. 3. A time-period plane plot obtained from the Ramanujan filter
bank, for a inverse-chirp signal.

5. CONCLUDING REMARKS

We showed that arbitrary comb filter banks do not enjoy the
period discrimination property of Ramanujan filter banks, as
shown in Theorems 1, 2, and 3. The question which arises
is: what is the most general class of filter banks {sq(n)} sat-
isfying properties similar to Theorem 1 (hence Theorem 3)?
It can be shown that the necessary and sufficient condition is
that each filter sq(n) have a q-point DFT such that

Sq[k] =

{
6= 0 for (k, q) = 1
0 for (k, q) 6= 1

(17)

Clearly cq(n) is a special case of such filters because of (3).
A sequence sq(n) satisfying the above property belongs to a
space called the Ramanujan-subspace Sq , defined in [17], and
elaborated further in [19]. Thus, as long as the filter sq(n)
belongs to Sq and has nonzero DFT for (k, q) = 1, the filter
bank is suitable for identifying and separating periods. The
fact that the nonzero DFT coefficients Sq[k] can have values
other than q (unlike Cq[k]) gives more freedom in the design
of these filter banks especially in the presence of noise.
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