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Abstract—Multipath propagation is a common phenomenon in
wireless communication. Knowledge of propagation path param-
eters such as complex channel gain, propagation delay or angle-
of-arrival provides valuable information on the user position
and facilitates channel response estimation. A major challenge in
channel parameter estimation lies in its multidimensional nature,
which leads to large-scale estimation problems which are difficult
to solve. Current approaches of sparse recovery for multidimen-
sional parameter estimation aim at simultaneously estimating
all channel parameters by solving one large-scale estimation
problem. In contrast to that we propose a sparse recovery method
which relies on decomposing the multidimensional problem
into successive one-dimensional parameter estimation problems,
which are much easier to solve and less sensitive to off-grid
effects, while providing proper parameter pairing. Our proposed
decomposition relies on convex optimization in terms of nuclear
norm minimization and we present an efficient implementation
in terms of the recently developed STELA algorithm.

Index Terms—MIMO Channel Parameters, Multidimensional
Parameter Estimation, Sparse Recovery, Nuclear Norm, STELA

I. INTRODUCTION

Mobile communication generally underlies multipath propa-
gation, due to reflection, refraction or scattering on surround-
ing objects. In a static environment, a propagation path can
be characterized by a complex gain coefficient, a propagation
delay and an angle-of-arrival (AoA) at the receiver. Knowledge
of the channel parameters can be exploited in different ways,
e.g., to estimate the user locations by exploiting the character-
istics of the dominant multipath components [1], or to estimate
the channel response using parametric channel models [2].

The channel parameter estimation problem can be formu-
lated as a multidimensional (MD) estimation problem [3]-[5].
In the simplest form the estimation could be performed by
means of an MD Fourier transform, leading, however, to poor
resolution in the case of multiple propagation paths. Better
performance can be achieved by subspace-based methods. In
[3] a variation of the MUSIC algorithm for joint MD channel
parameter estimation has been presented, which is applicable
to arbitrary spatio-temporal sampling. However, since the MD-
MUSIC is a spectrum-search based estimator, high estima-
tion accuracy requires a fine MD parameter grid which, in
turn, leads to large and complex estimation problems, i.e. in
terms of the computational complexity associated with MD-
peak search. Search-free methods, such as the MD-RARE
[4] and MD-ESPRIT [6], rely on specific structures in the
spatio-temporal sampling, e.g., uniform or centrosymmetric
sampling.
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For proper performance, subspace-based methods further
rely on a good estimate of the signal covariance matrix which
either depends on a large number of signal snapshots or
techniques like forward-backward averaging and smoothing,
where the latter techniques require centrosymmetric and uni-
form spatio-temporal sampling, respectively. A drawback of
smoothing techniques is the fact that the effective sampling
aperture is reduced which degrades the resolution capability.

In recent years, sparse recovery techniques came into
the focus of parameter estimation research and, similarly to
subspace-based methods, have been shown to provide the
superresolution property [7]. However, in contrast to subspace-
based methods, sparse recovery techniques do not rely on
the estimation of a signal covariance matrix and thus show
good performance even in the case of low number of signal
snapshots or irregular sampling. Two major categories of
sparse recovery methods are greedy algorithms, e.g., orthog-
onal matching pursuit, and convex relaxation techniques, e.g.,
LASSO or basis pursuit, where the latter category usually
shows better estimation performance at the cost of higher
computational complexity. For the application of parameter
estimation, a major drawback of sparse recovery methods is
the requirement for a fine discretization of the parameter space
to a grid in order to achieve a high resolution and avoid
basis mismatch or off-grid effects [8]. The fine parameter grid
leads to large dictionary matrices and in turn to large-scale
estimation problems. In case of MD parameter estimation,
this aspect becomes even more critical, since the dictionary
size increases exponentially with the number of parameter
dimensions.

A sparse recovery method for MD channel parameter es-
timation was presented in [5]. The presented method relies
on joint discretization of all associated parameter spaces,
resulting in a large dictionary matrix. Due to its large size,
the corresponding estimation problem can hardly be solved by
convex relaxation methods, hence the authors propose a greedy
method referred to as Space-Alternating Orthogonal Matching
Pursuit (SA-OMP) which mainly addresses the computational
complexity involved with MD-peak search and grid refine-
ment. As we will show by numerical experiments, SA-OMP
suffers from a large bias in estimation performance, due to
its greedy nature. In [2] a similar approach of discretizing the
MD parameter space was presented. The objective in [2] is,
however, not the estimation of the channel parameters, but the
estimation of the channel response by exploiting the channel’s
sparse representation in the parameter space.

In this paper we propose a novel convex problem formula-
tion which decomposes the MD channel parameter estimation
problem into successive one-dimensional estimation problems
based on convex relaxation in form of nuclear norm mini-
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mization. Due to space limitations we restrict our presentation
to the two-dimensional parameter estimation problem, but
the extension to estimation problems of higher dimensions
is straightforward. In contrast to the MD parameter grid for
simultaneous parameter estimation, as presented in [5], our
method requires discretization of one parameter space at a
time only. From the estimation results found in the investigated
parameter space, the parameters in the remaining dimensions
are estimated successively. The successive estimation approach
leads to smaller subproblems as compared to the simultaneous
estimation of all channel parameters, reduces the sensitivity to
off-grid effects caused by inaccuracies in joint discretization
of all parameter spaces, and simplifies the peak search. For
efficient computation of our novel problem formulation we
furthermore present implementation in form of the recently
proposed STELA method, which has been shown to have
superior convergence speed as compared to, e.g., gradient
methods and, admits parallel implementation [9].

II. SIGNAL MODEL

Consider a single-antenna terminal transmitting a reference
signal which propagates over a multipath channel to a receiv-
ing linear antenna array, as illustrated in Fig. 1. The receiving
linear antenna array consists of M omnidirectional antennas
with positions given by rm ∈ R, for m = 1, . . . ,M , relative to
the first antenna, i.e., r1 = 0. The reference signal is known to
both, the transmitter and receiver. We assume that Orthogonal
Frequency Division Multiplexing (OFDM) symbols of length
N are transmitted, preceded by a cyclic prefix of duration
Tcp, sampled at an interval Ts, and further assume that the
narrowband assumption holds. The OFDM reference signal
is denoted as x(l) = [x1(l), . . . , xN (l)]T in the frequency
domain, where xn(l) denotes the data symbol, e.g. quadrature
phase-shift keying (QPSK) with |xn(l)| = 1, on the nth
subcarrier in the lth OFDM symbol.

The multipath propagation is modeled by P propagation
paths. The scattering objects as well as the transmitter are
assumed to be located in the farfield region of the antenna
array. Each propagation path is characterized by a complex
channel gain coefficient h◦p, a propagation delay τ◦p and an
AoA θ◦p , with p = 1, . . . , P . The maximum propagation delay
is assumed to be smaller than the cyclic prefix duration: Tcp >
maxp τ

◦
p .

Under the given assumptions, the signal received by the
antenna array in time instant l is modeled by the M × N
receive signal matrix

Y (l) = A◦H◦(l)B◦TX(l) + W (l), (1)
where [Y (l)]m,n denotes the signal received by antenna m
on subcarrier n, for m = 1, . . . ,M and n = 1, . . . , N (cmp.
[2]-[5]). In (1), the M × P array steering matrix is given as

A◦ = [a(θ◦1), . . . ,a(θ◦P )], (2)

where a(θ) = [1, e−jr2ξ(θ), . . . , e−jrMξ(θ)]T/
√
M denotes the

normalized array steering vector for AoA θ, with electric angle
ξ(θ) = 2π

λ cos θ and signal carrier wavelength λ. The N × P
frequency response matrix is defined as

B◦ = [b(τ◦1 ), . . . , b(τ◦P )] (3)

with b(τ) = [1, e−j 2π
NTs

τ , . . . , e−j 2π(N−1)
NTs

τ ]T/
√
N denoting the

normalized frequency response vector corresponding to a path
delay of τ . The P × P diagonal channel gain matrix

H◦(l) = diag (h◦1(l), · · · , h◦P (l)) (4)

h◦
1(t− τ◦1 )

h◦
2(t− τ◦2 )

h◦
3(t− τ◦3 )Source Linear

Antenna
Array

Scatterer

Scatterer

θ◦3

θ◦2
θ◦1

Fig. 1. Multipath signal model for single antenna transmitter and M = 4
element antenna array and propagation over P = 3 paths

contains the complex channel gain coefficients on its main
diagonal and the N ×N diagonal reference signal matrix

X(l) = diag (x1(l), . . . , xN (l)) (5)
contains the elements of the OFDM reference signal on its
main diagonal. The elements of the M × N additive noise
matrix W (l) represent spatially and temporally white Gaus-
sian noise with variance σ2

w.
We collect L snapshots, as defined in (1), where we assume

that the propagation delays {τ◦p }Pp=1 and AoAs {θ◦p}Pp=1 re-
main constant, while the channel gain coefficients {h◦p(l)}Pp=1
may vary between snapshots. Upon defining

Ỹ = [vec(Y (1)X−1(1)), . . . , vec(Y (L)X−1(L))], (6)

H̃◦= [vecd(H◦(1)), . . . , vecd(H◦(L))], (7)

W̃= [vec(W (1)X−1(1)), . . . , vec(W (L)X−1(L))], (8)
where vec(Y ) denotes vectorization of matrix Y and vecd(H)
denotes vectorization of the elements on the main diagonal of
H , the multiple snapshot signal model is given by

Ỹ = (B◦ ∗A◦) H̃◦ + W̃ (9)
where ∗ denotes the Khatri-Rao product, i.e., the columnwise
Kronecker product.

III. A NOVEL MD SPARSE RECOVERY METHOD

Following the ideas in [4], we start by rewriting the signal
model in (9) as

Ỹ =(B◦ ∗A◦) H̃◦ + W̃

=(B◦ ⊗ IM )(IP ∗A◦) H̃◦ + W̃

=(B◦ ⊗ IM )G◦A + W̃ (10)
with ⊗ denoting the Kronecker product and IM denoting the
M ×M identity matrix. The extended channel gain matrix

G◦A = (IP ∗A◦)H̃◦ (11)
of size MP × L is composed of P submatrices, i.e., G◦A =
[G◦TA,1, . . . ,G

◦T
A,P ]T, where each M × L submatrix

G◦A,p = a(θ◦p)h̃◦Tp (12)

is of rank-one, with h̃◦p representing the pth row of H̃◦.
For a sparse representation of (10) we uniformly dis-

cretize the delay parameter space in Q points {τq}Qq=1, with
maxq τq < Tcp, and form the MN ×MQ dictionary matrix

CB = [CB,1, . . . ,CB,Q] = B ⊗ IM , (13)
with B = [b(τ1), . . . , b(τQ)] representing the N × Q fre-
quency response dictionary matrix, such that each submatrix
CB,q = b(τq)⊗ IM , for q = 1, . . . , Q, contains the elements
of the frequency response for path delay τq . In correspon-
dence with equations (10)-(12) and under the assumption that
the true propagation delays lie on the parameter grid, i.e.,



{τ◦p }Pp=1 ∈ {τq}
Q
q=1, we formulate the block sparse matrix

GA = [GT
A,1, . . . ,G

T
A,Q]T (14)

of size MQ× L, with

GA,q =

{
G◦A,p if τq = τ◦p
0 else,

(15)

such that we arrive at the sparse representation
Ỹ = CBGA + W̃ . (16)

As can be seen from (12) and (15), GA exhibits two levels of
sparsity, block sparsity and rank sparsity. As proposed in [10]
the twofold sparse structure can be exploited in the following
convex optimization problem

ĜA = arg min
GA

1

2

∥∥Ỹ −CBGA

∥∥2
F + µ

Q∑
q=1

∥∥GA,q

∥∥
∗ (17)

where µ > 0 is a regularization parameter, determining the
sparsity of the solution ĜA, and the nuclear norm of the qth
submatrix GA,q can be computed as the sum of its singular
values σq,i, with i = 1, . . . , r, and r = min(M,L), i.e.,

‖GA,q‖∗ =
∑r
i=1σq,i. (18)

While the minimization of the nuclear norm terms leads to
rank sparsity in the form of low-rank submatrices GA,q , the
nonlinear coupling in form of the nuclear norm terms leads
to a block sparse structure, i.e., the elements in submatrices
GA,q are either jointly zero or jointly nonzero.

The formulation in (17) can be considered as a one-
dimensional parameter estimation problem, i.e. a block sparse
representation in terms of the path delays. To recover all the
channel coefficients from the matrix estimate ĜA in (17), let
us first define the support set as

I =
{
q
∣∣ĜA,q 6= 0

}
, (19)

i.e., the indices of the nonzero submatrices ĜA,q . Given the
support set I of cardinality P̂ = |I|, the estimated channel
delays are found from the parameter grid {τq}Qq=1 as

{τ̂p}P̂p=1 =
{
τq
∣∣q ∈ I} . (20)

Furthermore, let the singular value decomposition of the qth
nonzero submatrix be given as ĜA,q = U qΣqV

H
q , then the

corresponding AoAs θ̂q and complex channel gain coefficients
ˆ̃
hq can be estimated from the principal singular vectors: in the
case of a rank-one submatrix ĜA,q , the AoA estimation can
be performed by

θ̂q = arg maxθ
∣∣aH(θ)uq,1

∣∣ for q ∈ I (21)

where uq,1 is the principal left singular vector of ĜA,q . In the
case of higher rank submatrices, rq = rank(ĜA,q) > 1, there
are rq propagation paths with path delays τ̂q = . . . = τ̂q+rq−1.
The corresponding AoAs θ̂q, . . . , θ̂q+rq−1 are found from the
rq array steering vectors a(θ̂q), . . . ,a(θ̂q+rq−1) that best span
the column subspace U q of ĜA,q and can be estimated by
standard methods, e.g., MUSIC or sparse recovery. Similarly,
for a rank-one submatrix ĜA,q , the complex channel gain
coefficients in ˆ̃

hq = [ĥq(1), . . . , ĥq(L)]T can be recovered
from the principal singular values and corresponding principal
right singular vectors as

ˆ̃
hq = σq,1v

∗
q,1/
√
ML for q ∈ I, (22)

such that all channel parameters of interest are paired with its
corresponding propagation path.

Note that alternatively the reformulation in (10) can be
performed with respect to the array steering matrix A◦, i.e.,

Ỹ =(B◦ ∗A◦)H̃◦ + W̃

=(IN ⊗A◦)JJT(B◦ ∗ IP )H̃◦ + W̃

=C◦AG
◦
B + W̃ (23)

where C◦A = (IN ⊗ A◦)J and G◦B = (IP ∗ B◦)H̃◦, with
proper permutation matrix J , such that JT(B◦ ∗ IP ) =
IP ∗ B◦ and JJT = INP . Analogous to the steps (10)-(22)
we can form a related estimation problem to recover the AoAs
{θ̂p}P̂p=1 in the first step and the delays {τ̂p}P̂p=1 and complex

channel gain coefficients {ˆ̃hp}P̂p=1 in the second step. From
our experiments we found that it is advantageous to perform
the sparse representation with respect to the estimation pa-
rameter which provides more measurements, i.e., number of
antennas and subcarriers. This brings benefits in estimation
performance and reduces computational complexity, since the
computation of the nuclear norm terms in (17) is performed
for smaller submatrices.

Furthermore, we remark that similar to the signal models in
[3]-[5], the model in (10) can easily be extended to incorporate
more parameter dimensions, such as two-dimensional angle-
of-arrival, angle-of-departure or Doppler shift. The major
advantage, that only discretization of one parameter space
per successive estimation step is required for the estimation
problem in (17) remains unchanged by this extension.

IV. ALGORITHMIC IMPLEMENTATION

The nuclear norm minimization problem in (17) can be
solved in various ways, e.g., by semidefintie programming
[11] or the block coordinate descent method [10]. One major
challenge for the evaluation of the estimation problem (17) is
the problem size, which cannot be solved with ease by the
previously mentioned solvers. We propose to use the Soft-
Thresholding with Exact Line search Algorithm (STELA)
[9] since it is most suitable for solving large-scale sparse
optimization problems.

For proper selection of the regularization parameter µ we
further propose the computation of the solution path, i.e., the
set of solutions to problem (17) for a sequence of regulariza-
tion parameters {µκ}κmax

κ=1, by means of the STELA method.

A. STELA
Here, we will shortly describe the major steps of STELA

and refer to [9] for details. To simplify the notation we use
G = GA,B and C = CB,A.

The key idea of STELA is to solve a sequence of ap-
proximate problems instead of the original problem in (17).
In iteration t, we approximate the problem in (17) by Q
independent subproblems of the following form

Γ(t)
q = arg min

Γq

1

2

∥∥Ỹ −C−qG
(t)
−q −CqΓq

∥∥2
F

+ µ
∑Q
q=1(

∥∥G(t)
−q
∥∥
∗ +

∥∥Γq∥∥∗), (24)

for q = 1, . . . , Q, with C−q = [C1, . . . ,Cq−1,Cq+1, . . . ,CQ]

and G
(t)
−q = [G

(t)T
1 , . . . ,G(t)T

q−1,G
(t)T
q+1, . . . ,G(t)T

Q ]T denoting
the dictionary matrix and an approximation of the optimal
extended channel gain matrix in iteration t, with the qth
submatrix removed, respectively. Note that in contrast to first



or second order approximations of the objective function in
(17), the approximation in (24) relies on the concept of best-
response, i.e., optimization for one submatrix while fixing the
others. The matrix Γ(t)

q in (24) denotes the qth submatrix of
the best-response matrix Γ(t) =[Γ

(t)T
1 , . . . ,Γ(t)T

Q ]T in iteration t.

For the case of unitary submatrices with CH
qCq = I , as

given in this work, it was shown in [10], [12] that the problem
(24) has the closed form solution

Γ(t)
q = Sµ(Γ̄(t)

q ) (25)
where

Γ̄(t)
q = CH

q (Ỹ −C−qG
(t)
−q) (26)

is the Least-Squares estimate of Γ(t)
q , with compact singular

value decomposition Γ̄
(t)
q = Ū

(t)
q Ω̄

(t)
q V̄

(t)H
q , and

Sµ(Γ(t)
q ) = Ū

(t)
q

(
Ω̄

(t)
q − µI

)
+
V̄

(t)H
q (27)

denotes the singular value thresholding operator [12], with
[(X)+]ij = max([X]ij , 0).

Returning to the original problem in (17), it is shown in [9]
that Γ(t)−G(t) is a descent direction of the objective function
in (17). Therefore we perform a variable update according to

G(t+1) = G(t) + γ(t)(Γ(t) −G(t)), (28)

with stepsize γ(t). Convergence of the sequence {G(t)}∞t=1
to a stationary point strongly depends on proper selection of
the stepsize parameter γ(t), e.g., by successive or exact line
search methods. Following the ideas in [9], exact line search
is performed according to

γ(t) = arg min
0≤γ≤1

1

2

∥∥Ỹ −C(G(t) + γ(Γ(t) −G(t)))
∥∥2

F

+ γµ
∑Q
q=1(‖Γ(t)

q ‖∗ − ‖G
(t)
q ‖∗)

=
[
Re
{

Tr
(
(CG(t)− Ỹ )HC(Γ(t)−G(t))

)}
+ µ

∑Q
q=1(‖Γ(t)

q ‖∗− ‖G
(t)
q ‖∗)/

∥∥C(Γ(t)−G(t))
∥∥2

F

]1
0
.

(29)
In contrast to standard exact line search approaches, which
generally have to be evaluated numerically, for problem (17)
the stepsize parameter proposed in (29) can be computed
in closed-form which significantly reduces the computational
complexity. Similarly, as seen from eq. (24)-(27), all subma-
trices Γ(t)

q , for q = 1, . . . , Q, admit closed form expressions
and can be computed independently and, thus, in parallel.

It can be verified that the problem in (17) and the approxi-
mate subproblems in (24) fulfill all assumptions specified by
Theorem 2 in [9], such that the sequence {G(t)}∞t=1 converges
to the global optimum Ĝ of problem (17). Furthermore, due
to the exact line search, parallel updates and closed form
expressions, the convergence speed of STELA is generally
much faster than that of block coordinate descent methods
or gradient-based methods, as we will show in the numerical
results later.

In summary, one iteration of the STELA method consists
of computing the submatrices of the best-response matrix Γ(t)

according to (25), the stepsize γ(t) according to (29) and
updating the approximate solution G(t) according to (28).
Initialization at t = 0 can be performed by exploiting a-priori
information or in the simplest form by G(0) = 0.

B. Regularization Parameter Selection
A key parameter determining the estimation performance

of the minimization problem in (17) is the regularization
parameter µ. While direct estimation of a proper regularization
parameter µ is still an open problem, in this work we follow
the approach of computing the solution path to problem (17)
as proposed in [10]. The solution path is defined as the set of
solutions {Ĝ(µκ)}κmax

κ=1 to (17) for a regularization parameter
sequence µ1 > µ2 > . . . > µκmax > 0. Similar to the LASSO
problem [13], the starting point of the solution path can be
computed in closed form as

µ1 = maxq
∥∥CH

q Ỹ
∥∥
2

(30)
which is the smallest regularization parameter giving a zero
solution Ĝ(µ1) = 0 for problem (17).

A small change in µκ results in a small change in the
estimate Ĝ(µκ). This makes the STELA method particularly
useful for the pathwise approach since the estimates Ĝ(µκ−1)
can be used as an initial value G(0)(µκ) in the STELA
iterations, leading to rapid convergence of the STELA method.

Given the solution path {Ĝ(µκ)}κmax
κ=1, we select the smallest

regularization parameter µκ which generates a number of
P peaks in the spatial spectrum of the solution Ĝ(µκ).
The corresponding estimate Ĝ(µκ) represents P dominant
propagation paths with the best Least-Squares data fit in (17).

V. NUMERICAL RESULTS

We consider a uniform linear array of M = 4 antennas. The
OFDM reference signal consists of QPSK-symbols on N = 16
subcarriers in the frequency domain and is sampled uniformly
in time at the receiver. We assume that L = 3 snapshots are
available for parameter estimation.

The complex channel gain coefficients are modeled
as constant magnitude and uniform random phase. Let
(|hu,p|, τp/Ts, θp/deg.) denote the parameter triple defining
the pth propagation path. We model the channel parameters
as (1.12, 0.10, 64.98), (0.85, 1.23, 46.54), (0.71, 1.97, 94.71),
(0.52, 3.57, 121.17) and (0.41, 5.02, 105.32) such that there
are P = 5 propagation paths in total. Note that MD-ESPRIT is
not directly applicable to this scenario, since it cannot resolve
P > min(M,N) signals. The signal-to-noise ratio is defined
as SNR = 1/σ2

w.
In a first experiment we compare the convergence speed

of STELA with that of the block coordinate descent (BCD)
method [10], by comparing the error ‖ĜA−G(t)

A ‖F, where ĜA

denotes the solution to (17) and G
(t)
A denotes the approximate

solution in iteration t. The BCD performs sequential submatrix
updates, such that we count one submatrix update as an
iteration, while for STELA we consider one parallel update of
all submatrices as one iteration. For the simulation we assume
an SNR of 5dB and select the regularization parameter as
µ = µ1/4 and a uniform grid of Q = 160 points. As can be

100 101 102 103 104 105
10−4

10−1

102

Iteration index t

‖Ĝ
A
−

G
(t
)

A
‖ F

STELA
BCD [10]

Fig. 2. Convergence of STELA and block coordinate descent (BCD) method
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seen in Fig. 2, STELA clearly outperforms BCD in terms of
convergence speed by an order of 2.

For statistical evaluation we compare the proposed method
to the MD MUSIC estimator [3], the MD root-RARE estimator
[4], the space-alternating orthogonal matching pursuit (SA-
OMP) [5] and the lower Cramér-Rao bound (CRB) [14].

In order to achieve a sample covariance matrix of suffi-
ciently high rank for the MUSIC and root-RARE estimator we
employ smoothing and forward-backward averaging in the fre-
quency domain. We emphasize that these data pre-processing
techniques require linear sampling, whereas our proposed
method can be applied to arbitrary sampling schemes.

For the proposed method we discretized the delay parameter
space in Q = 160 points and compute the solution path of
(17) by means of STELA to find a proper estimate accord-
ing to section IV-B. Note that with the proposed approach
of regularization parameter selection, all evaluated methods
exploit the same a-priori information in form of the number
of propagation paths. To achieve higher resolution we perform
a final estimation with a refined grid. The AoAs are estimated
from the principal singular vectors according to equation (21).

We perform 100 Monte Carlo runs and compute the root-
mean-square errors (RMSEs) for the estimated propagation
delays {τ̂p}P̂p=1 and AoAs {θ̂p}P̂p=1. As can be seen from
Fig. 3 and 4, the SA-OMP scheme has the best thresholding
performance among all evaluated methods. This is due to
the joint estimation of delays and AoAs. However, for high
SNR the RMSE reaches an estimation bias, which can be
explained by the greedy nature of the algorithm [5]. Similar
to the SA-OMP method, the MUSIC method jointly estimates
delays and AoAs. While the asymptotic behavior for high SNR
approaches the CRB, the thresholding performance is slightly
decreased as compared to SA-OMP, which is due to the low
number of snapshots. Our proposed sparse estimation method

has thresholding performance similar to the MUSIC estimator
but has a much smaller complexity, due to the successive
nature of the algorithm. Furthermore it outperforms the Root-
RARE estimator in thresholding performance, which performs
a similar successive parameter estimation. As can be seen from
Fig. 3 and 4 direct estimation of path delays and indirect
estimation of the AoAs show equally good performance.

VI. CONCLUDING REMARKS

We have presented a new method for MIMO channel
parameter estimation based on nuclear norm minimization. In
contrast to existing spectrum-based methods which perform
large-scale and expensive multidimensional estimation, our
proposed approach successively performs one-dimensional pa-
rameter estimation. The successive one-dimensional estimation
requires discretization of only one parameter space at a time,
which significantly reduces the computational complexity and
the sensitivity to off-grid effects, while providing proper
parameter pairing. Due to space limitations we have restricted
the discussion to the two-dimensional parameter estimation
problem, but the proposed approach can easily be extended to
incorporate, e.g., two-dimensional angle-of-arrival, angle-of-
departure or Doppler shift estimation (cmp. [4]). We conclude
that the aforementioned benefits of our proposed method
become even more significant in higher-dimensional parameter
estimation problems. Furthermore, we have presented imple-
mentation based on the recently presented STELA method,
which admits for fast convergence and simple implementation.
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