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Abstract— We introduce a diversity extraction for 
multicarrier continuous-variable (CV) quantum key distribution 
(QKD). The diversity extraction utilizes the resources that are 
injected into the transmission by the additional degrees of 
freedom of the multicarrier modulation. The multicarrier scheme 
granulates the information into Gaussian subcarrier CVs and 
divides the physical link into several Gaussian sub-channels for 
the transmission. We prove that the exploitable extra degree of 
freedom in a multicarrier CVQKD scenario significantly extends 
the possibilities of single-carrier CVQKD. The diversity 
extraction allows for the parties to reach decreased error 
probabilities by utilizing those extra resources of a multicarrier 
transmission that are not available in a single-carrier CVQKD 
setting. The additional resources of multicarrier CVQKD allow 
the achievement of significant performance improvements that 
are particularly crucial in an experimental scenario.   

Keywords— quantum cryptography; quantum key distribution; 
continuous-variables; quantum Shannon theory 

I. INTRODUCTION  

By utilizing the fundamental laws of quantum mechanics, 
the continuous-variable quantum key distribution (CVQKD) 
systems allow to realize an unconditionally secure 
communication through the currently established 
communication networks. The CVQKD protocols do not 
require single photon devices in contrast to the first developed 
discrete-variable (DV) QKD protocols [1–17]. This significant 
benefit has immediately made possible to achieve the practical 
implementation of QKD by the standard devices of traditional 
telecommunications [18–19], [23–30]. In a CVQKD setting, 
the information is carried by Gaussian random distributed 
position and momentum quadratures, which identify a quantum 
state in the phase space. The quantum states are sent through a 
noisy link (e.g., an optical fiber or a wireless optical channel 
[18–19], [26-30]), which adds a white Gaussian noise to the 
phase space transmission. Despite the fact that the noise 
characteristic of a CVQKD transmission is plausible and well 
exploitable in the security proofs, the performance of CVQKD, 
particularly the currently available secret key rates, is still 
below the rates of the protocols of traditional 

telecommunications. This issue brings up a potential 
requirement on the delivery of an intensive performance 
enhancement for CVQKD. In particular, for this purpose the 
multicarrier CVQKD modulation has been recently proposed 
through the multicarrier transmission scheme of AMQD 
(adaptive multicarrier quadrature division) [2]. The AMQD 
allows improved secret key rates and higher tolerable excess 
noise in comparison with standard (referred to as single-carrier 
throughout) CVQKD. The multicarrier transmission granulates 
the information into several Gaussian subcarrier CVs, which 
are then transmitted through the Gaussian sub-channels. 
Particularly, the AMQD divides the physical Gaussian channel 
into several Gaussian sub-channels; each sub-channel is 
dedicated for the conveying of a given Gaussian subcarrier CV. 
The physical medium of the individual subcarriers are coherent 
quantum states, similar to single-carrier CVQKD. A 
multicarrier CVQKD also provides an unconditional security 
against the most powerful attacks [2, 4].  

The proposed diversity extraction uses a sophisticated 
phase space constellation for the Gaussian sub-channels [4] 
which provides a natural framework to exploit the diversity 
patterns of the sub-channel transmittance coefficients. The 
diversity extraction can be applied for an arbitrary distribution 
of the sub-channel transmittance coefficients and, by exploiting 
some properties of the phase space constellation it does not 
require the use of a statistical model. The proposed phase space 
constellation offers an analogous criterion to an averaging over 
the statistics of the sub-channel transmittance coefficients. We 
compare the achievable performance of diversity extraction of 
multicarrier and single-carrier CVQKD.  

This paper is organized as follows. Section 2 summarizes 
some preliminary findings. Section 3 defines the diversity 
space for CVQKD. Section 4 proposes the error analysis of 
diversity extraction of multicarrier CVQKD. Finally, Section 5 
concludes the results. 

II. MULTICARRIER CVQKD 

In this section we very briefly summarize the basic notations 
of AMQD from [2]. The following description assumes a 



single user, and the use of n Gaussian sub-channels  i  for the 

transmission of the subcarriers, from which only l sub-
channels will carry valuable information.    
In the single-carrier modulation scheme, the j-th input single-

carrier state i�j j jx p    is a Gaussian state in the phase 

space , with i.i.d. Gaussian random position and momentum 

quadratures , , where 
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the modulation variance of the quadratures. In the multicarrier 
scenario, the information is carried by Gaussian subcarrier 

CVs, i�i i ix p  ,  20,ix  ,  20, ip  , where 
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  is the modulation variance of the subcarrier quadratures, 

which are transmitted through a noisy Gaussian sub-channel 
 i . Precisely, each  i  Gaussian sub-channel is dedicated for 

the transmission of one Gaussian subcarrier CV from the n 
subcarrier CVs. (Note: index l refers to the subcarriers, while 
index j, to the single-carriers, throughout the manuscript.) The 

single-carrier state j  in the phase space  can be modeled 

as a zero-mean, circular symmetric complex Gaussian random 

variable , with variance 
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In the multicarrier CVQKD scenario, let n be the number of 
Alice’s input single-carrier Gaussian states. Precisely, the n 
input coherent states are modeled by an n-dimensional, zero-
mean, circular symmetric complex random Gaussian vector  

  1, , 0,i 
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nz z    zz x p K  ,           (1)                               

where each jz  is a zero-mean, circular symmetric complex 

Gaussian random variable  
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Specifically, the real and imaginary variables (i.e., the position 
and momentum quadratures) formulate n-dimensional real 

Gaussian random vectors,  1, ,
T

nx xx   and 

, with zero-mean Gaussian random variables. 
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In the first step of AMQD, Alice applies the inverse FFT (fast 
Fourier transform) operation to vector z  (see (1)), which 
results in an n-dimensional zero-mean, circular symmetric 
complex Gaussian random vector d ,  0, dd K , 

. The  1, ,
T

nd dd   T  transmittance vector of   in 

the multicarrier transmission is 
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T n
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where 
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is a complex variable, which quantifies the position and 
momentum quadrature transmission (i.e., gain) of the i-th 
Gaussian sub-channel  i , in the phase space  , with real 

and imaginary parts  

 0 ReT 1 2 ,i i   and  0 Im 1i iT 2 .(6)                  

The Fourier-transformed transmittance of the i-th sub-channel 
 i  (resulted from CVQFT (continuous-variable quantum 

Fourier transform) operation at Bob) is denoted by  

   2
i iF T .                               (7)  

The n-dimensional zero-mean, circular symmetric complex 

Gaussian noise vector  of the quantum 

channel 
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n
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where  
†
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with independent, zero-mean Gaussian random components  

 20, i i
 x , and  20, ip  

i
,        (10)                  

with variance 2
 i

 , for each  of a Gaussian sub-channel i

 i , which identifies the Gaussian noise of the i-th sub-

channel  i



 on the quadrature components in the phase space 

.  
The general model of AMQD is depicted in Fig. 1. 
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Fig. 1. The AMQD modulation scheme [2]. Alice draws an n-dimensional, 
zero-mean, circular symmetric complex Gaussian random vector z , which 

are then inverse Fourier-transformed by 1F  . The resulting vector d  encodes 
the subcarrier quadratures for the Gaussian modulation. In the decoding, Bob 
applies the U unitary CVQFT on the n subcarriers to recover the noisy version 
of Alice’s original variable as a continuous variable in the phase space (IFFT 
– inverse fast Fourier transform, AWGN – additive white Gaussian noise, 
CVQFT – inverse continuous-variable quantum Fourier transform). 

 



III. DIVERSITY SPACE OF MULTICARRIER CVQKD 

In a multicarrier CVQKD scenario, the term diversity is 
interpreted as follows. Let the i-th component ,j ip

,

T

jp p

 of a given 

private random codeword  to be 

transmitted through 

 ,1 , ,j j lp  
 i , where each Gaussian sub-channel is 

characterized by an independent transmittance coefficient 

   2
i iT . As a first approach, the number l of the Gaussian 

sub-channels is identified as the diversity of  . Specifically, 
the transmission can be utilized by a permutation phase space 
constellation  [4]. Using ,  random 

permutation operators,  can be defined for the 

multicarrier transmission as  
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where  is the cardinality of . Using 

, the available degrees of freedom in the Gaussian 

link can be utilized, and the random permutation operators 
inject correlation between the 

    
   i j

d d


  i

 P

 i  sub-channels via 

. In particular, for each Gaussian sub-channel, the 

distance between the phase space constellation points is 
evaluated by i

 1 iP

 , the normalized difference function. 

Assuming two l-dimensional input random private codewords 

 and  and two 

Gaussian sub-channels 
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 i  and  j , i  is calculated 

precisely as follows: 
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where 2
   is the variance of the subcarriers, while *

2


  is the 

noise variance of the sub-channels, respectively.  
Particularly, for the l Gaussian sub-channels the product 
distance 1 l   is as  [18-20] 

 2 1
1 2 S i

l

l l
c   ,                           (13) 

where  is a constant. The maximization of this term 
ensures the maximization of the extractable diversity, and 
determines the  pairwise worst-case error probabilities of 

.  
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B

errp
,Ap p

IV. ERROR ANALYSIS 

By using  and   P (13), the  worst-case pairwise error 

probability can be decreased to the theoretical lower bound. 
We further reveal that in a multiuser CVQKD scenario, this 
condition can be extended simultaneously for all users. Let us 
assume that the 

errp

 kS   secret key rate of user , for kU k , is 

fixed precisely as follows: 

   
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, k

k nS P                         (14) 

where 0k   is referred to as the degree of freedom ratio of 

, and kU  min ,in outn K Kmin , where inK  and outK  refer to 

the number of sender and receiver users. As one can 
immediately conclude from (14),     PkS   . Without 

loss of generality, for a given Gaussian sub-channel  i , we 

redefine  k i , 0k iS  ,    precisely as  

   ,

min
. k i

k i inS P
                             (15) 

(Note: From this point, we use the complex domain formulas 
throughout the manuscript and  kS   and  k iS   are fixed 

to (14) and (15).). For a given  i , an E  error event [18–

20] is identified as follows:  
err
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and the probability of E  at a given err   iS   is identified by 

the  error probability as follows: errp
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Particularly, by some fundamental argumentations on the 
statistical properties of a Gaussian random distribution [18–

20], for     
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SNR 0i i iF T   ,   err k ip S    can be 
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error probability is as 
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Let 1l  , that is, let’s consider a single-carrier CVQKD, with 

   2
F T  of  , with a secret key rate  S  . In this 

setting,  is expressed precisely as [18] errp
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by theory. Specifically, assuming a multicarrier CVQKD 
scenario with l Gaussian sub-channels and secret key rate 

  iS    per  i ,  is derived as follows. Without loss 

of generality, we construct the set , such that   

AMQD
errp



  : min i ii
F T


 ,                       (21) 

where for  the following condition holds: , 1, ,i i l  
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In particular, the transmission through the Gaussian sub-
channels is evaluated via set , which refers to the worst-
case scenario at which a 



  0S    nonzero secret key rate is 

possible, by convention. Particularly, in (13), a given i  

identifies the minimum distance between the normalized 
 2 k iS   points for the phase space constellation    i  of 

 i . Precisely, by fundamental theory [18], it can be proven 

that for an arbitrary distribution of the F T  Fourier 

transformed transmittance coefficient, the maximized product 
distance function of 

 i i

(13) can be derived by an averaging over 
the following statistic : 
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zero-mean, circular symmetric complex Gaussian random 

variable with i.i.d.  zero-mean Gaussian 

random variables per quadrature components 
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x  and , for 

the i-th Gaussian subcarrier CV. 
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Putting the pieces together, the maximized product distance 
function 1 l   of (13) precisely can be obtained via an 

averaging over the   statistics of (23); however, (23) is, in 
fact, strictly provides an analogous criteria of the worst-case 

 situation in errp

F T

(21) via a sophisticated phase space 

constellation , by theory [18–20]. In other words, set , as 

it is given in 


errp





(21) together with  represents a universal 

criteria and provides us an alternative solution to find the 
worst-case  error probability for arbitrary distributed 

 coefficients in a multicarrier CVQKD scenario. 

Specifically, some of these argumentations can be further 
exploited in our analysis.  
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where . In particular, for , the density can be 
written as 
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Thus, we arrive at  as AM
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where the term 1
!l  is negligible. Specifically, from (20) and 

(26), the   diversity parameter picks up the following value 
in the single-carrier CVQKD setting:  

1single  ,                                 (27) 

while in the multicarrier CVQKD setting,  

AMQD l  .                                  (28) 

The result in (28) significantly depends on the properties the 
corresponding phase space constellation . From    (31) it 

clearly follows that the extractable diversity   determines the 
error probability of the transmission, and for higher  , the 
reliability of the transmission improves.  
Particularly, in a multiple-access CVQKD scenario, there 
exists another degree of freedom in the channel, the number of 
information carriers allocated to a given user U . This type of 
degree of freedom is denoted by   and is referred to as the 

degree of freedom ratio. Without loss of generality, in the 
function of 0   (27) and (28) precisely can be rewritten as 

1single   ,                             (29) 

while, in the multicarrier CVQKD setting, it refers to the ratio 
of the subcarriers allocated to a given user,  

1AMQD l    .                           (30) 

Thus, in a multicarrier CVQKD scenario with l Gaussian sub-
channels, for a given 0  , the overall gain is l. As follows, 

using (29) and (30), the error probabilities can be rewritten 
precisely as 
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errp
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