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Abstract—In this paper, we consider the problem of multi-
target device-free localization with special focus on modeling and
inference. The motion of multiple targets inside the area covered
by a wireless network leaves a characteristic footprint on the
radio-frequency (RF) field, and in turn affects both the average
attenuation and the fluctuation of the received signal strength
(RSS). A diffraction-based model is developed to describe the
impact of multiple targets on the RSS field, i.e. the multi-body-
induced shadowing. As a relevant case study, the model is tailored
to predict the effects of two co-located targets on the RF signals.
Three novel algorithms are proposed for on-line localization,
exploiting both the average and the deviation of the body-induced
RSS perturbation. The proposed techniques are compared and
some preliminary results, based on experimental data collected
in a representative indoor environment, are presented.

I. INTRODUCTION

Recent research has shown that electromagnetic (EM) fields
used for data transmission can be exploited as powerful
sensing tools for device-free environmental vision [1]. The first
experimental activities date back to [2]-[3] and show that body
motion leaves a characteristic footprint on the channel quality
information, namely on the received signal strength (RSS),
which can be exploited for body localization. Perturbations
induced on the radio-frequency (RF) signals are processed
to extract an image of the environment that originated the
perturbation. Radio tomographic imaging (RTI) has been pro-
posed for localization [4] showing that the combination of
multiple links enables accurate human-scale understanding.
Recent works [5]-[7] focused on assisted living applications
[8], including human activity monitoring, body gesture and
motion recognition, breathing detection, crowd density estima-
tion, and device-free localization (DFL) (see review in [1]).

In this paper, we propose novel techniques for multi-target
DFL. A few systems have been discussed in the literature for
multi-target localization [9]-[12], based on either RSS attenua-
tion or variance measurements. The RTI method [9], based on
RSS attenuation, models the multi-target RSS footprint as the
superposition of the perturbations induced by each individual
target. The localization accuracy can be further improved by
simultaneous processing of RSS measurements from multiple
RF channels [10]. In [11] a linear relationship between the
RSS fluctuations and the number of targets in the area has been
derived experimentally. A successive-cancellation algorithm is
proposed in [12] to address the problem of detection/tracking
of new subjects entering/moving in the monitored area.

Accurate multi-target DFL requires the development of
simple but realistic EM models to describe multi-body-induced
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Fig. 1. Multi-target DFL: testing scenario with N = 18 fully-connected
nodes and K = 2 targets (top); RSS distribution, and related target-induced
perturbation, for K = 0, 2, 6 targets along the link 6-14 (bottom).

shadowing. Conventional methods based on fingerprinting or
ray-tracing are not suited to the multi-user case, due to
unfeasible computational burden, while the linear model based
on the superposition assumption becomes unrealistic for high
people density. Analytical approaches based on propagation
modeling in the literature focus on the single-target case only
[13]-[15]. Starting from a recent study on single-target human-
induced fading modeling [15], in this paper we propose a
new analytical model based on diffraction theory to predict
the effects of two co-located targets on both the RSS mean
and variance (see Fig. 1). The model can serve as reference
for future extension to a larger number of targets in crowded
environments and is here validated by extensive measurement
data collected by an ad-hoc IEEE 802.15.4 wireless network.
In addition, three novel algorithms for multi-target localization
are presented, which jointly exploit information on the average
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attenuation and variance of the RSS fluctuation induced by
multiple moving targets: joint maximum likelihood (JML),
successive cancellation (SC) and a ML-RTTI approach. Methods
are tested and compared on a real 2-target indoor scenario with
network layout as in Fig. 1.

II. PROBLEM FORMULATION

We consider the localization of K human targets at positions
X = [tk 1, 7k0)T, k=1,..., K, in a two-dimensional (2D)
area X’ covered by a wireless network of N nodes with L <
N(N —1) links. The layout selected for experimental testing
is shown in Fig. 1 (top), with K = 2 targets and N = 18 fully
connected nodes. Let sy be the RSS in logarithmic scale on
link £ = 1,..., L, the objective of DFL is the estimation of
the K targets’ positions x = [x],...,xk]T from the RSS
observations s = [s;---sz]T collected over all the links.
According to experimental studies carried out on human-
induced fading for K = 1 [1][6][15], s, can be reasonably
modelled as Gaussian distributed' with moments depending on
the target location relative to the link, particularly on whether
the target location falls or not within the sensitivity area X,
of link ¢. Extending the model to K > 1 targets, here the
RSS sy is assumed to depend on the number K,(x) < K of
the targets that are within Xy and on their specific locations
x (e.g., K¢(x) = 1 in the example of Fig. 1 where only the
second target falls in the link-¢ area):

ho,e + wo e, if Ky(x)=0

5= { hyo(x) +wy p(x), if Ky(x) > 0. M)

In case of no target in the link area (Ky(x) = 0), the RSS
has deterministic mean hg, that accounts for path-loss and
static effects due to fixed obstructing/scattering objects, while
the random term wo ¢ ~ N'(0, 0 ;) models the measurement
errors as well as small power fluctuations due to variations in
the surrounding environment. When one or more targets are
within the link area (K, (x) > 0), the received power is subject
to an increased attenuation due to the obstruction generated by
the targets and an amplified fluctuation due to their movements
around x (e.g., turning, change of posture, arm movement,
etc.). The mean RSS is thus hy ¢(x) = hg ¢+ Ahy(x) < ho s,
while the random shadowing is w1 ¢(x) ~ N(0, 07 ,(x)) with
o1,4(x) = 00,0 + Aoy(x) > 00,

Experimental tests on the single-target case [1][6] showed
that both the average and standard-deviation perturbations,
Ahg(x) and Aocy(x), are maximized when the target is
obstructing the line-of-sight (LOS), especially if close to
the transmitter or the receiver. In the multi-target case, the
perturbation is expected to increase with the number of targets.
An example is in Fig. 1 (bottom) for a link of length 4 m with
K = 0,2,6 people along the LOS path with inter-distance
0.5 m. The RSS mean and standard deviation have been
calculated by sample averaging over 10 s while the targets
were moving their arms and turning around their positions.
The two moments are shown in Fig. 2 for K ranging from 0
to 7, showing the increasing impact with the number of targets.

! Although better fits can be provided using other parametric distributions
(e.g. Weibull, Nagakami), the approximation is reasonable enough to design
the estimation method.
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Fig. 2. Mean (blue solid line) and variance (red dashed line) of the RSS
fluctuation induced by people moving along the link vs. the number of targets.

From the above examples, both RSS average and variance
are expected to provide significant information on the number
of targets in the link area and in turn, by combining all links’
information, on the target locations in X’. We thus propose to
jointly exploit RSS mean and standard-deviation observations
for multi-target passive localization.

The inference requires the knowledge of the reference
parameters {hg ¢, 00} (for the empty-link case) as well as
the perturbation maps {Ahg(x), Aoy(x)} for all positions
x €Xf and all links £ =1,..., L. While {hg, 00} can be
easily pre-calibrated when no target is moving in the area X,
evaluation of {Ahy(x), Acy(x)} is more critical, as it requires
extensive fingerprinting campaigns or ray-tracing simulations.
The complexity becomes easily cumbersome for K > 1, even
for small number of targets, as the number of configurations to
be explored is exponential in K. Thereby, analytical modeling
is mandatory to simplify the calibration process. In [15], a
closed-form analytical model was derived for K = 1 based on
diffraction theory, relating both the RSS average and standard
deviation to the target location. The diffraction model was
shown to fit reasonably well the shadowing effects of a person
or an object placed near the LOS path. In the following section,
we propose the extension to ' = 2 targets, accounting for the
interactions between the targets. Although not considered in
this paper, the proposed approach can be adapted to model the
effect of a larger number of targets.

As reference for validation, we also consider the RSS maps
evaluated using the conventional fingerprinting approach [6].
As shown in Sect. V, additive perturbation models considered
in the literature [10], [4] can be adopted to simplify the prob-
lem in exchange for reduced modeling accuracy (due to the
linear approximation): the multi-target impact is approximated
as the superposition of single-target effects, i.e. Ahy(x) =
Zi{zl Ahy(x) and Ac?(x) = Zszl Ac?(xy), with single-
target maps Ahy(x;) and Ao?(x),) computed assuming one
target only, located at position x;. Fingerprinting maps are
obtained by collecting RSS samples over each link while a
single human target is subsequently positioned over M points
{b, }M_, of a 2D grid covering the monitored area.

III. MODELING OF MULTI-TARGET RSS PERTURBATIONS

We consider a single-link scenario with K = 2 three-
dimensional (3D) objects modeling the human targets, placed
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near the LOS path. The geometrical arrangement in the 3D
space (u1,us,us) is shown in Fig. 3, with the transmitter (TX)
placed in (0, 0,0), the receiver (RX) in (d,0,0), and the link
horizontally laid (along axis u1) at height A from the floor. The
Fresnel’s ellipsoid is assumed to have no contact with floor,
ceiling, walls or other obstacles except for the two targets:
min (R, dy, de) > v/Ad/2, where ) is the carrier wavelength,
d,, and d, are the minimum distances from walls and ceiling.
Each 3D object is an homogeneous, perfectly absorbing elec-
tromagnetic cylinder, with dimensions as follows: height 2a,,
elliptical base with semi-axes ay, > ay, for the first obstacle
(k=1), and 2b, and by, > by, for the second one (k = 2).
Each object shows a rectangular cross section (i.e., in the plane
orthogonal to the LOS path) having height 2a, and traversal
semi-size a, for k =1, 2b, and b, for k = 2. Targets are thus
represented as 2D knife-edge obstacles, Sk, having barycenter
C), = xi, located in the horizontal 2D plane containing the
LOS path. To model a person that stands in a specific position
but might change orientation or posture, we assume that each
object can rotate by an angle 0 around the vertical axis ug,,
such that the traversal semi-size can arbitrarily change in the
range Qyy = Gy > Gyy and by, > by > by,,.

According to [15], the electric field dE at the RX, due to
all dSj, elementary areas of the targets, can be predicted by
the forward propagation of the two virtual arrays of Huygens’
sources located on the obstacle planes S,; but not belonging to
the obstacles S) themselves. By the paraxial approximation,
neglecting backward/multiple scattering between the obstacles,
and ignoring ground, walls and ceilings reflections, we get:

d _j27.r"T2+721+713

dE = —E, dSidS> (2

T1RT21TT2A?
where F) is the electric field at the RX when no obstacles
are present in the link area. By mathematical manipulation of
(2), we compute the received electric field £ as a function of
the link geometry, the position and the size of the objects. By
defining the constants 1/R? = (1/dy + 1/d21)/A, 1/R3 =
(1/dz + 1/da1) /N, 1/R3) = 2/(Ada1), @ = RiRy/(2R3))
and the function F' ({,§) = exp(—j5(¢* +&* — 2a(¢)), it is:
E B B Ey

=222 3
By By Eo | Eo ®)

where Fs1/FEy models the interaction between the obstacles,

yitay y2+by
Eon _ do1d R1/V2 [ Ry/V2
B = —amaiaay Jnte Juwte, F(C1,G)dGidCe
Ry/vV2  Rg/V2
+

Rl/\f +R2/\f
Rl/f

- F(&1,82) d61dEs,

Rz/\f

“)
in addition to the superposition of single-target effects £/ Ey
and Fs/Fy, respectively. Their values can be analytically
computed according to [15]. The variables (i, (3,&1,&2 are
obtained by using the followmg substitution rules: ¢; =
\[U% )/Rl, & = \[ug /Rg, G = \fu(z)/Rl and & =
V2uy / R, being ugk), u3k the generic Cartesian coordinates
defined over the k-th 2-D obstacle S}, and centered on the LOS
path. According to (1), it is Ahy(x) = Ep[10log,, | E/Eo|?]+
Ahe and Acy(x) = Stdg[10logyo |E/Eo|?] + Aoc where
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Fig. 3. Geometry of the dual-target scenario for a single link.

Ey[-] and Stdy [-] are the expectation and standard deviation
operators with respect to 6 = [0y, 62], respectively. Ahe and
Ao include the multipath effects that are assumed constant in
the link area. It is apparent that: i) being Fy; = 0 and Ey, = Fj
if the k-th the targets is absent (i.e., only the i-th target is
present, with ¢ # k), then (3) reduces to the single-target case
E = E; given in [15]; ii) the attenuation Fy[10log;, |E/FEg)|?]
due to the combined effects of both targets does not simplify
to the superposition of the effects of each target, namely
Eg[101ogyo | E1/Eo|?] and Eg[101ogyq [Ea/Eol?] -

IV. MULTI-TARGET LOCALIZATION METHODS
A. Joint-ML Estimation (JML)

Assuming the number of targets K as known
model (1) for the overall set of observations as:

2 we write the

s = Ah(x) + hg + w(x), )
where ho = [h071 s h07L]T and Ah(x) =
[Ahy(x)---Ahr(x)]T  collect the empty-link mean

reference and the multi-target induced deviations for all
links, w(x) = [wii(x)wiL(x)]T ~ N(0,Q(x))
the corresponding shadowing terms with covariance
Q(x) = diag(o? 1(x),...,07 (x)). The RSS perturbation
is set to Ahy(x) = 0 and Acgy(x) = 0 for x such that
Ky(x) = 0. The multi-target ML estimate is calculated as
X = arg max A(s|x) where the log-likelihood function is

Afs]x) = ~In[Q()] — [|s — Ah(x) ~holhpy 1. (©)

|| denoting the determinant and ||a||é = aTCa the weighted
squared norm of a vector a weighted by the matrix C.

B. Successive Cancellation (SC)

Successive cancellation is an iterative algorithm that lo-
calizes one target at a time. Assuming the model (5) with
K =1 target in the monitored area, the algorithm estimates
the position of a first target, x;, using the ML approach with
single-target perturbation maps:

%1 = arg max A(s|x = xq).
x1€EX
2Extension to joint detection and localization of K targets can be performed

by extending the search space X for each target with a state denoting the target
absence, following the approach discussed in [6] for K = 1.
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The contribution of the first target is then taken into account
for the estimation of the second target, as:

%, = arg max A(s|x = [T, x1|T),
Xo€EX

with likelihood evaluated assuming as perturbation maps
Ahe()A(hXQ) = Ah@(f(l) + Ah@(ngA(l) and AO’?()A(hXQ) =
Ac?(%x1)+ Ac?(x2|X1), where Ahy(x2|%1) and Ao?(x2|X;)
denote the contributions of the second target when the first one
is located in X3, computed using the diffraction-based model.
The procedure is then repeated till the K'th user.

C. Radio Tomographic Imaging (RTI)

We propose a new tomographic imaging approach which
jointly accounts for the target impact on RSS average and
fluctuation. As originally proposed in [4], the DFL is for-
mulated as the estimation of a motion image of the area
X, capturing any variation with respect to the empty-space
scenario. Assuming the area X’ divided into M voxels centered
around the grid locations {b,,, }}/_,, the image to be estimated
is v.= [vy---vp]T where v,, = 0 or v,, = 1 indicates
whether a moving target is observed or not in voxel m. For
sparse motion, the RSS can be approximated as the sum of
the contributions generated by all the occupied voxels:

M
$0="Y_ Ahgmvm + hoy + wy, (7)

m=1
where Ahyg ., = Ah(by,) is the attenuation contribution due
to a target in voxel m, i.e. for x = b,,. The corresponding
power fluctuation is wy ~ N (0,02 (v)) with o¢(v) = g0 +
Aoy and Aa? = Zi\f:l vaUZm where Aoy, = Aoy(by,)
is the fluctuation contribution due to a target located in voxel
m, i.e. for x = b,,. Considering all links, we get

s=AH -v+hg+w, ®)

with AH = [Ahy,y,] collecting the L x M perturbations
for all links/voxels, and w ~ N'(0, Q(v)) having covariance
Q(v) = diag(ci(v),...0%(v)) depending on the target loca-
tions. ML radio-tomographic imaging (RTI-ML) is obtained as
v = arg mé}xA(s|v) with A(s|v) = —In|Q(v)|—||s—AHv—
hy| \é(v)_l. Close-form least squares estimation (RTI-LS) can
also be obtained as in [4], using attenuation information only:
v = AH'(s — hy). Target positions are then estimated as the
K voxels associated with the maximum values in V.

V. EXPERIMENTAL RESULTS

Experimental validation has been performed in the seminar
room of DEIB, Politecnico di Milano, using N = 18 nodes
uniformly deployed along the perimeter of a 4 X 5 m area,
spaced apart by 1 m and at 0.7 m of height (see Fig. 4).
Each node features an NXP JN5148 single-chip wireless
microcontroller, that enables applications within the 2.4 GHz
band according to the IEEE 802.15.4 standard. The RSS
dynamic range is 75 dB with a minimum sensitivity of —95
dBm while the transmit power is 0 dBm. For all nodes, we
employed omnidirectional, vertically polarized antennas with
gain 2 dBi. The protocol consists of a modified MAC sub-layer

o
i

Target

E_

Jim
;1_ H N

Fig. 4. Testing scenario for double-target localization: trajectory covered by
the two targets and imaging example.

i

[7], defined on top of the beacon-enabled mode of the standard
IEEE 802.15.4. A network coordinator creates a super-frame
structure of duration 60 ms and transmits a periodic beacon
frame at the beginning of each super-frame. The beacon frame
allows every RF node to synchronize RSS acquisition, so
that the RSSs are synchronously sampled at 60 ms over all
links. Node 1 acts as sink, collecting data from all nodes and
forwarding the information to the processing unit for imaging.

The testing layout for double-target localization is in Fig.
4. An imaging example obtained by the RTI-LS method is
also superimposed, with estimated locations denoted as black
crosses and real positions as green circles. The two targets
follow the same trajectory but in opposite directions: target #1
enters from the bottom-left corner, target #2 by the top-right
one. A regular grid is used for fingerprinting/analytical map
evaluation, with grid points spaced by 0.5 m along both axes.
Single-target fingerprints of RSS mean and standard deviation
are computed as in [6] averaging the RSS samples over 20 s.

In order to validate the multi-target diffraction model, the
RSS perturbation is measured on link 6-14 for all possible
configurations of the two targets along the grid points of
the LOS path. In Fig. 5, the perturbation predicted by the
diffraction model, in terms of average attenuation Ah(x),
is compared to the measured one, as well as to the simpli-
fied additive model based on single-target fingerprints. The
diffraction-based model has been obtained by simulating two
targets with dimensions ay, = by, = 41 cm, ay, = by, = 12
cm, and a, = b, = 150 cm. For each spatial arrangement
of the two targets, the RSS moments have been evaluated by
averaging over 10000 realizations of azimuth 6 ~ U(—m, )
and location uniformly distributed within a bin of 0.2 X 0.2 m
centered around the nominal grid point. Relevant multipath
effects are observed in the considered indoor environment,
especially due to metal foils covering the pillars along the
upper and lower sides of the room (see Fig. 4). These effects
are ignored by the diffraction model, while they are accounted
for in fingerprinting maps as concerns the single target impact
(not the interaction between the two targets). The compari-
son in Fig. 5 shows that the diffraction-based model better

741



2016 24th European Signal Processing Conference (EUSIPCO)

—— Additive finerprinting
—a— Diffraction model
Measurements ®

12 L

1 ‘\‘/
0L
ol
8l

6
[l Target T1
5 [l Target T2

RSS perturbation [dB]

8
mmEm

.-

0.5m

4m

2-target configuration along the link

""" ™)

Fig. 5. Average RSS perturbation, Ah(x), induced on link 6-14 by two people
moving along the LOS path. The perturbation predicted by the additive model
based on fingerprinting and by the diffraction model is compared to the real
measurements, for the double-target configurations x on the bottom.

approximates the double-target shadowing with respect to the
simplified additive approach, despite the mismodeling due to
multipath that is not considered in the diffraction analysis
(extension to estimate and compensate multipath effects is a
future development).

The accuracy of multi-target localization is assessed in Fig.
6, for the algorithms JML, SC, RTI-LS and RTI-M, for known
K. Each location fix is obtained using RSS observations col-
lected over 4 s. The accuracy is evaluated in terms of root mean
square error (RMSE) by averaging the performances over 9
localization outcomes and over the two targets. The figure
shows the RMSE vs. the trajectory steps. The best performance
is provided by JML and RTI-ML, while RTI-LS performs
worse as it does not exploit variance information and for SC
the accuracy is limited by the single-target assumption. Note
that all algorithms here perform snapshot estimates, but they
can also be combined with Bayesian tracking to better handle
ambiguities due to multitarget and multipath. Algorithms using
analytical RSS modeling have lower accuracy compared to
fingerprinting, as they trade accuracy with an easier calibration
that does not require time-consuming measurement campaigns.

VI. CONCLUSIONS

In this paper we investigated the problem of passive local-
ization of two moving targets in the area covered by a wireless
mesh network. A diffraction-based model was proposed to
describe the fading induced by the targets on each link of the
network. Different estimation algorithms have been developed
to infer the target locations exploiting both RSS average
and variance information. Preliminary results, obtained by an
experimental indoor campaign, show an average localization
accuracy in the range of 0.5-1 m.
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Fig. 6. Location accuracy along the trajectory for the four localization

algorithms, using both diffraction-based and fingerprinting perturbation maps.
The RMSE averaged over the whole trajectory is indicated on the top-right.
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