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Abstract—Source localization of primary users (PUs) is a
geolocation spectrum awareness feature that can be very useful in
enhancing the functionality of cognitive radios (CRs). When the
cooperating CRs have limited information about the PU, weighted
centroid localization (WCL) based on received signal strength
(RSS) measurements represents an attractive low-complexity
solution. In this paper, we propose a new analytical framework
to calculate the exact performance of WCL in the presence of
shadowing, based on results of the ratio of two quadratic forms
in normal variables. In particular, we derive an exact expression
for the root mean square error (RMSE) of the two-dimensional
location estimate. Numerical results confirm that the derived
framework is able to predict the performance of WCL capturing
all the essential aspects of propagation as well as CR network
spatial topology.

I. INTRODUCTION

The wireless communication area has seen the introduction
of new paradigms that aim to combat the issue of radio
frequency spectrum scarcity. Cognitive radio (CR) is one of
the emerging technologies that has been developed and studied
over the past decade to enable efficient utilization of the
spectrum resources [1]. In CR networks, spectrum sensing is
a key enabler in identifying spectrum holes and monitoring
of the primary user (PU) activity so as to avoid any potential
harmful interference [2].

However, it should be noted that sensing functionality
includes any kind of technique that allows the CRs to gather
useful radio environment information and enhance the func-
tionality of the network. Therefore, geo-location of PU is
one such spectrum awareness technique that not only plays
an important role in preventing harmful interference to the
PU, but allows for better spectrum resource allocations in the
spatial domain [3]–[9]. Bearing in mind the challenges posed
by the uncooperative nature of the PU, weighted centroid
localization (WCL) represents an attractive low complexity
solution which relies only on received signal strength (RSS)
measurements.

The WCL technique has been studied in several papers
assuming the secondary users (SUs) have limited information
about the PU [10]–[14]. Most of them evaluate the WCL per-
formance in terms of the root mean square error (RMSE) only
numerically, under varying environment conditions i.e., factors
such as node placement, node density, shadowing variance
and node spacing. For instance, the work in [11] analysed the
WCL performance under varying path-loss exponent, different
weighting strategies, node selection strategy and further ex-
plored the dependence of the RMSE on the position of the PU

within the area considered. In [12], we investigated the WCL
performance when adopting a geometric based node selection
strategy i.e., imposing a geometric constraint to the selection of
SUs. The first theoretical framework for WCL analysis using
a probabilistic approach was presented in [14], assuming that
the two-dimensional localization errors are jointly Gaussian,
thus requiring the calculation of the error covariance matrix.

In this paper, we propose a new analytical framework to
calculate the exact performance of WCL in the presence
of independent and identically distributed (i.i.d.) log-normal
shadowing, based on results of the ratio of two quadratic forms
in normal variables [15]–[17]. In particular, the main results
of this paper can be summarized as follows:

• We derive the expression for the RMSE of the two-
dimensional location estimation.

• The exact expression is based on the statistical distribu-
tion of the ratio of quadratic forms in normal variables.

• Through the new analytical methodology we quantify the
performance of WCL in different scenarios by varying the
PU locations, the path-loss exponent, the number of SUs
and their location.

The remainder of this paper is organized as follows. In
Section II we present the system model. The new theoretical
framework that leads to the derivation of the exact calculation
of the RMSE is provided in Section III. In Section IV we
analyze a case study to quantify the effectiveness of the
proposed approach. Section V concludes the paper. For the
sake of conciseness, Table I summarizes the notations and
symbols used.

TABLE I
NOTATIONS AND SYMBOLS

X Random variable
X Random vector or matrix
x Realization of a random variable
E[·] Expectation operator
Tr(·) Trace operator
det(·) Determinant of a matrix
diag(·) Diagonal matrix
I Identity matrix
1 Matrix of ones
[·]T Transpose operator
|| · ||l l-th norm operator
N (µ,�2) Gaussian distribution with mean µ and variance �2



II. SYSTEM MODEL

We consider a CR network with N SUs located in a square
area of side length S , and the PU located within the area at
position Lp = [xp, yp]T. The position of the i-th SU node
is defined as Li = [xi, yi]T, i = 1, 2, ..., N . The propagation
environment is characterized by a power-law path-loss channel
model plus log-normal shadowing. The RSS at the i-th SU
node from the PU is thus given by

Pi = Pt � pl(d0)� 10↵ log10

✓
||Li � Lp||2

d0

◆
+ Si (1)

where Pt is the transmit power in dBm, pl(d0) is the path-loss
at a reference distance d0, ↵ is the path-loss exponent, and
Si ⇠ N (0,�2

s ) describes the random shadowing effect.
We begin by presenting the WCL algorithm used to estimate

the location of the PU in two dimensions [10]

bLp =

PN
i=1 wiLiPN
i=1 wi

=

PN
i=1(Pi � Pmin)LiPN
i=1(Pi � Pmin)

(2)

where wi = (Pi � Pmin)/(Pmax � Pmin) is the weighting
coefficient for the i-th SU node, with Pmax the maximum
received power among sensor nodes, and Pmin an arbitrary
reference power level which can be e.g., the minimum mea-
surable received power by the SU. The localization error is
defined as ⇠ , bLp � Lp = [ bXp � xp, bYp � yp]T, where bXp

and bYp are the one-dimensional position estimates along the
x-axis and y-axis, respectively

bXp =

PN
i=1 GixiPN
i=1 Gi

bYp =

PN
j=1 Gjyj
PN

j=1 Gj

(3)

with Gi = Pi � Pmin. Finally, the distance error is given by

⇠ ,
q
( bXp � xp)2 + (bYp � yp)2 = ||⇠||2. (4)

For notational convenience we define G = [G1, . . . , GN ]T,
X = [x1, . . . , xN ]T, and Y = [y1, . . . , yN ]T. In the following
section, the square of the distance error (4) will be interpreted
as the ratio of two quadratic forms, leading to a new theoretical
framework for the performance analysis of WCL.

III. EXACT CALCULATION OF THE
ROOT MEAN SQUARE ERROR

In this section we derive an exact expression of the RMSE of
the two-dimensional location estimate. Defining ⇠x = bXp �xp

and ⇠y = bYp � yp as the errors in the x-dimension and y-
dimension, respectively, the RMSE can be written as

RMSE =
p
MSE =

r
E
h
||bLp � Lp||22

i

=
q
E
⇥
⇠2x + ⇠2y

⇤
. (5)

The argument of the expectation in (5) can be rewritten as

⇠2 = ⇠2x + ⇠2y

=

 PN
i=1 Gi(xi � xp)PN

i=1 Gi

!2

+

 PN
i=1 Gj(yj � yp)PN

i=1 Gj

!2

=

PN
i=1

PN
j=1 GiGjaij

PN
i=1

PN
j=1 GiGj

where aij = (xi � xp)(xj � xp) + (yi � yp)(yj � yp).
Defining x0

i = xi � xp and y0i = yi � yp, the term aij
can be expressed as aij = x0

ix
0
j + y0iy

0
j , and arranged in a

matrix form A = [ai,j ]i,j=1,...,N with A = X0X0T +Y0Y0T,
X0 = [x0

1, x
0
2, . . . , x

0
N ]T, and Y0 = [y01, y

0
2, . . . , y

0
N ]T. It

should be noted that A is symmetric. Using matrix-vector
notation we obtain the following compact form of the squared
error

⇠2 =
GTAG

GT1G

from which the mean square error (MSE) simply follows

MSE = E

GTAG

GT1G

�
(6)

with G ⇠ N (µ,�2
sI) and µ = E[G]. The vector µ has

elements µi = E[Gi] = E[Pi]� Pmin.1
Note that the expression (6) is the first order moment of

the ratio of quadratic forms in normal variables investigated
in [15], [16]. In [16] it is possible to find the exact expression
of expectation in the form of (6) by exploiting the moment
generating function (MGF), i.e.,

E

GTAG

GTBG

�
=

Z 1

0
�(0,�t)

⇣
Tr(R) + µ̃TRµ̃

⌘
dt (7)

where

�(0,�t) = [det(I+ 2tB)]�1/2

⇥ exp

✓
1

2

�
µT(I+ 2tB)�1µ� µTµ

�◆
(8)

is the joint MGF of the ratio terms, R = LTAL, µ̃ = LTµ,
and LLT = (I+ 2tB)�1.

In our case, the matrix B is equal to 1, hence the term LLT

can be written as LLT = (I + 2t1)�1 = C(t) which in turn
can be simplified to

C(t) = I� 2t

1 + 2nt
1. (9)

Therefore

Tr(R) = Tr(LTAL) = Tr(ALLT) = Tr(AC(t))

= Tr(A)� 2t

1 + 2nt
Tr(A1)

and

µ̃TRµ̃ = µTLRLTµ = µTLLTALLTµ

= µTM(t)µ

1We consider the case of i.i.d. shadowing although the more general case
of correlated shadowing i.e., G ⇠ N (µ,⌃), with ⌃ non-diagonal, can be
handled as well.



MSE =

Z 1

0
(1 + 2nt)�1/2 exp

✓
� t

1 + 2nt
µT1µ

◆
(12)

⇥
✓
Tr(A) + µTAµ� 2t

1 + 2nt
Tr(A1)� 4t

1 + 2nt
µTA1µ+

✓
2t

1 + 2nt

◆2

µT1A1µ

◆
dt

where M(t) = C(t)AC(t). Expanding M(t) we get

M(t) = A� 2t

1 + 2nt
A1� 2t

1 + 2nt
1A+

✓
2t

1 + 2nt

◆2

1A1

from which

µTM(t)µ = µTAµ� 2t

1 + 2nt
µTA1µ� 2t

1 + 2nt
µT1Aµ

+

✓
2t

1 + 2nt

◆2

µT1A1µ

(a)
= µTAµ� 4t

1 + 2nt
µTA1µ

+

✓
2t

1 + 2nt

◆2

µT1A1µ

where (a) follows from the fact that µTA1µ = µT1Aµ.
Therefore, the second term of the integral (7) can be expressed
as

Tr(R) + µ̃TRµ̃ = Tr(A) + µTAµ

� 2t

1 + 2nt
Tr(A1)� 4t

1 + 2nt
µTA1µ

+

✓
2t

1 + 2nt

◆2

µT1A1µ. (10)

Now we simplify the joint MGF in (7)

�(0,�t) = [det(I+ 2t1)]�1/2

⇥ exp

✓
µT(I+ 2t1)�1µ

2
� µTµ

2

◆

noting that in our setting det(I+ 2t1) = 1 + 2nt, obtaining

�(0,�t) = (1 + 2nt)�1/2 exp

✓
µTC(t)µ

2
� µTµ

2

◆
.

Expanding the terms in the exponential and using (9) we get

µTC(t)µ

2
� µTµ

2
=

µTµ

2
� 2t

2(1 + 2nt)
µT1µ� µTµ

2

= � t

1 + 2nt
µT1µ

from which the final expression of the joint MGF appears as

�(0,�t) = (1 + 2nt)�1/2 exp

✓
� t

1 + 2nt
µT1µ

◆
. (11)

Substituting (10) and (11) into (7) we obtain the desired
expression for the MSE (12) and consequently the RMSE in
(5).

IV. CASE STUDY ANALYSIS

In this section, we analyze the methodology provided in
Section III. In particular we compare analytical and simulation
results of the RMSE of location estimation for random, but
fixed, SU positions. The case study scenario is a square area
with side S = 100m, with a PU transmit power Pt = 20 dBW,
shadowing parameter �s = 5.5 dB and 8 dB, and path-loss
exponent ↵ between 3 and 4. Fig. 1 depicts the considered
randomly distributed SUs and the PU located in three dif-
ferent positions: LA

p = (0m, 0m), LB
p = (20m, 0m) and

LC
p = (40m, 50m). To validate the analytical approach we

used Monte-Carlo simulation with 1000000 runs.
Impact of PU location. In Fig. 2 we depict the WCL perfor-

mance in terms of the RMSE of position estimation using the
exact analysis and simulation results for the aforementioned
PU locations, with ↵ = 4. There is an increase in the RMSE
as the PU moves from the center at LA

p towards the edge of the
area at LC

p . This behavior is due to the nature of WCL which
tends to be biased towards the center of the network, as was
also observed through numerical simulations in [11], [12]. It
is also evident that for the PU locations LB

p and LC
p , the WCL

does not benefit from increasing the number of SUs and as
a result the localization performance remains almost constant
when N increases from 120 to 250. The fluctuation in the
RMSE for scenarios LB

p and LC
p with relatively low number

of SUs is possibly due to the specific node locations, chosen
randomly, in which the geometric configuration among SUs
relative to the PU impacts the RMSE. However, for the case
with the PU in the center of the area, increasing the nodes
density improves the accuracy of the WCL.

Shadowing Analysis. We further analysed the WCL perfor-
mance when varying �s between 4 dB and 10 dB, for N = 240
SUs and path-loss exponent ↵ = 4. As expected, the RMSE is
not impacted by the variation of �s. This lack of dependency
on �s is confirmed by (12).2

Path-loss Analysis. In Fig. 3 we show the impact the
variation of the path-loss exponent ↵ has on the RMSE, and
we considered the following scenarios: PU locations LA

p and
LB

p , ↵ = 3 and 4, �s = 5.5 dB. Interestingly, the RMSE
improves with an increase in ↵, as was observed numerically in
[11]. Basically, increasing ↵ in a way induces a node selection
strategy which effectively reduces the impact of the SUs with
low RSS on the location estimate [11], [12].

2On this point, we would like to remark that the RMSE provides localization
performance in the average sense, hence a more complete analysis requires
the statistical distribution of the two-dimensional error.
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and symbols refer to analytical and simulation results, respectively.

V. CONCLUSION

In this paper, we proposed a new analytical framework
to calculate the exact performance of WCL in the presence
of log-normal shadowing, based on results on the ratio of
two quadratic forms in normal variables. In particular, we
derived the expression for the RMSE of the two-dimensional
localization error. A case study analysis was performed to
evaluate the accuracy of the proposed methodology. Specifi-
cally, we analyzed the performance of WCL under varying PU
location, path-loss exponent, number of SUs and their location.
Numerical results confirm that the statistical framework is able
to predict the performance of WCL capturing all the essential
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Fig. 3. RMSE of the two-dimensional position estimation as a function of
the number of SU nodes, N , when the PU is located at LA

p and LB
p , and for

two different values of the path-loss exponent. Lines and symbols refer to
analytical and simulation results, respectively.

aspects of propagation as well as CRs location. Future work
will incorporate distance-dependent and correlated log-normal
shadowing.
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