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Abstract—This paper investigates a wireless-powered coopera-
tive communication network consisting of a source, a destination
and a multi-antenna decode-and-forward relay. We considerthe
relay as a wireless-powered node that has no external power
supply; but it is equipped with an energy harvesting (EH)
unit and a rechargeable battery such that it can harvest and
accumulate energy from radio-frequency signals broadcastby the
source. By fully incorporating the EH feature of the relay, we
develop an opportunistic relaying protocol, termed accumulate-
then-forward (ATF), for the considered WPCCN. We then adopt
the discrete Markov chain to model the dynamic charging and
discharging behaviors of the relay battery. Based on this, we
derive a closed-form expression for the exact outage probability of
the proposed ATF protocol. Numerical results show that the ATF
scheme can outperform the direct transmission one, especially
when the amount of energy consumed by relay for information
forwarding is optimized.

I. I NTRODUCTION

Radio-frequency (RF) energy harvesting technique has re-
cently been regarded as a new viable solution to extend the
lifetime of energy-constrained wireless networks [1]. This
technique has opened up new opportunities for cooperative
communications as it enables a new cooperative manner for
wireless devices (see [2] and references therein). In particular,
the relay in conventional cooperative networks, can now
harvest energy from the information source and then use the
harvested energy to assist the source’s transmission. In this
sense, the relay is more willing to cooperate since it does not
need to consume its own energy. In this paper, we refer to
a cooperative communication network with wireless powered
relay as a wireless-powered cooperative communication net-
work (WPCCN). In fact, the design and analysis of WPCCNs
have become a hot research topic in wireless communication
area very recently (see, e.g., [3]–[8]). It is worth pointing
out that the design of wireless-powered networks is inherently
different from that of conventional wireless networks powered
by solar/wind energy harvesting (e.g., [9]). Specifically,in
wireless-powered networks, the amount of energy harvested
by wireless-powered nodes highly depends on the network
operation modes, while these two events are independent in
conventional energy harvesting networks.

In practice, due to the propagation loss of RF signals, the
amount of energy harvested by wireless-powered1 nodes dur-
ing one transmission block are normally very limited. Thus,it
is necessary for these nodes to equip with energy storage (e.g.,
a rechargeable battery) such that they can accumulate enough
amount of harvested energy before performing one round of
information transmission. However, to the best knowledge of
the authors, only a few papers in open literature incorporated
the energy accumulation process in the design/analysis of
WPCCNs. In [3], Krikidis et al. studied a classical three-
node relay network with an energy harvesting relay, where
the relay was assumed to have a discrete and finite-capacity
rechargeable battery and the energy accumulation process at
the relay was characterized by a finite-state Markov chain.
Recently, [5]–[7] extended [3] to a more general scenario
with multiple energy harvesting relays, in which several relay
selection schemes were proposed and analyzed. Besides, a
continuous battery model was adopted in [8] to analyze the

1Throughout this paper, we use the terms “wireless-powered”and “energy
harvesting” interchangeably.

throughput performance of a three-node relay network with
energy accumulation. However, an infinite capacity of the relay
battery was assumed in [8], which makes the resulting analysis
somewhat ideal.

A common assumption in [3], [5]–[8] is that no direct link
exists between source and destination. However, the directlink
of a WPCCN actually plays a crucial role in practice. This
is because the amount of energy harvested by the wireless-
powered relay is generally limited, which means the signal-
to-noise ratio (SNR) of the source-destination link may be
comparable or even larger than that of the relay-destination
link. In other word, relying solely on an energy harvesting
relay to accomplish the information delivery from source to
destination may lead to poor system performance. Thus, the
direct link should be incorporated in the designs of WPCCNs.
When the direct link is available, a natural question that arises
is “how often should the source cooperate with the energy
harvesting relay?”. This is actually a non-trivial problem.
Specifically, the relay can only accumulate little amount of
energy for information forwarding when the cooperation is
too intensive, which may lead to even worse performance than
the direct transmission (i.e., no cooperation) scheme. On the
other side, few cooperation will yield the under-utilization of
the relay and then make the cooperation gain insignificant.

Motivated by this open problem, in this paper we focus on
the design of a three-node WPCCN consisting of one source,
one energy harvesting relay implementing decode-and-forward
protocol and one destination, where the direct link between
source and destination exists. We consider that the relay is
equipped with a rechargeable battery and multiple antennas,
which includes single-antenna relay scenarios studied in [3],
[5], [6], [8] as special cases. Towards the appropriate usage
of the energy harvesting relay, we develop an opportunistic
relaying protocol, termed accumulate-then-forward (ATF), for
the considered WPCCN, where the relay cooperates with
the source in an opportunistic manner. Particularly, the co-
operation between source and relay is activated only when
the accumulated energy at relay exceeds a predefined energy
threshold and the decoding of source’s information at relayis
successful. Otherwise, the source has to transmit information
to destination by itself, while the relay accumulates the en-
ergy harvested from source’s signals. By modeling dynamic
charging/discharging behaviors of relay battery as a finite-
state Markov chain, we then analyze the outage probability
of the proposed ATF protocol over mixed Rician-Rayleigh
fading channels. Specifically, in contrast to the Rayleigh fading
model used in [3], [5], [6], [8], we adopt Rician fading to
characterize the channel fading between source and relay.
This is more practical by considering that the line-of-sight
(LoS) path is very likely to exist between source and relay
as the current wireless energy harvesting techniques can only
support a relatively short distance. Numerical results arefinally
performed to verify the theoretical analysis and illustrate the
effects of several system parameters on the network outage
probability.

II. SYSTEM MODEL AND PROTOCOL DESIGN

We consider a WPCCN consisting of one single-antenna
sourceS, one decode-and-forward (DF) relayR equipped
with N antennas, and one single-antenna destinationD. We
assume thatS andD have embedded power supplies, while
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R is a wireless-powered device. But,R is equipped with an
wireless energy harvesting unit and a rechargeable battery
such that it can accumulate the energy harvested from RF
signals broadcast byS. Furthermore, the relay is equipped
with separate energy and information receivers [10]. As such,
it can flexibly switch its received signal to one of these two
receivers to realize energy harvesting or information decoding.

Let hSD denote the complex channel coefficient ofS-D
link. Also let hSR andhRD denote theN×1 channel vectors
of S-R andR-D link, respectively. As the up-to-date wireless
energy harvesting techniques could only be operated withina
relatively short distance, the line-of-sight (LoS) path isvery
likely to exist betweenS andR. Motivated by this fact, we
consider an asymmetric scenario for the fading distributions
of S-R link and R-D link. In particular, the elements of
hSR are subject to independent and identically distributed
(i.i.d.) Rician fading, while the elements ofhRD are subject
to i.i.d. Rayleigh fading. Besides, the channel coefficientof
direct linkhSD follows Rayleigh distribution. Furthermore, all
channels betweenS, R andD are assumed to experience slow,
independent and frequency flat fading such that the channel
gains remain unchanged within each transmission block but
change independently from one block to the other.

We now propose an accumulate-then-forward (ATF) pro-
tocol for WPCCN. In the proposed ATF protocol, the energy
harvesting relay accumulates the energy harvested from signals
broadcast byS and assists its information transmission in an
opportunistic manner. Specifically, the relay opportunistically
switches between the energy harvesting mode and the infor-
mation cooperation mode based on both whether its residual
energy in battery exceeds a predefined energy threshold and
whether its decoding of source’s information is correct. Here,
we useT to denote the duration of each transmission block,
which is further divided into two time slots with equal length
T/2 whenR attempts to decode source’s information (i.e., the
residual energy atR exceeds the predefined energy threshold).

• Mode I: This mode corresponds to the case when the
current residual energy in relay battery, denoted byER,
is less than the energy thresholdET . In this situation,
R chooses to perform energy harvesting operation to
further accumulate its energy and the source has to
transmit its information toD by itself during the whole
transmission block.

• Mode II : In this mode, the current residual energyER at
R is not less thanET , but the decoding of the source’s
information atR during the first time slot is unsuccessful.
Thus, R still cannot cooperate withS in this mode.
During the second time slot,S is motivated to re-transmit
its information to enhance the received SNR atD, while
R can harvest energy from this signal to charge its battery.

• Mode III : Here,R has accumulated enough energy (i.e.,
ER ≥ ET ) and its information decoding of the first hop
is also correct. As such,R will work in information coop-
eration mode by helping forward the source’s information
to D during the second time slot, whileS can keep in
silence during this period.

In the following, we express the harvested energy atR
and the received SNR atD of the proposed ATF for three
possible modes mathematically. Without lose of generality,
we consider a normalized transmission block (i.e.,T = 1)
hereafter. Moreover, we usePS to denote the transmit power
of S andHxy = ‖hxy‖2 to denote the channel power gain,
wherex, y ∈ {S,R,D} and‖x‖ denotes the Euclidean norm
of a vectorx.

A. Mode I

In this mode,R harvests energy during the whole transmis-
sion block. Thus, the amount of harvested energy atR can be
expressed as

EI
H = ηPSHSR, (1)

whereη ∈ (0, 1] is the energy conversion efficiency. In (1),
we ignore the amount of energy harvested from the noise as it
is normally below the sensitivity of energy harvesting circuit.

Let xS denote the transmitted signal byS with unit energy.
In Mode I, the received signal atD comes only from the direct
link. Thus, the received SNR atD in Mode I is given by

γI
D = γSD = PSHSD/N0, (2)

whereN0 is the power of the additive Gaussian white noise
(AWGN).

B. Mode II
Since R has stored sufficient energy in Mode II, during

the first time slot, it will try to perform information decoding
based on the signal received fromS. We assume that the
maximum ratio combining (MRC) technique is adopted atR
to maximize the received SNR. In this case, the received SNR
at theR is given by

γSR = PSHSR/N0. (3)

Recall that in this mode the source’s information is not
decoded correctly atR. In the second time slot,S has to re-
transmit its information toD asR cannot help, whileR can
harvest energy from this re-transmitted signal. The harvested
energy during the second time slot is given by

EII
H = ηPSHSR/2. (4)

On the other hand,D receives two copies of the same
information fromS. With the MRC technique, the received
SNR atD in Mode II can be expressed as

γII
D = γSD + γSD = 2PSHSD/N0. (5)

C. Mode III
In this mode,R utilizes the received signal fromS to

decode the information in the first hop and the decoding is
correct. Thus,R can cooperate withS by forwarding the
source’s information toD. Here, we consider thatR will spend
ET amount of energy to perform information forwarding
and the fixed transmit power is assumed to bePR = 2ET .
Moreover, for simplicity, it employs transmit antenna selection
scheme [11]. That is, the antenna with maximum channel
power gain is selected to forward information. We define
h∗
RD = max{hRD}. In this case, the received SNR atD

during the second time slot is given by

γRD = PRHRD/N0, (6)

whereHRD = |h∗
RD|2 is the channel power gain ofR-D link.

Note that the received SNR atD during the first time slot is
same as (2). Using the MRC technique, the resulting SNR at
D in Mode III can be characterized as

γIII
D = γSD + γRD = (PSHSD + PRHRD) /N0. (7)

III. O UTAGE PROBABILITY ANALYSIS

In this section, we analyze the outage probability of the
proposed ATF protocol over mixed Rician-Rayleigh fading
channels. To this end, we first model the dynamic behaviors
of the relay battery by a finite-state Markov chain (MC) [3].

A. Markov Chain Description
We assume thatR is equipped by aL discrete-level battery

with a capacityC. The ith energy level is defined asεi =
iC/L, i ∈ {0, 1, 2, . . . , L}. We define the stateSi as the state
of relay’s residual battery beingεi. Pi,j is defined as the state
transition probability fromSi to Sj . Let λ[m] ∈ {λI, λII, λIII}
denote the system operation mode in them-th transmission
block, whereλX , X ∈ (I, II, III), represents the event that
the X-th mode is operated. Considering the discrete battery



model adopted in this paper, the discretized amount of energy
εH harvested byR should be re-calculated as

ε
X
H , εi, where i = argmaxj∈{0,1,...,L}

{

εj : εj < E
X
H

}

, (8)

whereX ∈ {I, II}. Similarly, the actual amount of energy con-
sumed byR for information forwarding should be defined by

εT , εi, where i = argminj∈{1,...,L} {εj : εj ≥ ET } . (9)

In this paper, we assume thatR can decode the information
correctly if its received SNR exceeds a predetermined thresh-
old. LetR denote the transmit rate ofS. The SNR threshold of
S-R link in Mode II or III can then be defined asγ0 = 22R−1.
We now can describe the three possible operations of the
proposed ATF protocol during them-th transmission block
mathematically as follows

λ[m] =

{

λI, if εT > ε[m],
λII, if εT ≤ ε[m] & γSR < γ0,
λIII, if εT ≤ ε[m] & γSR ≥ γ0,

(10)

whereε[m] denotes the relay’s residual energy at the beginning
of them-th transmission block. Moreover, the residual energy
at the beginning of the(m+1)th transmission block can thus
be expressed as

ε[m+ 1] =







min{ε[m] + εIH , C}, if λ[m] = λI

min{ε[m] + εIIH , C}, if λ[m] = λII

ε[m]− εT , if λ[m] = λIII

. (11)

Based on the above mathematical description, we now
derive the state transition probabilities of the formulated MC
for the relay’s battery. Inspired by [3], the state transition of
the MC can be generally split into the following eight cases.

1) The battery remains empty (S0 to S0): We consider the
MC starts with the stateS0, i.e., the battery ofR is empty. It is
obvious that Mode I will be activated in this case. Furthermore,
the amount of harvested energy during the current block should
be discretized to zero, which indicates that the conditionEI

H <
ε1 = C/L holds. The transition probability of this case is
characterized as

P0,0 = Pr

{

E
I
H <

C

L

}

= FHSR

(

C

ηPSL

)

, (12)

whereFHSR
(·) denotes the cumulative distribution function

(CDF) of HSR. According to [12], we can write the CDF of

HSR asFHSR
(x) = 1 − QN

(√
2NK,

√

2(K+1)
ΩSR

x

)

, where

QN (·, ·) is the generalized (N th-order) MarcumQ-function
[13], K is the RicianK-factor defined as the ratio of the
powers of the LoS component to the scattered components and
ΩSR = E{|hSR,i|2}, ∀i ∈ {1, . . . , N}, with E{·} denoting
the statistical expectation andhSR,i denoting thei-th element
of hSR.

2) The empty battery is partially charged (S0 to Si with
0 < i < L): Mode I is activated to charge the battery. We
can also deduce that the effective amount of harvested energy
should be expressed asεIH = iC/L, which meansEI

H falls
between the battery levelsi and i + 1. Thus, the transition
probability is

P0,i = Pr

{

iC

L
≤ E

I
H <

(i+ 1)C

L

}

= FHSR

(

(i+ 1)C

ηPSL

)

− FHSR

(

iC

ηPSL

)

.

(13)

3) The empty battery is fully charged (S0 to SL): Similar
to the previous two cases, the transition probability can be
calculated as

P0,L = Pr
{

E
I
H ≥ C

}

= 1− FHSR

(

C

ηPS

)

. (14)

4) The non-empty and non-full battery remains unchanged
(Si to Si with 0 < i < L): The battery stays at the same
level, which indicates thatR either operates in Mode I or
Mode II with zero effective harvested energy (i.e.EI

H or EII
H

is discretized to zero). The transition probability of thiscase
is characterized as

Pi,i = Pr

{[(

ET >
iC

L

)

∩

(

E
I
H <

C

L

)]

∪

[(

ET ≤
iC

L

)

∩ (γSR < γ0) ∩

(

E
II
H <

C

L

)]}

=



















FHSR

(

C
ηPSL

)

, if ET > iC
L
;

FHSR

(

γ0N0

PS

)

, if ET ≤ iC
L

& γ0N0 < 2C
ηL

;

FHSR

(

2C
ηPSL

)

, if ET ≤ iC
L

& γ0N0 ≥ 2C
ηL

.

(15)

5) The non-empty battery is partially charged (Si to Sj with
0 < i < j < L): Similar as the previous case, the battery is
partially charged from leveli to j (i.e., εXH = (j − i)C/L).
Thus, the transition probability can be derived as (16) shown
on the top of next page.

6) The non-empty and non-full battery is fully charged (Si
to SL with 0 < i < L): In this case, the effective harvested
energyεXH , either from Mode I or Mode II, is greater than the
residual space of the battery. The transition probability is thus
given by

Pi,L = Pr

{[(

ET >
iC

L

)

∩

(

E
I
H ≥

(L− i)C

L

)]

∪

[(

ET ≤
iC

L

)

∩ (γSR < γ0) ∩

(

E
II
H ≥

(L− i)C

L

)]}

=























1− FHSR

(

(L−i)C
ηPSL

)

, if ET > iC
L

;

0, if ET ≤ iC
L

& γ0 <
2(L−i)C
ηN0L

;

FHSR

(

γ0N0

PS

)

− FHSR

(

(L−i)C
ηPSL

)

,

if ET ≤ iC
L

& γ0 ≥ 2(L−i)C
ηN0L

.
(17)

7) The battery remains full (SL to SL): In this case,
the battery ofR certainly has enough energy to support
information forwarding in the second hop. Thus, only Mode II
can be performed so that the battery level is not reduced. Since
the battery is full at the beginning of the transition,εIIH can
be any value. The transition probability can be evaluated as

PL,L = Pr {γSR < γ0} = FHSR

(

γ0N0

PS

)

. (18)

8) The non-empty battery discharged (Sj to Si with 0 ≤
i < j ≤ L): According to the principle of the proposed ATF
scheme described in Sec. II, the battery level is decreased only
when Mode III is operated. The transition probability can thus
be evaluated as

Pj,i =Pr

{

(γSR > γ0) ∩

(

ET =
(j − i)C

L

)}

=

{

1− FHSR

(

γ0N0

PS

)

, if ET = (j−i)C
L

;

0, if ET 6= (j−i)C
L

.

(19)

We are now ready to derive the steady state distribution of
the relay battery. LetM = [Pi,j ](L+1)×(L+1) denote the state



Pi,j =Pr

{[(

ET >
iC

L

)

∩

(

(j − i)C

L
≤ E

I
H <

(j − i+ 1)C

L

)]

∪

[(

ET ≤
iC

L

)

∩ (γSR < γ0) ∩

(

(j − i)C

L
≤ E

II
H <

(j − i+ 1)C

L

)]}

=



























FHSR

(

(j−i+1)C
ηPSL

)

− FHSR

(

(j−i)C
ηPSL

)

, if ET > iC
L

;

0, if ET ≤ iC
L

& γ0N0 <
2(j−i)C

ηL
;

FHSR

(

γ0N0

Ps

)

− FHSR

(

2(j−i)C
ηPSL

)

, if ET ≤ iC
L

& 2(j−i)C
ηL

≤ γ0N0 <
2(j−i+1)C

ηL
;

FHSR

(

2(j−i+1)C
ηPSL

)

− FHSR

(

2(j−i)C
ηPSL

)

, if ET ≤ iC
L

& γ0N0 ≥ 2(j−i+1)C
ηL

.

(16)

transition matrix of the formulated MC. It is easy to verify that
M is irreducible and row stochastic. Thus, there should exists
a unique solutionπ that satisfies the following equation [14]

π = (π0, π1, . . . , πL)
T
= M

T
π. (20)

Thisπ is actually the discrete distribution of the relay residual
energy and can be calculated as

π =
(

M
T − I+B

)−1
b, (21)

whereMT denotes the transpose matrix ofM, I is the identity
matrix, Bi,j = 1, ∀i, j, andb = (1, 1, . . . , 1)T [14].

B. Outage Probability
Based on the steady state of the relay battery derived in the

previous subsection, we now analyze the outage probabilityof
the proposed ATF scheme. LetΦX , X ∈ (I, II, III) denote the
outage event of Mode I, II, and III, respectively. According
to the full probability theory, we can express the outage
probability of the considered WPCCN as

Pout = (1− PE) Pr {ΦI}+ PE Pr {γSR < γ0}Pr {ΦII}

+ PE Pr {γSR ≥ γ0}Pr {ΦIII} ,
(22)

wherePE denotes the probability that the residual energy at
R is no less than the energy thresholdET , which can be
expressed as

PE =
∑L

i=k
πi, s.t. k = argmink∈1,...,L {εk ≥ ET } . (23)

In Mode I, S sends the information toD during the whole
block without the help ofR. Thus, we have

Pr {ΦI} = Pr
{

γI
D < γ1

}

= FHSD

(

γ1N0

PS

)

, (24)

whereγ1 = 2R−1 is the outage threshold without cooperation
andFHSD

(·) is the CDF ofHSD. Since theS-D link suffers

from Rayleigh fading, we haveFHSD
(y) = 1−exp

(

− y
ΩSD

)

,

whereΩSD = E{|hSD|2} is the mean ofHSD [15].
For Mode II, the outage probability can be characterized as

Pr {ΦII} = Pr
{

γII
D < γ0

}

= FHSD

(

γ0N0

2PS

)

. (25)

Similarly, for Mode III, we can evaluate the outage proba-
bility as follows

Pr {ΦIII} = Pr
{

γ
III
D < γ0

}

= Pr {γRD + γSD < γ0} . (26)

With the aid of [11], we can express the term
Pr {γRD + γSD < γ0} in closed-form as (27) on top of next
page, in which̄γSD = PSΩSD/N0 and γ̄RD = 2ETΩRD/N0
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Fig. 1. Outage probability of the proposed ATF scheme versusthe source
transmit power for different antenna numbers and battery levels, whereR = 1,
C = 5× 10−3 , ET = 1× 10−4, N = [2, 4, 6].

and ΩRD = E{|hRD,i|2}, ∀i ∈ {1, . . . , N} with hRD,i

denoting the i-th element ofhRD. By substituting (23),
(24), (25) and (26) into (22), we now have obtained a
closed-form expression for the outage probability of the
proposed ATF protocol.

IV. N UMERICAL RESULTS

In this section, we provide some simulation results to verify
the above theoretical analysis and illustrate the impacts of
several parameters on system performance. We adopt the
channel modelΩij =

(

1 + dαij
)−1

to capture the path-loss
effect, wheredij denotes the distance between nodesi and
j, α ∈ [2, 5] is the path-loss exponent. In the following
simulations, we setdSD = 50m, dSR = 5m, dRD = 45m, the
path-loss factor for all pathsα = 3, the Rician-factorK = 10,
the noise powerN0 = −60 dBm, the energy conversion
efficiency η = 0.5, and the transmission rate of the system
R = 1.

We first compare the analytical outage probability of the
considered system with its associated Monte Carlo simulation,
which corresponds to the practical case that the charging ofthe
relay batteries is continuous (i.e.,L → ∞). To this end, in Fig.
1, we plots the outage probability curves of the proposed ATF
scheme versus the source transmit power for different antenna
numbers and battery levels. It can be seen from this figure
that the derived analytical expressions of outage probability
approach its corresponding Monte Carlo simulation results
as the discrete battery levelL increases. Particularly, when
L = 100, the analytical expression coincides well with its
corresponding simulation, which verifies the effectiveness of
the adopted MC model and the correctness of our theoretical
analysis in Sec. III. We can also observe from Fig. 1 that when
the source transmit powerPS is small, the outage probability



Pr {γRD + γSD < γ0} = N

N−1
∑

k=0

(

N
k

) (−1)
k
[

γ̄SD

(

1− exp
(

− γ
γ̄SD

))

− γ̄RD

k+1

(

1− exp
(

− (k+1)γ
γ̄RD

))]

(k + 1) γ̄SD − γ̄RD

. (27)
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Fig. 3. Outage probability of the proposed ATF scheme with optimal transmit
energy at the relay, whereR = 1, C = 5× 10−3, N = [2, 4, 6].

of the proposed ATF scheme is similar to that of the direct
transmission without cooperation. This is because the relay
cannot accumulate sufficient energy to forward information
andR keeps operating in Mode I. However, asPS increases,
the proposed ATF gradually outperforms the direct transmis-
sion scheme as the relay can accumulate enough energy such
that it can assist the source’s transmission opportunistically.
Furthermore, the more the antennas of the relay, the larger the
performance gap introduced by larger battery levels.

The outage probability of the ATF scheme versus the trans-
mit energy at the relay (i.e,ET ) is drawn for different source
transmit powers and antenna numbers in Fig. 2. This figure is
a stair-stepping plot due to the adopted discrete battery model.
It can be observed from the figure that there exists an optimal
value ofET , which minimizes the system outage probability.
Moreover, when the source transmit power increases from
20dBm to 30dBm, the optimal transmit energy of the relay
slightly shifts to the right as the relay can harvest more energy.
Furthermore, for a fixed source transmit power, the relay with
more antennas requires a smaller optimal transmit energy.

Fig. 3 performs the outage performance comparison be-

tween the proposed ATF protocol with optimal transmit energy
at the relay and the direct transmission scheme without coop-
eration. Note that the optimal transmit energy at the relay for
a certain setup could be readily obtained via an exhaustive
search of all discrete energy levels. We can see from this
figure that with the optimalET , the proposed ATF protocol
is significantly superior to the direct transmission scheme,
especially when the source transmit power is high enough.
In addition, this performance gain can be further enlarged by
increasing the number of antennas equipped at the relay. This
is because equipping more antennas at relay can not only
effectively increase the amount of harvested energy in the
first hop but also efficiently improve the received SNR at the
destination in the second hop.

V. CONCLUSION

In this paper we developed an accumulate-then-forward
(ATF) protocol for cooperative communications via a multi-
antenna energy harvesting relay. By modeling the charg-
ing/discharging behaviors of the relay battery as a finite-state
Markov chain, we derived a closed-form expression for the
exact outage probability of the considered network over mixed
Rician-Rayleigh fading channels. Numerical results showed
that the system outage probability decreases with the increase
of source transmit power and number of antennas at relay. Fur-
thermore, the proposed ATF protocol can outperform the direct
transmission scheme, especially when the relay consumes the
optimal amount of energy for information forwarding.
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