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Abstract—The advent of enhanced technologies in radio in-
terferometry and the perspective of the SKA telescope bring
new challenges in image reconstruction. One of these challenges
is the spatio-spectral reconstruction of large (Terabytes) data
cubes with high fidelity. This contribution proposes an alternative
implementation of one such 3D prototype algorithm, MUFFIN
(MUlti-Frequency image reconstruction For radio INterferome-
try), which combines spatial and spectral analysis priors. Using
a recently proposed primal dual algorithm, this new version
of MUFFIN allows a parallel implementation where compu-
tationally intensive steps are split by spectral channels. This
parallelization allows to implement computationally demanding
translation invariant wavelet transforms (IUWT), as opposed to
the union of bases used previously. This alternative implementa-
tion is important as it opens the possibility of comparing these
efficient dictionaries, and others, in spatio-spectral reconstruc-
tion. Numerical results show that the IUWT-based version can
be successfully implemented at large scale with performances
comparable to union of bases.

I. INTRODUCTION

Imaging reconstruction algorithms for radio-interferometry
have experienced an important growth over the past decade.
This research activity is constantly stimulated by methodolog-
ical advances in inverse problems and optimization on the
one hand, and by recent technological advances in phased
arrays on the other hand. In the framework of an international,
extremely ambitious large scale radio phased array to be built
in the next years, the Square Kilometer Array (SKA, see
[1]), an increasing number of researchers in signal processing
and radio astronomy join in common efforts. With thousands
of dishes and millions of dipoles spread over hundreds of
kilometers, the SKA poses a number of high-level challenges
to several research domains. One of these challenges is the
ability to reconstruct high-fidelity spatio-spectral data cubes
(multifrequency images) of several TeraBytes (TB).

In radio interferometry, the receivers can be classical dishes
or groups of co-phased sensors (dipoles) called stations. The
spatial position of a pair of receivers defines one of the
baselines of the telescope array. In the ideal case, two receivers
with baseline b observing in a narrow frequency band ν = c/λ
measure a complex visibility, vλ, which corresponds to a
sample of the Fourier spectrum of the intensity distribution
of interest at spatial frequency b/λ. The sampling of the
Fourier space is thus governed by the configuration of the
receivers in the radio interferometer geometry. Successive
snapshots measurements increase the coverage of the Fourier

space because the Earth rotation modifies the configuration of
the array baselines with respect to the sky.

The SKA is emblematic of a new generation of low
frequency radio telescopes, which are able to provide un-
precedented sensitivity, resolution and large fields of view
(as already demonstrated, for instance, by the SKA pathfinder
LOFAR (Low Frequency Array) [2]). Ultimately, the SKA will
achieve a tremendously broad Fourier frequencies coverage
allowing (sub-)arcsec resolution over hundreds of frequency
bands and a dynamic range expected to cover up to seven
orders of magnitude (see Table 1 in [1]). But this evolution
has a price: image reconstruction algorithms must be able to
process in a manageable amount of time huge amounts of
data (leading e.g. to storage and memory issues), especially
in a multifrequency framework. Indeed, performing a joint
reconstruction of both spatial and spectral behaviors of radio
sources is a key issue to fully characterize such sources
[3]. The spatio-spectral models used to achieve high fidelity
reconstruction is also a key issue. The goal of the present
work is to allow large scale comparison between two state-of-
the-art approaches, both based on sparse priors but expressed
through different types of redundant dictionaries (Isotropic
Undecimated Wavelet Transforms, IUWT [4], and union of
bases).

So far, however, existing image reconstruction algorithms
are mostly monochromatic. Interestingly, sparsity was early
recognized as a powerful principle for reconstruction and has
lead to the most populated family of imaging algorithms. Their
patriarch is the CLEAN algorithm ([5], devised in 1974),
which expresses and exploits the sparsity of the sky intensity
distribution in the canonical basis. Efficient monochromatic
algorithms relying on more general sparse models (through re-
dundant dictionaries) have since then proven their efficiency in
radio imaging: recent examples include the works [6] (IUWT),
[7], [8], [9] (union of bases), which rely on global minimiza-
tion of sparsity-regularized functionals, or [10] (IUWT), which
combines complementary types of sparse recovery methods in
a greedy manner.

Turning to the few existing multi-frequency reconstruction
algorithms, most of the proposed approaches rely on a physical
model for the frequency-dependent brightness distribution.
In [11], a Taylor expansion of a power-law is adopted to
model the flux dependence in frequency of astrophysical radio
sources. More recently, reconstruction algorithms relying on
parametric models for this dependence have been proposed.
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In [12], the authors propose to address the estimation problem
using a Bayesian framework. The works [13] propose a
constrained maximum entropy estimation algorithm in order
to account for the frequency dependence of the intensities.

These “semi-parametric” methods rely on spectral models
and thus clearly offer advantages and estimation accuracy
when the model is indeed appropriate. However, across the
broad frequency coverage of current radio facilities, radio
sources exhibiting complex spectral shapes (not simple power
laws) are expected. For instance, the works [14] evidence
that some sources may exhibit one or more relative minima,
breaks and turnovers. For the new generation of low frequency
telescopes such as LOFAR, recent studies have also shown that
second order broadband spectral models are often insufficient
[15]. Attempts to relax the spectral power-law model are thus
necessary. One such attempt, in [16], formulates the problem
as an inverse problem with a smooth spectral regularization
allowing for local deviations. The present study is another such
attempt.

In [17], the authors proposed to reconstruct a multi-
wavelength sky image using a fully non-parametric ap-
proach. The resulting algorithm (named MUFFIN for MUlti-
Frequency image reconstruction For radio INterferometry)
performs a joint spatio-spectral multi-wavelength reconstruc-
tion by incorporating a spectral regularization. As mentioned
above, the spectral dimension critically blows up the size of
the inverse problem, with targeted sizes reaching 80 TB for
SKA cubes. To cope with computational issues, optimization
in MUFFIN was implemented using the alternative direction
method of multipliers (ADMM) [17]. However, identified
limitations of MUFFIN are (i) the resolution of a large size
linear system at each iteration (ii) the high number of primal
and dual variables, generating expansive memory costs.

In the present work, a new implementation of MUFFIN is
derived using the primal-dual algorithm proposed in [18], [19].
This new implementation presents three main advantages:
(i) it uses a reduced number of variables (lower memory costs);
(ii) it avoids the resolution of linear systems;
(iii) it allows a more efficient parallelization (computationally
intensive steps are parallelized by wavelengths).
These processing improvements allow to implement compu-
tationally demanding non-orthogonal wavelet transforms and
associated exact adjoint operators (IUWT). This makes future
studies in position of comparing approaches based on IUWT
vs union of bases in a large scale 3D framework.

The paper is organized as follows: section II introduces the
model and the inverse problem. The optimization algorithm is
presented in section III and its performances are illustrated in
section IV.

II. SPATIO-SPECTRAL INVERSE PROBLEM FOR
RADIO-INTERFEROMETRY

A complex visibility measures the spatial coherence of the
electric field at the position of two antennas and wavelength λ.
Noting w the coordinate along the line of sight and (u, v) the
coordinates in its perpendicular plane, the visibility vλ(u, v, w)
is related to the sky brightness distribution at λ, x?λ(l,m), by:

vλ(u, v, w) =

∫ ∫
x?λ(l,m)√
1− l2 −m2

e−
2π
λ i(ul+vm+wn)dldm

(1)
with l2+m2+n2 = 1. When the term w

√
1− l2 −m2 can be

considered small (for instance for coplanar baselines or very
small fields of view), (1) reduces to a Fourier transform. In the
general case, this term induces a form of non-isoplanatism, as
it introduces a direction dependent effect (DDE). In practice,
other DDE (e.g. ionosphere or antenna/station beam) exist.
They are assumed to be calibrated in this study.

Combining all the measured complex visibilities (resp. the
discretized sky brightness image) in a vector v (resp. x?)
and omitting for now the dependence in λ, model (1) can
be expressed as:

v = φx? + e (2)

where φ is a linear mapping from the image domain to the
visibilities, which includes the DDE and e is a noise vector.
Various iterative algorithms such as [20], [21] have been
proposed in the literature to compensate for these DDE. They
lead to the image plane model:

y =Hx? + n (3)

where y is the so-called dirty image and H is a convolution
operator. This model assumes that DDE have been corrected
for, or that they lead to point spread functions (PSF) that are
piecewise constant across the field. From now on, model (3)
will be considered.

Let xl? be the column vector collecting the sky intensity
image at wavelength λl, with l = 1, . . . , L and L the number
of spectral channels. The dirty image yl at wavelength λl is
related to the sky intensity image by:

yl =H lxl
? + nl (4)

where nl is a perturbation vector accounting for noise and
model error and H l represents convolution by the PSF at λl.

Eq. (4) defines a linear inverse problem, which is ill-posed
owing to the partial coverage of the Fourier plane. This
problem can be solved in a cost minimization framework,
by adding to the data fidelity term a regularization term freg
related to some prior on x1

?, . . . ,xL
?. Let x1, . . . ,xL denote

the corresponding optimization variables at each wavelength
and X denote the concatenation matrix X := [x1, . . . ,xL].
With these notations the cost function writes:

min
X

L∑
l=1

1

2σ2
l

‖yl −H lxl‖2 + freg(X) (5)

where σ2
l is the noise variance of the corresponding dirty

image yl. Note that the fidelity term in (5) separates in
wavelengths. This is justified if the width of the spectral PSF
is sufficiently small so that fluxes in adjacent spectral channels
are not mixed up.

Several recent works have shown that regularization based
on sparse representations in appropriate transform domains can
be very effective. Such regularization terms can be formulated
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in an analysis or in a synthesis framework. These two for-
malisms are discussed and compared e.g. in [22]. For both
approaches, redundant dictionaries improve over non redun-
dant (orthogonal) ones. For narrow-band radio-interferometric
imaging, state-of-the-art results appear so far to be obtained
with union of bases [7], [8], [9] and IUWT [6], [10].

In complement to the classical positivity constraint
1R+(X), the present study opts for a sparse analysis prior
operating both spatially and spectrally, leading to a regular-
ization of the form:

freg(X) := 1R+(X) + µs

L∑
l=1

‖Wsxl‖1 + µλ

N∑
n=1

‖Wλx
n‖1

(6)
In (6), xl (the lth column of X) corresponds to the image
at wavelength l and xn (the nth row of X) is the spectrum
associated to pixel n. Ws and Wλ are the operators associated
with, respectively, the spatial and spectral decomposition.
IUWT will here be considered for the spatial regularization
and a cosine decomposition for the spectral model. It is also
important to underline the central role of the last regularization
term with parameter µλ in (6). This term prevents the opti-
mization problem (5) from being separable w.r.t. the xl. This
makes the sparse spatial and spectral priors linked together
and the regularization truly spatio-spectral.

As far as large scale implementation is concerned, another
important point is that in (6) the first and second terms
are separable w.r.t. the wavelengths while the last term is
separable w.r.t. the pixels. Note finally that, similarly to [23], a
synthesis approach could have been considered for the spectral
regularization. In this case, however, the fidelity term in (5)
would be no more separable w.r.t. the wavelengths.

III. OPTIMIZATION ALGORITHM

The works [17] proposed to minimise the convex problem
described by (5, 6), using an ADMM algorithm. A major
drawback of this solution is the necessity to solve a large
linear system at each iteration. This was kept computationally
tractable in [17], [8] by using for W s a concatenation of
orthogonal wavelet bases. Another drawback is the amount
of memory required by the multiplication of the primal and
dual variables, which are each of the size of the data cube (at
least; this reaches several data cubes for redundant analysis
coefficients). In order to reduce the required memory, this
communication proposes to replace the ADMM algorithm by
the primal-dual optimization algorithm [18], [19]. It proceeds
by full splitting of the inverse problem and so can call indi-
vidually each proximal operator of the functions. Application
of [18], [19] to (5, 6) leads to Algorithm 1, where:

sat(u) :=


−1 if u < −1
1 if u > 1

u if |u| ≤ 1

(7)

and (·)+ is the projection on the positive orthant. Parameters
ρ, σ and τ are fixed according to [18] in order to guarantee
the convergence of the algorithm.

Algorithm 1: MUFFIN algorithm.
Initialize: x, U and V

1 repeat
2 ∇ =

(
H†1(H1x1 − id1) | · · · |H

†
L(HLxL − idL)

)
;

3 X̃ =
(
X − τ(∇+ µsW

†
sU + µλVW

†
λ)
)
+

;

4 Ũ = sat
(
U + σµsW s(2X̃ −X)

)
;

5 Ṽ = sat
(
V + σµλ(

¯
2X̃ −X)W λ

)
;

6 (X,U ,V ) = ρ(X̃, Ũ , Ṽ ) + (1− ρ)(X,U ,V );
7 until stopping criterion is satisfied.;

Return : X

Note that Algorithm 1 requires 6 variables
(X̃,X, Ũ ,U , Ṽ ,V ) in addition to the gradient and 5
if ρ = 1, while 10 variables are necessary in [17]. Moreover,
in contrast to [17], [8], Algorithm 1 does not require to solve
at each iteration large linear systems. This allows the use of
highly redundant, translation invariant wavelet transforms like
(for instance) IUWT [4].

A major advantage of Algorithm 1 is that the most demand-
ing steps are separable w.r.t. the wavelengths, leading to the
following parallel implementation. MUFFIN is distributed on
a cluster where the master node centralises the reconstructed
data cube and each wavelength is associated to a compute
node l. The algorithm iterates as follows:

1) The master node computes T = µλVW
†
λ and sends the

column l of T , denoted as tl, to node l.
2) Each node l = 1 . . . L computes sequentially:

∇l =H
†
l (H lxl − yl) (8)

sl = µsW
†
sul (9)

x̃l = (xl − τ(∇l + sl + tl))+ (10)

ũl = sat (ul + σµsW s(2x̃l − xl)) (11)
(xl,ul) = ρ(x̃l, ũl) + (1− ρ)(xl,ul) (12)

3) Each node sends xl and x̃l to the master and the master
computes sequentially:

Ṽ = sat
(
V + σµλ(2X̃ −X)W λ

)
(13)

V = ρṼ + (1− ρ)V (14)

Note that the particularly time consuming steps associated to
(8,9,11) are computed in parallel at each wavelength. This is
particularly important for (9) when the transform is not orthog-
onal. In such cases, the adjoint operator differs from the perfect
reconstruction synthesis operator and its implementation may
not benefit from the same fast algorithm.

A distributed memory implementation of MUFFIN will
be available1. The algorithm has been implemented in Julia
[24], which provides a multiprocessing environment based on
message passing.

1https://github.com/andferrari/muffin.jl
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IV. SIMULATIONS

Simulations use PSFs obtained with the HI-inator package2

based on MeqTrees software [25] with MeerKAT arrays con-
figuration. For the purpose of making Monte Carlo simula-
tions, we simulated small cubes of 15 frequency bands with
images of 256×256 pixels. Fig. 1 shows the PSF at the central
wavelength, which corresponds to a Fourier coverage produced
by a total observation time of 8 hours. In Algorithm 1, W s

in (11) corresponds to “2nd” generation IUWT [4] and W †
s

in (9) is the exact corresponding adjoint operator.
Two different sky sources are used for these simulations.

The first one is similar to the first simulation of [11] and
is aimed to test the ability of the algorithm to reconstruct a
particular spectrum. At a reference wavelength λ0 the image
consists in two overlapping Gaussian profiles centered at pixel
(128,108) and (128,148), see Fig. 1 (Right). The spectra of
the two objects are proportional respectively to λ/λ0 and
λ0/λ (this corresponds to astronomical spectral indices equal
respectively to −1.0 and +1.0). Figure 2 compares the “dirty”,
true and estimated spectra at three spatial positions: pixels
(128,108), (128,128) and (128,148). The left plot shows the
results at the two extremal positions. At these positions the
effect of the most distant object is negligible: the spectra
are proportional to λ/λ0 and λ0/λ. The right plot shows the
result obtained at the center of the image: the spectrum is
proportional to λ/λ0+λ0/λ and cannot be approximated by
a simple power law. Fig. 2 shows that this non parametric
approach is able to recover the different types of spectra.

The next simulation is a preliminary result illustrating
the relative performances of IUWT w.r.t. the union of eight
Daubechies wavelet bases used in [17]. The sky corresponds
to the radio emission of an HII region in the M31 galaxy. A
sky cube is computed from this real sky image by applying a
first order power-law spectrum model. The 256× 256 map of
spectral indices is constructed following the procedure detailed
in [12]: for each pixel, the spectral index is a linear combina-
tion of an homogeneous Gaussian field and the reference sky
image. A Gaussian noise corresponding to 10 dB was finally
added to the dirty images to simulate instrumental and model
errors. The parameters of the optimization algorithm are set
to ρ = 1, σ = 1 and τ = 10−5.

A critical problem for the deconvolution of large data cubes
is the calibration of the regularization parameters µs and µλ.
We propose to cope with this problem using the following
strategy which decouples the calibration in two steps:

1) µλ is first set to 0: the problem is separable w.r.t.
the wavelengths and each node independently iterates
Eqs. (8-12) with t` = 0. This setting which avoids
data transfers with the master node is relatively fast
and allows multiple runs to calibrate µs e.g. by cross-
validation.

2) The second step keeps µs and the X estimated in step
1) and calibrates µλ using the full algorithm with X as
an initial condition.

2https://github.com/SpheMakh/HI-Inator
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Fig. 3 compares the reconstruction Signal to Noise Ratio
(SNR) for the union of bases (blue) and IUWT (green) as a
function of the iterations. SNR is here defined as:

SNR(X,X?) := 10 log10

(
‖X?‖22

‖X −X?‖22

)
(15)

where X is the estimated solution and X? the “sky truth”.
The first 2000 iterations correspond to step 1) i.e. µλ = 0
and µs = 0.25, and the following iterations to step 2) i.e.
µs = 0.25 and µλ = 3.0. The value of µs = 0.25 in 1) and
µλ = 3 in 2) were set, for both types of wavelets, after trials
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Fig. 3. Comparison of the SNR for union of orthogonal bases and IUWT.
Spectral regularization is turned on at iteration 2000.
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Fig. 4. Left column: M31 sky images. Central column: M31 dirty images.
Right column: M31 reconstructed images. First raw, central raw and bottom
raw correspond to the initial, central and last wavelength.

and errors in the range [10−4 101] and best performances were
retained.

The evolution of the SNRs after iteration 2000, i.e. when
µλ > 0 clearly evidences the gain obtained through a joint
spatio-spectral reconstruction for both approaches. We see
that while performances of both approaches are comparable,
they relative behavior depend on the regularization and on
the number of iterations (which is an important point in a
large scale framework). Indeed, such questions deserve further
studies. Those are outside the scope of the present paper but
are made possible with the parallel implementation proposed
in this contribution.

Figure 4 shows the true sky, the dirty image and the
reconstructed image with IUWT at three different wavelengths
after 4000 iterations. These results show that the central lobe
of the PSF and part of the side lobes, which can be seen in
Fig. 1 (Left), are properly deconvolved.

Finally, it is worth noting that larger scale tests of MUFFIN
were recently performed (on data cubes of 2048× 2048× 64
voxels) using a cluster of 8 Xeon E5-26666 compute nodes
with 30Gio of memory each. The cluster was built on AWS
using CfnCluster. In this simulation, all variables associated
to a single wavelength on a node use 1GiB of memory and a
peak of 4GiB is reached during execution time.

As a conclusion, the proposed alternative implementation of
MUFFIN opens the possibility of comparing state-of-the-art
sparsity based approaches on large scale spatio-spectral radio
imaging problems.
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