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Abstract—One of the major challenges in hyperspectral imag-
ing (HSI) is the selection of the most informative wavelengths
within the vast amount of data in a hypercube. Band selection
can reduce the amount of data and computational cost as well
as counteracting the negative effects of redundant and erroneous
information. In this paper, we propose an unsupervised, em-
bedded band selection algorithm that utilises the deep learning
framework. Autoencoders are used to reconstruct measured
spectral signatures. By putting a sparsity constraint on the input
weights, the bands that contribute most to the reconstruction
can be identified and chosen as the selected bands. Additionally,
segmenting the input data into several spectral regions and
distributing the number of desired bands according to a density
measure among these segments, the quality of the selected
bands can be increased and the computational time reduced by
training several autoencoders. Results on a benchmark remote
sensing HSI dataset show that the proposed algorithm improves
classification accuracy compared to other state of the art band
selection algorithms and thereby builds the basis for a framework
of embedded band selection in HSI.

Index Terms—Hyperspectral imaging, autoencoder, band se-
lection.

I. INTRODUCTION

Identifying the most informative wavelengths of a hyper-

spectral imaging (HSI) dataset and eliminating redundancies

whilst simultaneously retaining all relevant information is

one of the biggest challenges in HSI data processing. As

opposed to closely related feature extraction techniques, that

generate new features by e.g. linear combinations or subspace

projections, band selection has the significant advantage of

retaining information about the process that generated the

data and allows for physical interpretation. Contextual subject

knowledge about the composition of the imaged objects can

help identify relevant spectral regions but only delivers possi-

ble solutions for specific applications. The method we propose

aims to provide a framework for a generalised approach to

hyperspectral band selection without any prior knowledge of

the imaged subject and independent of the subsequent data

analysis application.

Feature selection can be classified in three categories:

Wrapper, filter and embedded methods. Wrapper methods are

characterised by evaluating the quality of a selected feature

subset by the data analysis algorithm chosen for the specific

application, e.g. decision trees [1]. They tend to deliver the best

results for the given task but lack generalisability and are often

computationally very expensive. Filter methods in contrast

define a substitute criterion to evaluate feature subsets and

are therefore much less computationally expensive [2]. The

third category, embedded methods, differs in the way that it

incorporates a feature selection mechanism into the definition

of a machine learning algorithm. Similar to wrapper methods,

they tend to overfit for the given learning algorithm but are

far less computationally expensive [3].

Popular hyperspectral band selection techniques employ

similarity measures such as mutual information to determine

the most informative bands. The criterion of minimal redun-

dancy and maximum relevance (mRMR) introduced by Peng

et. al [4] is used to select bands that best describe class labels

by maximising the mutual information between labels and

bands. This algorithm therefore requires ground truth data

that is not always available. The maximum information and

minimum redundancy (MIMR) criterion by Feng et. al [5]

can identify the least redundant and most informative subset

in an unsupervised manner by maximising the entropy of

the individual bands and minimising the mutual information

between them. Both algorithms define a substitute criterion

and can therefore be classified as filter methods. With recent

advances in the field of deep learning, Zhan et. al [6] propose

a wrapper method that utilises a convolutional neural network

(CNN) to classify the HSI data. Band subsets are generated

by segmenting the spectral content into several regions and

calculating a newly defined measure called the distance den-

sity (DD) for each of the segments. Based on the DD, a

different number of bands is selected from each segment and

the final subset is evaluated by the CNN. Even though the

CNN is optimally designed so it does not need to be re-



trained for every subset, the algorithm still suffers from high

computational cost due to repeated evaluations. Embedded

band selection algorithms incorporate the subset selection into

the training of the learning algorithm. Yang et. al [7] have

adopted the popular embedded feature selection least absolute

shrinkage and selection operator (LASSO) for hyperspectral

data with good results mainly for a higher number of selected

bands. LASSO, however, can only exploit linear relationships

between the input features. The recent research focus on deep

learning algorithms, and autoencoders (AEs) in particular, in

various fields of machine learning led us to investigate the

usage of deep learning algorithms for embedded band selection

as they are able to handle any sort of input data and have a

strong capability of dealing with non-linear relationships. An

AE is in the simplest form a neural network with an input

and output layer as well as one hidden layer. The aim is to

reconstruct the input at the output, hence the hidden layer can

be interpreted as an encoded version of the input. Chandra et.

al [8] introduced a feature selection algorithm based on AEs.

By masking input features, i.e. setting their input weight to 0,

and subsequently comparing the reconstruction error between

each feature being present or not present, the features that

generate the largest difference in the error are considered to

be most relevant. Han et. al [9] have explored the possibility of

AEs for feature selection for facial recognition in digital image

data. By putting a sparsity constraint on the input weights, it

is possible to identify the features that contribute most to the

reconstruction. Zabalza et. al [10] have utilised a segmented

stacked AE (S-SAE) for hyperspectral feature extraction by

the hidden layer as a lower dimensional representation. By

segmenting the spectral content into several regions and train-

ing multiple SAEs, the performance could be optimised and

the computational cost for extracting features from an already

trained network decreased. In this paper, we are combining the

idea of segmentation for feature extraction with the concept of

distance density and the idea to utilise input weights of AEs to

select most significant input features to generate a framework

for unsupervised, embedded hyperspectral band selection.

II. PROPOSED ALGORITHM

The proposed algorithm consists of several steps. At first,

the hyperspectral data is analysed and segmented into several

spectral regions. by calculating the distance density for each

segment, the number of desired bands can be distributed

accordingly among these segments. For each segment, an

autoencoder with a sparsity constraint on the input weights

is trained and the corresponding number of input bands with

the highest weights are selected.

A. AE based band selection

A basic AE model is a special feedforward neural network

with one input layer and two fully connected layers. Its pur-

pose is to reconstruct the input at the output layer by learning

a lower dimensional, abstract representation of the data at the

hidden layer. We define a simple autoencoder based on [9].

For an input matrix X = {x1, ...,xm}T ∈ R
m×d, where m

is the number of input samples and d is the dimensionality

of the input, an AE is defined by two functions. The encoder

function fi = σ1(W
1
xi + b

1) and the decoder function that

reproduces the input matrix x̂i = σ2(W
2
fi + b

2). σ1 and

σ2 are the activation functions of the hidden and output layer

respectively, W
i represents the weight matrices and bi the

bias vectors for each layer. w
l
ij denotes the weight of the

connection between the i-th node in the l-th layer and the j-

th node in the (l+1)-th layer and b
l
i denotes the additive bias

term of the i-th node in the l-th layer.

For training, we can define the AE as a loss function J (Θ)
of the difference between the input and output with parameter

Θ = {W1,W2,b1,b2}.

J (Θ) =
1

2m
‖X− X̂‖F (1)

where ‖A‖F is the Frobenius norm of matrix A. To realise

feature selection, [9] suggest to add a row-sparse regularisation

term on the input weight matrix W
1 which is realised by the

L2,1 norm:

‖W1‖2,1 =

d
∑

i=1

√

√

√

√

h
∑

j=1

(W1
ij)

2 (2)

The i-th row w
T
i of W

1 corresponds to the i-th feature and

‖wi‖ gives indication on the contribution of the i-th feature

to the reconstruction. The resulting loss function is defined as

J (Θ) =
1

2m
‖X− X̂‖F + α‖W1‖2,1 +

β

2

2
∑

i=1

‖Wi‖F (3)

where α is a trade-off parameter between the reconstruction

loss and the sparsity regularisation. An additional weight

decay term is added with β being the penalty parameter.

This term prevents overfitting and enforces convergence of

the optimisation. After optimisation, the bands are indicated

by the norms of the columns of the input weight matrix

W
1 = (w1w2...wd) for d input bands, where max |wi|

indicates band i has the highest relevance.

In a hyperspectral dataset, each pixel’s spectrum can be

used as an input to the AE. The selected features from the

defined AE represent those bands, that are most relevant to

the reconstruction of the spectrum and can be interpreted as

the most informative bands. The functionality is depicted in

Figure 1.

B. Segmentation of spectral regions

The spectral region covered by the utilised sensor can

usually be divided into several logical segments and each of

these regions contain a different amount of information about

the dataset. Other algorithms, such as segmented principal

component analysis [11] have adopted this concept success-

fully in the past. These segments are commonly generated by

looking at the correlation matrix of the spectral bands. More

information about the segmentation will be given in Section

III. Once the dataset is segmented into spectral regions, one

AE for each segment can be trained and the resulting bands



Fig. 1: Schematic of AE band selection. Input bands with the

highest weights contribute most to the reconstruction of the

signal

Fig. 2: Schematic of S-AE band selection. The input data

is segmented in to spectral regions and the results of the

independent AEs are concatenated.

of each segment are simply concatenated. This process is

visualised in Figure 2

As mentioned above, each spectral segment likely has a dif-

ferent amount of information necessary for the reconstruction.

To account for this, the concept of distance density from [6]

is adopted here. The distance density ddi for segment i with

m samples and n bands is defined as:

ddi =
1

n− 1

n−1
∑

j=1

dj ; dj =

m
∑

k=1

|rj+1k − rjk| (4)

where dj is the absolute difference between the reflectance

values rjk of two adjacent bands j and j + 1 in sample k.

The number of bands nbi for the i-th segment can then be

calculated by:

nbi =
ddi

∑s

i=1
ddi

× nb (5)

Fig. 3: Indian pines dataset with class description. (a) false

colour representation (b) ground truth.

where s is the number of segments and nb the total number

of desired bands.

According to this calculation, spectral segments with a high

information density yield more selected bands to the final

subset than segments with a low density.

III. EXPERIMENTAL RESULTS

The algorithm was tested on the publicly available remote

sensing Indian Pines HSI dataset. It was collected by the

AVIRIS sensor at the Indian Pines testsite in northwest In-

diana. It comprises mainly of agriculture and some natural

vegetation divided into 16 classes. Removing noisy water

absorption bands, it consists of 200 spectral bands covering

a range from 400 - 2500nm at 145 x 145 pixels. It is depicted

in Figure 3.

A. Segmentation

Choosing the right segments has significant impact on the

classification performance [10]. Other than in [6] where the

overall spectral region is divided into several equally sized

segments, we are trying to identify logical regions dependent

on the specific dataset. The correlation matrix can help with

that. It is depicted in Figure 4. Alongside, the mean spectra of

all classes are shown to further verify the choice of regions.

Only a few segmentation options are possible and the segments

here are chosen by manual inspection as they produce the best

results.

Based on the distance density from Equation 5, the number

of bands for each segment depending on the total number of

desired bands can be calculated. Examples for the distribution

between the segments for different number of bands can be

seen in Table I. One can see that in the Indian Pines dataset, the

first two segments contain significantly more information than





TABLE II: Class-wise accuracies for individual algorithms on

the Indian Pines dataset selecting 30 bands

Class WaLuMI MIMR-

CSA

S-RandBS AEBS S-AEBS

1 60.5±15.8 58.0±12.7 54.0±14.9 68.9±11.2 64.8±14.0

2 77.2±2.1 72.6±3.1 73.4±4.2 61.3±5.0 74.8±2.5

3 63.3±1.7 64.3±3.3 60.2±6.5 40.8±3.9 64.4±4.1

4 65.2±7.1 59.5±8.2 58.3±7.2 52.8±7.3 67.8±7.7

5 87.7±4.3 90.9±2.1 89.5±3.0 86.7±4.5 86.9±3.7

6 93.3±1.2 94.7±2.0 93.6±2.0 94.4±1.3 92.3±2.1

7 75.2±13.1 73.4±14.1 64.4±20.3 55.8±22.4 72.9±18.8

8 95.6±2.5 97.0±1.6 96.8±1.6 97.3±1.3 96.8±1.7

9 45.6±9.9 42.9±15.2 37.1±13.8 26.4±18.2 30.9±16.3

10 75.4±1.5 70.6±4.9 70.8±5.4 54.3±9.0 74.3±4.5

11 80.5±1.8 81.4±1.6 80.1±2.2 77.9±2.9 82.1±2.1

12 70.7±2.2 70.6±3.0 67.8±5.8 38.7±6.5 75.3±3.5

13 93.6±3.9 95.7±2.8 94.6±3.5 96.2±3.5 95.5±2.7

14 95.0±1.9 95.3±0.9 94.7±1.7 95.5±2.1 95.6±1.3

15 48.0±2.2 50.0±6.0 50.8±6.7 44.0±4.1 49.5±5.6

16 84.1±4.5 82.7±6.4 86.0±5.6 81.3±6.6 84.4±5.8

OA 79.9±0.3 79.4±0.8 78.5±2.1 71.1±1.7 80.4±0.8

AA 75.7±1.1 75.0±1.8 73.3±3.1 67.0±3.0 75.5±1.9

Kappa 77.0±0.3 76.4±1.0 75.3±2.5 66.7±2.0 77.5±0.9

AEs are independent from each other, there is potential for

a straight forward parallel CPU implementation which can

significantly further reduce this time.

2) Classification performance: To evaluate the quality of

the selected bands, the reduced datasets were classified using

a support vector machine (SVM) with a radial basis function

(RBF) kernel whose parameters C and γ were tuned with a

grid search and five-fold cross validation. 10% of pixels of

each class was randomly selected for training, and the rest

to test the classifier. Since the AE optimisation is done with

random initialisation, each training process will produce a

slightly different band subset. To account for this, 30 AEs

were trained in both AEBS and S-AEBS and each of these

subsequently classified with 5 SVMs with different training

and testing samples, resulting in 150 runs. Class-wise accura-

cies can be seen in Table II. Due to very different number

of samples available for each class, accuracies may vary

strongly. Overall, S-AEBS outperforms all algorithms in terms

of Overall Accuracy (OA) and Cohen’s Kappa coefficient and

is only slightly outperformed by WaLuMI in terms of class-

wise average accuracy (AA) by 0.2%.

In Fig. 6, the OAs of the different algorithms with respect to

the number of bands selected were compared. One can see that

while AEBS performs consistently the worst, the introduction

of the segmentation significantly increases the accuracy. This

is also affirmed by the fact, that the random selection of bands

within the segmentation outperforms the standard AEBS. The

random selection however quickly reaches its limits and has,
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Fig. 6: Classification accuracies for different algorithms on the

Indian Pines dataset.

as shown in Table II, a relatively high variance due to its

randomness. While WaLuMI and MIMR-CSA outperform S-

AEBS for a low number of selected bands, S-AEBS quickly

overtakes both. We believed that the input weight of the bands

cannot be directly mapped to their importance, which is why

selecting only few bands is not working very well for this

approach. For a higher number of bands (80+), MIMR-CSA

seems to perform better. Overall, S-AEBS seems to provide a

good foundation for embedded hyperspectral feature selection,

that may outperform state-of the art algorithms with further

modifications.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed an autoencoder design for

embedded hyperspectral band selection. By putting a sparsity

constraint on the input weights, spectral bands that contribute

most to the reconstruction can be identified. Combining this

approach with a segmentation of the spectral region and

training several AEs results in a faster and better band selection

than a regular AE. This forms the basis for AE band selection

that can compete with state of the art algorithms. While

the time consumption of training several AEs is relatively

high, CPU and GPU parallelisation of the S-AE training

can be utilised to speed up the selection and improve the

performance. Furthermore, comparable algorithms rely on the

pre-calculation of information theoretic measures that can

consume a considerable amount of time in itself. Future

work may also include an automatic segmentation procedure.

Further research into the optimisation of AE configuration and

training can potentially improve the selection performance and

provide a band selection approach that outperforms state-of-

the-art algorithms in terms of computational complexity as

well as band selection quality.
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