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Abstract—Compressive Sensing (CS) theory asserts that sparse
signal reconstruction is possible from a small number of linear
measurements. Although CS enables low-cost linear sampling, it
requires non-linear and costly reconstruction. Recent literature
works show that compressive image classification is possible
in CS domain without reconstruction of the signal. In this
work, we introduce a DCT base method that extracts binary
discriminative features directly from CS measurements. These CS
measurements can be obtained by using (i) a random or a pseudo-
random measurement matrix, or (ii) a measurement matrix
whose elements are learned from the training data to optimize
the given classification task. We further introduce feature fusion
by concatenating Bag of Words (BoW) representation of our
binary features with one of the two state-of-the-art CNN-based
feature vectors. We show that our fused feature outperforms the
state-of-the-art in both cases.

Index Terms—Compressive Sensing, Compressive Learning,
Inference on Measurement Domain, Learned Measurement Ma-
trix, Compressive Classification, DCT-based Binary Descriptor.

I. INTRODUCTION

The first step in any signal processing task is the acquisition
of signals. The classical pathway for band-limited signals is
to instantaneously sample the signal at the Nyquist-Shannon
rate, then compress the signal to remove redundancies and/or
irrelevancies, typically using a transform-based compression
technique for efficient storage and transmission. The com-
pressed signal must be decompressed before executing any
further signal processing operation such as classification, de-
tection, inference. etc.

The new sampling paradigm, Compressive Sensing (CS)
[1] bypasses this laborious Nyquist-Shannon data acquisi-
tion scheme in that signals are being compressed while be-
ing sampled with random patterns. Thus the sampling and
compression steps are combined into one action. However,
the reconstruction of the signal from compressively sensed
measurements (CSMs) becomes non-linear and considerably
costlier in the computational effort. This costly signal recon-
struction operation would be counterproductive were it not for
the emerging signal processing algorithms in the compressed
domain. A newly emerging idea [2]–[4] is using CSMs directly
in inference problems without executing any reconstruction.
This promising approach can potentially be advantageous in
real-time applications and/or when dealing with big data.

In a pioneering work, Davenport et al. [4] have addressed
the problem of inference directly on compressively sensed

measurements. In [5], it is theoretically shown that the accu-
racy of the soft margin SVM classifier is preserved when data
is collected with sparse random projections. The authors in [6]
have introduced the idea of smashed filter and, based on the
Johnson-Lindenstrauss Lemma [7] have shown that the inner
product of two signals is relatively preserved for compressively
sampled signals when the sampling matrix consists of random
values, chosen from some specific probability distributions.
Different versions of the smashed filter are used in vari-
ous applications [8], [9]. For instance in [9], a compressive
smashed filter technique is proposed by first producing a set
of correlation filters from uncompressed images in the training
set, and then at the testing stage by correlating CSMs of test
images and with the CSMs of learned filters. A linear feature
extraction method in CS domain is developed in [10] for direct
classification of compressively sensed EEG data. In [11] fed
an SVM classifier with a fusion of CSMs (projected data) and
dynamic features and they reported performance beyond the
state-of-the-art for 1-D ECG data classification.

Other works, e.g., [12], [13], have provided theoretical
guarantees for achievable accuracy in different CSM setups
for both sparse and non-sparse cases.

All the above works try to use compressed samples directly
to solve the inference problem. A second approach is to
boost the size of CSMs to the original image size by a
simple linear projection, but avoiding the costly nonlinear
reconstruction procedure. This simple back-projection yields
a pseudo-image and one then proceeds with the inference task
on this imperfectly reconstructed image. This image, restituted
to its original dimension and also known as proxy image,
is usually a heavily degraded version of the original image.
One way to obtain the proxy image is by premultiplying the
compressed image by the transpose of the sampling matrix. In
[14], the authors apply a CNN-based feature extraction method
on such a proxy image. Their measurement matrix consists of
random Gaussian distributed numbers. Another work [15] uses
a deeper network structure (as compared to [14]) by adding
two fully connected layers at the beginning of the network.
Thus this network can learn as well the linear dimension
reduction (so-called measurement matrix) and linear back
projection to the image domain (i.e., the transpose of the
measurement matrix).

In this work, following the vein of the second approach we
propose a DCT-based discriminative feature scheme, computed
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directly from the proxy image. This feature vector (called MB-
DCT) is binary, hence simple and low cost. A preliminary
version of this feature was presented in EUSIPCO [16]. In this
work, we applied MB-DCT on non-compressively sampled
images. In [16] we had shown that this simple scheme of
selected binarized DCT coefficients, computed in increasing
scales of local windows was remarkably robust against linear
and nonlinear image degradations, such as additive white
Gaussian noise, contrast and brightness changes, blurring,
and strong JPEG compression. We use MB-DCT scheme in
[16] for feature extraction from image proxies. Our exper-
imental results show that using this simple binary feature
method surpasses the performance of Smashed Filters [9].
We further introduce feature fusion by concatenating Bag of
Words (BoW) representation of our binary features with one
of the two state-of-the-art CNN-based feature vectors, i.e., in
[14] and [15]. In the method [14], elements of measurement
matrices were drawn from a random distribution as typical
in conventional CS theory, whereas in the method [15] sam-
pling matrices were learned from a deep network; the latter
method proved to be superior for smaller measurement rates.
However, random sensing scheme may still be needed for
some applications where one needs to pre-classify the data
directly using CSMs, then reconstruct the signal for further
analysis. For instance in a remote health monitoring system,
we may wish to detect anomalies directly from CSMs of
ECG signal on the sensor side. Then based on the sensor side
classification, CSMs of selected cases can be transmitted for
a more detailed analysis by a medical doctor. Therefore, we
consider the random sensing approach and learned sensing
approach as two different set-ups. In this paper, we show that
our fused features outperforms the aforementioned works for
both of the schemes and gives the state-of-the-art performance.

We briefly introduce the notation used and some preliminary
information. We define the `0-norm of the vector x ∈ RN as
‖x‖`N0 = limp→0

∑N
i=1 |xi|p = #{j : xj 6= 0}. The compres-

sive sensing (CS) scheme extracts m number of measurements
from the N-dimensional input signal S ∈ RN , i.e.,

y = ΨS, (1)

where Ψ is the m × N measurement matrix and typically
m << N . Consider this signal to be k-sparse in a sparsifying
basis Φ such that S = Φx with ‖x‖`N0 ≤ k. Then, the general
compressive sensing setup is

y = ΨΦx = Ax, (2)

where A = ΨΦ is sometimes called as holographic matrix. It
has been demonstrated that the sparse representation in (3) is
unique if m ≥ 2k [17].

min
x
‖x‖`N0 subject to Ax = y (3)

The organization of the rest of the paper is as follows. In
Section II, we provide the notation, mathematical foundations
and a brief review of CS theory. The difference between the
two measurement approaches, namely, based random weights

or learned weights in the acquisition of CMSs and reconstruc-
tion of proxies are explained in Section III. Then in Section
IV, we introduce the proposed feature extraction method from
the two proxy varieties. Finally, performance evaluations of
the proposed method are given and a conclusion is drawn.

II. RELATED WORKS

The signal reconstruction expounded in (3) is an NP-hard
problem. Among the plethora of methods to overcome the
computational impasse one can list convex relaxation, various
greedy algorithms, Bayesian framework, non-convex optimiza-
tion, iterative thresholding methods etc. [18]. However, these
algorithms still suffer from computational complexity and
must be restricted mostly to non-real time applications. For
an application where a fast and real-time data inference is
required, one possible solution could be designing a non-
iterative solution such as a simple forward pass re-constructor
[19], [20] based on neural networks. These types of solu-
tions, nevertheless, remain still wasteful of resources since
we have to return to the high-dimensional ambient domain
from the compressed domain in order to execute tasks such
as feature extraction, classification etc. Furthermore the exact
recovery probability, that is the phase diagram of the recovery
algorithms, depends critically on the sparsity level k and
the number of measurements, m [21]. When the proportion
of measurements is very low, typically for m

N ≤ 0.1 most
reconstruction algorithms fail. Approaches to tackle the recon-
struction bottleneck have been to bypass the reconstruction
step altogether, and make inferences directly on the sparse
signal y [9], or on some proxy of the signal, S̃ = ΨT y without
solving the inverse problem for sparse reconstruction x̂ as in
Eq. (3), therefore Ŝ = Φx̂, where Ŝ full recovery of the
vectorized image. We can express the linear degradation on
the proxy as

S̃ = ΨT y = ΨT ΨS = HS, (4)

where H = ΨT Ψ is a non-invertible matrix that represents the
non-linear degradation on original signal S.

A. Feature extraction from compressively sensed signals with
random measurement matrices

In order to guarantee the exact recovery of the k-sparse
signal x from y, the measurement matrix Ψ should satisfy
certain properties. For example, the measurement matrix, Ψ
with i.i.d. elements Ψi,j drawn according to N

(
0, 1

m

)
, and

m > k(log(N/k)) guarantees with high probability the exact
signal reconstruction when we relax the `0 to `1 in (3) [22].
Random measurement matrices are known to be universally
optimum in the sense that they are data independent of charac-
teristics of the data, and they satisfy minimum reconstruction
error with minimum m when we do not have another prior
information about k-sparse signal. The acquisition of the proxy
signal is obviously done as, S̃ = ΨT y, where ΨT ∈ RN×m

is the transpose of the measurement matrix Ψ. An example
proxy image is shown in Figure 1.
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Fig. 1: The image of Lena and its proxy ΨT y obtained from
CSMs, where y results from projecting the original image on
a Gaussian random measurement matrix.

B. Feature extraction from compressively sensed signals based
on measurement matrices with learned coefficients

Design of optimal measurement matrices for CS reconstruc-
tion and/or for inference tasks is an active research area.
An approach to learn a projection operator from image to
measurement domain and its backprojection operator from
compressed domain to image domain is presented in [14]. The
authors have used two fully-connected layers that are followed
by convolution layers. The first layer takes the original image
S and projects it to the measurement domain, y. The learned
weights of this layer represent the elements of measurement
matrix for compressively sensing images. The second layer
represents the back projection to the image domain to produce
a proxy of the image, i.e., S̃ = Ψ̃T y. In this expression Ψ̃T

is the learned transpose of the measurement matrix, which
is used instead of the transpose of the true measurement
matrix, ΨT . The output of this layer, the proxy image, is
given as input to convolutional layers to realize some non-
linear inference task, e.g., classification. Thus the measurement
matrix, the pseudo-transpose of the measurement matrix and
convolutional network are all jointly learned from the training
data. Figure 2 illustrates the first two fully-connected layers
of this network.
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Fig. 2: An original image and its proxy ΨT y where y that is
obtained using the learned measurement matrix.

III. PROPOSED APPROACH

In this work, we have employed MB-DCT features extracted
from proxy images (see Eq. 4) for classification tasks. Specif-
ically, we applied the MB-DCT of [16] as follows: i) we use
4 window scales (instead of 6 as in [16]) and the size of
the largest window is now 24 pixels instead of 128 pixels
[16]) to fit smaller sized MNIST images (28 × 28 pixels);

ii) we apply a different scheme of coefficient elimination in
that we keep the best performing of the three sets (based
on AC energy preservation) of DCT coefficients in the sense
of classification accuracy. An MB-DCT descriptor consists
of mean quantization of 2D-DCT transform coefficients as
computed from multiscale blocks around (densely or sparsely
chosen) image points [16].

We employ the mentioned scheme of MB-DCT features
in two main modes: 1) The conventional BoW framework
as in [16]; 2) A fusion scheme where MB-DCT features are
complemented with deep learning features.

A. MB-DCT

We review briefly the MB-DCT features:
(1) DCT computation: 2D-DCT coefficients are computed

in multiple nested blocks around selected image points, each
incrementally changing in size. Similar to [16], we employ
various sized windows in this work, in order to capture con-
textual information in different sized neighbourhoods around
every image point. We compute 2D-DCT in four scales
corresponding to block sizes {8, 12, 16, 24}, which seemed
adequate for 28 × 28 pixel-sized MNIST images. For larger
images, larger block sizes can be investigated for performance-
computational cost tradeoff.

(2) Eliminating irrelevant coefficients: A subset of zig-zag
ordered DCT coefficients are kept for each block as features
and the remaining coefficients are eliminated as irrelevant.
The DC term was discarded in all scales as in [16], which
also desensitizes the feature vectors to illumination level.
We experimented for different sized subsets of the zig-zag
ordered coefficients in each scale. Specifically, to determine
the quantity of DCT coefficients kept, we start with a random
subset of training images. Then, we find three sets of zig-zag
ordered DCT coefficients for every pixel location preserving,
respectively, 90% and 95% of the AC energy. We repeat this
experiment for each scale and for each window size. Finally,
we fix the number of coefficients for each energy level (and
for each scale) to the average, over all training images, number
of coefficients that have met energy preservation percentages.
For 100% of the energy preservation we keep all the AC coef-
ficients. For the window sizes of {8, 12, 16, 24}, we found that
the average number of AC coefficients corresponding to 90%
and 95% energy are {15, 26, 37, 73} and {21, 40, 63, 130},
respectively. Using these sets of coefficients specific to the
window size, we measured the classification error rate on
MNIST proxy images at different sensing rates. The resulting
error rates are given in Table 1, where one can see that
the performances do not differ significantly. Notice that one
needs to use quite larger set of coefficients as compared to
when original images were used [16]. Due to the imperfect
reconstruction of proxy images, the structural information in
the image is not as compact as in the original one.

(3) Binarization of the coefficients: Since binary features are
memory and computation efficient, we binarized the selected
coefficients of each block by mean quantization similar to [16].
We also tried median quantization and also trimming, but the
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Fig. 3: Computational pipeline for the proposed approach.

mean quantization provide slightly better results (around 0.5%
improvement).

(4) Concatenation of different scales: The final binary
descriptor for a given keypoint is obtained by concatenation
of binarized DCT coefficient sets at each scale.

The computational pipeline of the MB-DCT scheme is
illustrated in Figure 3.

B. Performance of MB-DCT features for classification of CS
proxies

We first compute MB-DCT features densely on the CS
proxies of input images as in Eq. 4. Then, we extract image
descriptors from these features according to the two schemes
explained in the sequel.

1) MB-DCT in the BoW framework: In this scheme, we
follow the conventional BoW procedure to compute descrip-
tors of CS proxies. We learn a visual dictionary by K-Means
clustering of dense MB-DCT features using hamming distance
and computed on a training image set. The MB-DCT feature
of each image point is assigned the nearest binary descriptor
from the dictionary with hard voting. Finally, we apply average
pooling to compute a single image signature to obtain the BoW
representation of each image.

2) Fusion of MB-DCT with Deep Learning features: Deep
learning approaches have been shown to provide superior
performance in the solution of inference problems provided
sufficient amount of training data is available. Nevertheless,
recent studies have demonstrated that the joint use of learned

TABLE I: Effect of the quantity of DCT coefficients, as a
function of energy preserved, on classification performance of
MNIST proxy images at different measurement rates.

Measurement Rate 90% Energy 95% Energy 100% Energy
0.25 8.75 8.67 7.26
0.10 10.81 10.57 9.49
0.05 16.04 15.21 14.28
0.01 41.99 41.1 41.33

features and hand-crafted features (e.g., MB-DCT) can result
in improved performance [23], [24].

For this purpose, we have jointly used the BoW descriptors
obtained from MB-DCT features with CNN features computed
as in the two recent works, i.e. [14] and [15]. In both cases,
proxy images are recovered by pre-multiplying the CSM
vector with the transpose of the sensing matrix. In [14], the
sensing matrix consists of random Gaussian numbers while
in Compressive Learning (CL) the sensing matrix is obtained
using a deep learning architecture. In both approaches, CNN
features are computed on the proxy images. This procedure
of MB-DCT and CNN features is shown in the two upper
branches of the block diagram in Figure 3. We have named
the CNN-derived feature scheme in [14] as Random Sensing
+ CNN (shortly RSCNN ) and that in [15] as Learned Sensing
+ CNN (shortly LSCNN ), respectively.

Some examples of proxy images recovered with the trans-
pose of the random Gaussian matrix using Eq. 4 are shown in
Figure 4 for four sampling rates. Starting from such a proxy
image, we compute CNN features (coefficients of the fully
connected last layer) using the Lenet5 model [14]. We also
compute in parallel BoW descriptors from MB-DCT features,
and we refer to this method as RSMB−DCT . Finally, after L2

normalization, separately of each descriptor, we concatenate
them to obtain the joint descriptor. We denote the fused
descriptor as RS(CNN |MB−DCT ).

Fig. 4: Proxy images recovered when random sensing is used
at different sensing rate

For the LSCNN algorithm [15], we learned the sampling
matrix for the MNIST dataset, i.e. we get the Ψ and ΨT

matrices in Eq. 4 from the first and second fully connected



TABLE II: Test error rates on MNIST dataset. MR: Measurement Rate; RS: Random Sensing; LS: Learned Sensing, [†]
denotes our re-implementation of [14] and [15]; [∗] denotes our proposed features. Presented results are obtained with the
KNN classifier.

MR Smashed
Filter [9] RSCNN [14] RS†CNN

RS∗MBDCT RS∗(CNN|MBDCT ) LSCNN [15] LS†CNN
LS∗MBDCT LS∗(CNN|MBDCT )

0.25 27.42% 1.63% 1.73% 7.26% 2.17% 1.56% 1.95% 5.84% 1.58%
0.10 43.55% 2.99% 2.98% 9.46% 3.02% 1.91% 1.88% 5.90% 1.58%
0.05 53.21% 5.18% 4.78% 14.28% 4.44% 2.86% 2.12% 5.80% 1.59%
0.01 63.03% 41.06% 45.8% 41.33% 24.78% 6.46% 5.52% 19.88% 3.87%

TABLE III: Test error rates of the proposed features on MNIST dataset obtained with different classifiers

Measurement Rate RSMBDCT RS(CNN|MBDCT ) LSMBDCT LS(CNN|MBDCT )

KNN 1D-CNN KNN 1D-CNN KNN 1D-CNN KNN 1D-CNN
0.25 7.26% 8.37% 2.17% 1.69% 5.84% 5.88% 1.58% 1.58%
0.10 9.46% 10.01% 3.02% 2.87% 5.90% 6.19% 1.58% 1.75%
0.05 14.28% 14.16% 4.44% 4.66% 5.80% 5.64% 1.59% 1.63%
0.1 41.33% 48.42% 24.78% 28.11% 19.88% 21.09% 3.87% 4.57%

layers of the trained network. We compute BoW represen-
tation of MB-DCT features on these proxies referred to as
LSMB−DCT . Similarly, we get the CNN features from the
last fully connected layer of the network. Finally, applying L2

normalization to each, we concatenate them to obtain the joint
features that we name as LS(CNN |MB−DCT ).

IV. PERFORMANCE EVALUATION

A. Experimental setup

We have experimented on the MNIST dataset that contains
hand-written digit images and we followed the same experi-
mental setup in [14] as 50K and following 10K images are
used in training and testing, respectively.

a) Computation of the features: To compute MB-DCT
features, we learned a visual dictionary by K-means clustering
based on hamming distance and using training set consisting of
100 randomly selected proxy images. We worked with K=512
clusters as in [16]. The following procedures are as mentioned
in Section IV.B.1.

In order to compute RSCNN and LSCNN features we have
re-implemented the corresponding architectures in [14] and
[15] using the Keras library. For the RSCNN case, we have
trained the network in [14] using stochastic gradient descent
with the parameters: learning rate 0.01, momentum 0.9, weight
decay 0.0005, and we applied 15K epochs following [14]. For
the implementation of LSCNN we have trained the network
in [15] with Adam optimizer, using learning rate 0.00025 and
500 epochs. Training took around 60 (due to high number
of epochs) and 2 hours for the techniques of RSCNN and
LSCNN , respectively, with the GPU of GTX 1080 Ti.

b) Choice of the classifier: We ran experiments with two
different classifiers, namely, KNN and 1D-CNN. For KNN,
we used the chi-square distance to compare histograms. We
decided for the best value of ’k’ by 5-fold cross-validation on
the training set and then measured the performance on the test
set.

We further wanted to examine the classification performance
with a multilayer neural network. However, since the length
of the features were quite high, i.e., 1012 for RSCNN and

596 for LSCNN (recall that these are also to be augmented
with the 512 dimensional MB-DCT features in the fusion
scheme), we decided not to follow this path to avoid excessive
computational overhead. Instead we opted to train a 1D-CNN
network, adopting Lenet-5 model, with the computed features
of the training images. We used Adam optimizer with a
learning rate of 0.00025 and 500 epochs in training which
took around 2 hours for all the techniques.

B. Performance results

The performance results that are obtained with the afore-
mentioned techniques in terms of test error are presented at
Table II. We also present three published performance results
in the literature, namely, Smashed Filter [9], RSCNN [14] and
LSCNN [15].

We observe that with our re-implementation of RSCNN and
LSCNN , we get performances quite close to the reported ones
in [14] and [15]. For the degraded proxy image with random
sampling, our binary descriptor (RSMB−DCT ) outperforms
Smashed Filters [9] significantly. RSMB−DCT also gives
competitive results with respect to RSCNN [14] for the lowest
measurement rate (0.01). We outperform RSCNN [14] at the
lowest measurement rate significantly when we use the fused
feature (41.06% vs 24.78%).

The significant performance gain is achieved when degrada-
tion is created by the learned matrices. In that case, although
LSMB−DCT was behind the reported LSCNN results in
[15], our re-implementation of LSCNN was slightly better
than theirs. More significantly, lowest classification error rates
which can be accepted as the new state-of-the-art are obtained
when we use joint features in LS(CNN |MB−DCT ) implemen-
tation (3.87% test error for 0.01 measurement rate).

The performance results presented in Table II are obtained
with the KNN classifier. We also present the performance
results obtained with 1D-CNN at Table III. As it can be seen in
Table III, although they were competitive for higher sampling
rates, KNN always gives better result, more significantly at
lowest measurement rate. However, execution time of KNN



classifier was much higher than the 1D-CNN execution time
on GPU.

V. CONCLUSION

In this work, we proposed a DCT-based discriminative
feature scheme, computed directly from the proxy image
which is usually a heavily degraded version of the original
image. This feature vector (called MB-DCT) is binary, hence
simple and low cost. We further introduced feature fusion
by concatenating Bag of Words (BoW) representation of our
binary features with one of the two state-of-the-art CNN-
based feature vectors. Our experimental results show that
proposed scheme gives the state-of-the-art performance for
compressively sensed image classification even at the lowest
measurement rate.
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