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Abstract—The use of point clouds to digitally represent three-
dimensional objects with both geometry and color attributes
is rapidly increasing in several applications. Since storage and
transmission of uncompressed point cloud data are often imprac-
tical, several lossy compression algorithms have been proposed,
each exhibiting specific types of visual distortion. This creates
a challenging environment for objective quality metrics, which
might be effective only on a restricted number of distortion
types and contexts. To evaluate the performance of the most
recent objective quality metrics in predicting distortions as
perceived by humans, a benchmarking study is conducted using
subjective scores from observers examining models distorted with
a conventional as well as a learning-based compression method,
while rendering them on both a traditional flat monitor and a
eye-sensing light field display. The results are then analyzed and
conclusions are drawn on the correlation between recent state-
of-the-art objective quality metrics and the subjective perception
of human subjects while viewing point cloud data on different
types of display devices.

Index Terms—point clouds, immersive imaging, objective qual-
ity assessment, perceptual visual quality, eye-sensing light field
display

I. INTRODUCTION

The way humans interact with digital media is constantly
evolving. While the main public has been regularly consuming
images and videos for decades, other imaging modalities that
allow for an enhanced and more immersive experience are
being increasingly adopted and further developed. Point clouds
have been identified as a very significant alternative to repre-
sent three-dimensional objects and scenes for this purpose,
partly because they represent shapes as sets of disconnected
points similarly to how most acquisition devices output data.

However, due to the vast amount of data needed for its
representation, point clouds need to be efficiently compressed
prior to transmission or storage in the majority of applications.
Lossy algorithms are often employed to achieve an higher
compression ratio, at the cost of partially loosing information
from the input data and thus generating distortions. While
minor distortions may pass unnoticed to most human ob-
servers, larger degradation induce perceptual losses that harm
user quality of experience. Moreover, different compression
methods can add distortions of distinct natures, and accurately
predicting their impact is not a trivial task. Although hand-
crafted algorithms have been largely studied and employed
in the MPEG compression standards G-PCC and V-PCC,
learning-based methods have received increased attention due
to their high compression performance. Therefore, being able
to accurately estimate the impact that added distortions have
on the subjective opinion is paramount to the development
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Fig. 1: Point cloud contents included in the dataset.

of compression algorithms with minimal impact on the vi-
sual quality. Although subjective experiments are a reliable
method to evaluate this impact, they can be expensive and
time consuming, not being appropriate for applications where
quality evaluation needs to be performed quickly. Objective
quality metrics are alternatives which aim at estimating the
quality of a degraded point cloud through the computational
analysis of its geometry and color attributes, generally com-
paring a distorted object to its corresponding reference. The
performance of such metrics is benchmarked through the
computation of performance indexes against mean opinion
scores obtained from subjective experiments, determining if
they properly model the human perception. Although many
benchmarking experiments have been reported in the literature,
the performance of existing solutions has been shown to
fluctuate according to types of point clouds and distortions,
making the search for objective quality metrics with good
performance is still an open problem.

While flat monitors are used in the majority of subjective
experiments reported in the literature, other works have ex-
plored devices that take better advantage of the immersion
allowed by point clouds, such as augmented reality glasses
and virtual reality headsets. In a recent study [1]], authors
conducted the first point cloud subjective experiment using the
novel eye-sensing light field display (ELFD) [2], motivated by
the attention that such technology recently attracted in various



domains and applications [3]], [4]. The study emphasized
that, while the ELFD monitor allows for enhanced immersion
and naturalness, its reduced size decreases the discriminatory
power, which makes the subjective scores collected on such
display statistically different from the ones collected on a
flat monitor for the mid-range qualities. For this reason, an
analysis on the performance of common objective quality
metrics on both display types is necessary to assess the
influence of spatial rendering on such methods.

In this paper, we perform a benchmarking of multiple state-
of-the-art objective quality metrics against subjective scores
obtained in an experiment using both a flat monitor and an
eye-sensing light field display. The experiment included six
test point clouds distorted with both conventional and learning-
based compression methods. The impact of the rendering
strategy on the performance of these metrics is evaluated and
discussed. Performance indexes are also computed separately
for each content of the dataset, as well as for each compression
method.

The main contribution of this paper are:

o We perform the first benchmarking experiment of objec-
tive quality metrics with subjective scores collected from
an eye-sensing light field display.

« We include in the experiment both a conventional and
a learning-based codec, as the impact of learning-based
artifacts on the performance of objective quality metrics
is still understudied.

o We evaluate the performance of a large number of ob-
jective quality metrics, some of which have not yet been
included in a benchmarking experiment so far.

The remaining of this paper is structured as follows: in
section previous benchmarking experiments are reported
and compared. Section describes in detail the subjective
experiment where the scores used as a basis for this study were
collected. The following section gives a summary of the
evaluated objective quality metrics, their computation as well
as the statistical analysis that compared them to the subjective
scores. In section |V| the obtained results are presented and
discussed. Finally, section elaborates the main conclusions
of this paper and outline possible directions for the future.

II. PREVIOUS WORK

Assessing the performance of objective quality metrics is
essential in order to define the most suitable compression
method to be used in each scenario. Several previous studies
have devoted efforts to this task.

Preliminary studies on the correlation between subjective
and objective scores were presented in [Sf, [6], where the
authors benchmarked objective quality metrics against sub-
jective scores collected using a regular flat monitor and a
head mounted display, on a dataset composed of geometry-
only point clouds. The target distortions were octree-prunning
and Gaussian noise, in which the former was found to be
harder to model by the employed predictors.

Subsequent studies focused on models containing both ge-
ometry and color distortions, most of them generating distorted

stimuli with MPEG compression standards G-PCC or V-PCC.
The studies from [7]], [8] evaluated point-to-point, point-to-
plane, plane-to-plane [9] and color-based metrics against such
distortions. [[8] also included image-based metrics, which were
applied in the projections of point clouds onto planes and
pooled through the average. Other studies [[10]—[13] employed
distortions including one of MPEG compression methods or
others similar in principle, also evaluating other factors such
as the impact of the rendering [10], [12], dynamic models [|13|]
and inter-laboratory consistency [11]. However, such studies
don’t incorporate modern objective quality metrics that are
able to take into account both geometry and color attributes,
and were all conducted on a conventional desktop setup for
display.

A later study was conducted in [[14], adopting a dataset
targeting the V-PCC codec and with subjective scores collected
using a head-mounted display. Metrics such as PCQM [15]],
PointSSIM [[16]] and PC-MSDM [17] were incorporated to the
evaluation, while projection-based metrics were maintained.
GraphSIM [18]] was additionally evaluated in [[19], while [20]]
included the PCM-RR metric. Both studies applied G-PCC
and V-PCC compression to obtain distorted stimuli. [21]]
applied, downsampling and PCL [22] compression to point
clouds, focusing on the performance of image quality metrics
applied on projections. Finally, the performance of objective
quality metrics against a subjective dataset with distortions
generated by the MPEG compression standards together with
two learning-based methods was evaluated in [23], using a
crowdsourcing environment. This study observed low general
performance on the whole dataset when the distortions are
highly diverse, being the PCQM and PointSSIM the metrics
showing the highest correlation values.

Regardless the large number of studies on the topic, no
previous benchmarking study was conducted employing sub-
jective scores collected on autostereoscopic light filed displays.

III. SUBJECTIVE EXPERIMENT

The subjective dataset collected in [1]] is employed for
benchmarking of the objective quality metrics. The subjective
visual scores in the form of mean opinion scores (MOS)
were collected in a controlled environment by employing
two distinct visualization devices, namely a DELL UltraSharp
U3219Q flat monitor and a Sony Spatial Reality eye-sensing
light field display (ELFD). The native resolution of the DELL
flat monitor is of 3840 x 2160 pixels with 31.5 inches diagonal
size, while the Sony ELFD has resolution of 3840 x 2160
pixels and 15.6 inches diagonal size. The viewing conditions
were set according to the ITU-R Rec. BT.500 [24] for the
DELL flat monitor, while the recommendations from the
manufacturer [1_-] were used for the Sony ELFD.

Six test point clouds were selected for the experiment,
including representative contents from different use cases and
applications, i.e. large-scale outdoor scenes (CITISUP and

Uhttps://www.sony.net/Products/Developer-Spatial-Reality-
display/en/develop/Specifications.html
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Fig. 2: Scatter plots of MOS scores against objective quality scores, along with the logistic fitting curve. The scores collected
on the flat monitor and on the ELFD are denoted by filled and hollow symbols, respectively.

ipanemaCut), full-body human figures (longdress [25]] and
mitch) and small objects (wooden_dragon and fruits). Figure I]
illustrates the selected test point clouds. The different point
cloud contents were distorted using two distinct compression
methods, each one targeting four different quality levels, and
selected to represent both conventional and learning-based
compression artifacts. Specifically, the selected compression
technologies for geometry data are the octree module of the
MPEG coding standard Geometry-based Point Cloud Com-
pression (G-PCC) [26] and the learning-based compression
method presented in [27]]. Both algorithms were combined
with the lifting module from G-PCC for color compression
and are referred here as octree-lifting and slicing-lifting, re-
spectively.

The employed subjective protocol is the Simultaneous
Double-Stimulus Impairment Scale (DSIS) with 5-scale rating
and hidden reference, where all subjects carried out a short
training session prior the beginning of the experiment. The
order of the test stimuli was randomized, and the scores of the
first four dummy stimuli were excluded. A total of 23 suitable
subjects participated in the experiment, being 11 females and
12 males, all having normal or corrected-to-normal vision
capability. The subjects had age span between 18 and 25 years,
being their average and median age respectively 21.35 and 21
years.

IV. BENCHMARKING

The subjective opinion scores obtained in [[1]] are here
used to evaluate the performance of several objective quality
metrics. The selected metrics were computed over the distorted
dataset and their ability to predict the mean opinion scores was
assessed through performance indexes in different settings, as
explained in the following subsections.

A. Objective quality Metrics

This study evaluates metrics from three different categories:
geometry-only, which take into account only topology degra-
dation; color-only that consider solely color attributes; and
joint metrics that simultaneously receive as input both geom-
etry and color. From the first category, D1 (point-to-point)
and D2 (point-to-plane) PSNR [28]], point-to-distribution [29]

and a learning-based metric [30]], which is here referred to as
perceptual loss, were selected. D1 and D2 PSNR are widely
used to evaluate geometry compression algorithms, and rely on
euclidean distances computed between points of the reference
and distorted models, either taken directly on D1 or only
over local normal planes in D2. The distance values per point
are pooled through the mean squared error, and the PSNR
value is finally used. The point-to-distribution metric leverages
the Mahalanobis distance to take into consideration local
neighbourhoods during computation. Finally, the perceptual
loss computes the difference between feature vectors generated
with an autoencoder model applied on point cloud blocks,
which are represented either as binary voxels or as truncated
distance fields (TDF).

Even if such metrics are able to predict subjective scores
accurately in some settings, they are not capable of modeling
human perception regarding color distortion and are there-
fore an incomplete model of our visual system. PCQM [/15]]
proposes a solution by computing a set of features based
on either curvature or lightness, which were then pooled
into a single score through a weighting vector optimized on
the subjective dataset from [12]]. PointSSIM [16] compares
luminance-based features computed through statistical estima-
tors over local neighbourhoods from both the distorted and
the reference models. The best set of parameters is also opti-
mized against subjective scores from [8|] and [12f]. Similarly,
GraphSIM [18] computes the color-based local significance
feature over graphs built around keypoints, and pools a final
score averaging across local graphs. The previously mentioned
point-to-distribution metric was extended to deal with color
distortions in [31]] using luminance and chrominance channels
separately. A joint metric is also proposed by averaging the
geometry and luminance-based point-to-distribution. Finally,
the color-based PSNR metric extensively used for image
quality assessment can be also computed for point clouds by
establishing correspondence between points in the reference
and distorted models through the nearest neighbour and com-
paring their color values. In this study, we consider the PSNR
computed only in the Y channel, as well as a weighted average
over the three YUV channels following the equation:
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In this work, for the computation of D1, D2 and color-
based PSNR, the software version 0.13.5 of the MPEG suite
was employed. The source code made available by the authors
was used for the perceptual loss metric, using both binary and

TDF representation. Point clouds were partitioned into blocks
of resolution 64 and the final value was averaged among all
occupied blocks. Both the average value across all features
and the best performing feature over the whole dataset were
used, which was found to be feature 2 for the metric for
the training with binary voxels and feature 5 for the training
with the TDF representation. For PointSSIM, voxelization
to a target bit depth 9 was employed as a pre-processing
step. Luminance-based features were employed using variance
as a statistical estimator, with neighbourhood size 12. The
logarithmic version was selected for the point-to-distribution
metrics, which were computed for geometry only, for each
color channel separately and finally with the joint metric
using both color and geometry. The source code provided by
the authors of PCQM and GraphSIM were used with default
configuration.

B. Statistical Analysis

The performance of the objective quality metrics in Section
IV-A| are assessed by computing the Pearson Linear Corre-
lation Coefficient (PLCC) and Spearman’s Rank Correlation
Coefficient (SROCC) between the objective and the subjective
scores. Correlation values are expected to be in the range +1,
where +1 denotes perfect positive or negative correlation and
0 no correlation.

Additionally, the performance of the objective quality met-
rics is assessed with two further performance indexes, i.e.,
the Root Mean Square Error (RMSE) and the Outlier Ratio
(OR) [32]], which are based on the standard deviation of the
prediction error and on the number of “outlier” points which
exceeds the 95% confidence interval (CI) respectively. In this
case, lower RMSE or OR values indicate better performance.

As subjective quality scores usually follow a non-linear
behaviour, a common practice is to remove this non-linearity
through a least-squares regression procedure [33]). Specifically,
to remove the non-linearity, a logistic function without off-
set is fitted to the data:

1y exp(—bx* (v — c))

Yy (€5

where the a,b and ¢ parameters are initialized to zero. Fol-
lowing the recommendations in [33]], the Matlab functions
nlinfit and nlpredci are adopted for the fitting pro-
cedure. Figure [2] shows the MOS against the objective scores
after the fitting procedure.

The computation of the performance indexes were per-
formed separately for the subjective scores obtained with the
flat monitor and with the ELFD. These values were first
computed across all the distorted stimuli from the experiments,
in order to evaluate the performance of the metrics on the
entire experiment. This whole process was also repeated after
grouping the stimuli into the different compression methods,
as well as into the different contents, in order to evaluate the
influence of these factors.
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V. PERFORMANCE AND ANALYSIS

Figure [2] shows the scatter plots along with the curve of
the fitting functions for four representative objective quality
metrics. Likewise, the performance indexes values for the
entire dataset can be visualized in Figure [3]

Figure [2] reveals that the subjective MOS scores are gener-
ally higher in the experiment using the ELFD, which is made
explicit by the comparison between the curves of the fitting
function. As noted in , this is mainly due to the fact that
the ELFD display has a smaller size than the flat monitor,
and thus it is harder for subjects to differentiate between the
reference and distorted point clouds when the degradation is
light. Therefore, more stimuli were classified with very similar
MOS scores. Since these scores are harder to differentiate, this
naturally leads to lower correlation values in the experiment
with the ELFD, as shown in Figure 3]

The correlation values allow also to discern that the best
performing metrics are GraphSIM and PCQM, which rank
very highly for both PLCC and SROCC. The latter metric
has been already reported to display high performance in the
presence of learning-based artifacts [23]], as well as with other
distortions such as noise, downsampling and octree compres-
sion . Moreover, even if the dataset contained point clouds
with variation in the point density, no large performance drop
of the objective metrics was observed due to compression such
as in the study from . Other metrics such as PointSSIM,
point-to-distribution, D2 PSNR and the perceptual loss also
achieved satisfying performance indexes. For the PointSSIM
metric, this result is also in line with [23]]. The correlation
coefficients don’t allow to define a clear ranking between the
tested versions of the point-to-distribution metric, since the
luminance-based, geometry-based and joint metrics are ranked
in different orders for the PLCC and the SROCC. The D2
PSNR metric is shown to perform consistently better than

D1 PSNR, showing the benefit of implicitly considering local
neighbourhoods through the normal vector estimation. Finally,
the performance of the perceptual loss indicates the potential
of neural networks for modeling subjective perception. This
result is important because this netweork is based in an au-
toencoder that was not trained to distinguish added distortion
or predict subjective scores. Rather, the only learning goal of
the encoder is to learn meaningful features that allow a faithful
reconstruction by the decoder. These findings also corroborate
that the representation of the point cloud TDF is also useful
for this purpose. Moreover, not all the learned features carry
the same correlation with human perception, and selecting the
best features improves the prediction power of the metric.

Figure [ depicts the Spearman correlation values between
the objective quality metrics and the MOS scores separated by
codec and by content. Since the correlation is computed within
a smaller number of stimuli, the obtained values are naturally
higher. For that reason, all the analyzed objective quality
metrics present comparable performance in the content-based
scenario. It is however possible to observe that these values
are slightly lower for fruits_voxI0, possibly due to its lower
point density.

The separate evaluation by codec reveals the difference
in performance of the objective metrics when considering
different types of distortions. In general, the correlation values
with octree-lifting are higher, suggesting that the artifacts
generated by this codec are more easily captured by the
considered objective metrics. Indeed, compressing geometry
with the octree module result in a uniform downsampling of
the point cloud, while distortion caused by the learning-based
codec are usually less predictable. This might also explain why
geometry-based metrics rank lower with slicing-lifting, for
which all the top ranking metrics account for color distortions.
This is particularly the case for the perceptual loss metric,
which doesn’t seem to capture well learning-based artifacts,



probably caused by the lack of generalization power of the
network to artifacts unseen during its training.

VI. CONCLUSIONS

In this study, a set of point-based objective quality met-
rics are benchmarked against subjective scores obtained in
a experiment that employed both a flat monitor and an eye-
sensing light field display as rendering devices. Useful insights
are provided related to the influence on the performance of
the predictors by not only the visualization strategy, but also
by conventional and learning-based compression artifacts as
well as different content types. In particular, metrics that
effectively combine geometry and color information, such as
PCQM and GraphSIM, are reported to achieve the highest
performance. Future studies may further evaluate these metrics
with a larger variety of learning-based compression artifacts,
including different coding algorithms for color attributes.
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