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Abstract—Point clouds have many applications in today’s
society ranging from entertainment to autonomous driving. With
these new applications comes the need to compress the growing
volume of point cloud data in a manner that is both suitable for
human visualization and machine processing applications. The
JPEG Pleno Point Cloud activity has been working toward a
learning-based coding standard for point clouds, offering a single-
stream, compact compressed domain representation, supporting
advanced flexible data access functionalities targeting both in-
teractive human visualization, and effective performance for 3D
processing and machine-related computer vision tasks. As part of
this activity, the JPEG Committee has been performing a number
of exploration studies to evaluate existing coding standards as
well set up baseline anchors and examine objective metrics
against which new learning-based solutions may be compared.
This article provides an overview of the JPEG Pleno Point Cloud
activity and discusses challenges and solutions to the problem of
evaluating and comparing cloud coding solutions. Experimental
results will be presented demonstrating methodologies used by
the JPEG Committee for point cloud compression assessment
as well as outlining the performance of current state of the art
compression standards on point clouds as well as the sensitivity of
the objective metrics used for this activity to various adjustable
parameters.

Index Terms—JPEG, point cloud, compression, machine learn-
ing

I. INTRODUCTION

Point cloud applications have become more numerous in the
last 10 years and look to continue on an accelerated trajectory
of adoption by society. Applications derived from 3D scan-
ning, analysis and visualisation as well as augmented, mixed
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and virtual reality applications look to have a dramatic effect
on society in the near future. These emerging applications
create new challenges and demand new technologies to unlock
their potential. One of the major emerging challenges is the
massive volume of 3D data that needs to be collected, stored,
analysed and displayed to enable the use of point clouds in
practical applications. A high quality scan of even a small ob-
ject can require millions of points to represent the object shape,
while the unrestricted positions of the points in space together
with the need to store attributes mean representation cost of the
full point cloud can be large, easily reaching gigabytes. If one
considers emerging applications such as autonomous driving
that involve the capture and processing of streams of point
cloud data in real time, the need for efficient and powerful
compression technologies for point clouds becomes urgent.
The JPEG Committee has been working on coding standards
for plenoptic data as part of its JPEG Pleno activity for a
number of years. Plenoptic data in this context is considered
to cover holography, light fields and point clouds, all of which
are different representations of the plenoptic capture function
[1], [2]. The scope of the JPEG Pleno Point Cloud activity
is the development of standards for point cloud representation
that not only involve efficient coding, but also support machine
vision applications. This activity will advance through a series
of stages:

• Stage 1: A learning-based coding standard addressing
human visualization and decompressed/reconstructed do-
main 3D processing and computer vision tasks;

• Stage 2: A learning-based coding standard additionally
supporting compressed domain 3D processing such as
visual enhancement and super-resolution;

• Stage 3: A learning-based coding standard additionally
supporting compressed domain computer vision tasks
such as classification, recognition and segmentation.
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a Final Call for Proposals on JPEG Pleno Point Cloud Coding.
This call addresses Stage 1 of the activity [3]. In early 2022
a study was performed to support the Call for Proposals. The
goal of this study was to:

1) Evaluate the performance of current state of the art point
clouds coding solutions tested on samples of the point
cloud training set to be supplied to proponents for the
Call for Proposals.

2) Understand to which extent differences between labo-
ratories may affect the subjective quality assessment of
submissions to the upcoming Call for Proposals.

3) Determine the impact of point cloud normal estimation
methods and parameters on the computation of objective
metrics intended to be used during the Call for Propos-
als.

In Section II the experimental methodology followed will be
presented including the selection of point clouds and state of
the art point cloud codecs for use in the study, as well as the
objective metrics and the subjective testing methodology to
be used. Section III will detail the results of the study, while
Section IV will provide a discussion of the results.

II. EXPERIMENTAL SETUP

A. Content

To benchmark the performance of the chosen state of the
art codecs, a set of seven point clouds were chosen. The
point clouds used in this investigation are shown in Fig. II-A.
The longdress, guanyin and rhetorician point clouds were
sourced from the JPEG Pleno Database [4]. The camera,
car, plantanopote and suzuki point clouds are sampled from
meshes obtained from the ShapeNetCore Database [5]. The
dataset is publicly available1. The sampling process followed
Lazzarotto and Ebrahimi’s methodology [6], which involved
the exclusion of internal faces prior to the sampling process in
order to avoid obtaining colors from different faces at similar
positions.

B. Anchor Codecs

In order to establish a baseline for the future comparison
of learning-based point cloud codecs, the JPEG Committee
chose two common non-learning-based codecs developed by
the MPEG Standardisation group; G-PCC [7] and V-PCC ,
[8], [9] as anchor codecs. These codecs will form the base
level of performance for the subsequent Call for Proposals on
JPEG Pleno Point Cloud Coding [3], so it is imperative that
the performance on the training set is well understood.

G-PCC uses an octree encoding method. It has two encod-
ing modes for the deepest level of geometrical information;
Octree and Triangle Soup. In this work the Octree encoding
mode was selected, with compression factor controlled by the
positionQuantizationScale parameter to obtain five encoding
rates (R01-R05) from low to high quality. For each of the
rates, the Lifting parameters seq lod and seq dist2 were set
to 12 and 3 respectively.

1http://webx.ubi.pt/∼pinheiro/euvip2022pcdb.html
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Fig. 1. Point Clouds used in this investigation. The longdress, guanyin and
rhetorician point clouds were sourced from the JPEG Pleno Database [4],
while camera, car, plantanopote and suzuki point clouds are sampled from
meshes obtained from the ShapeNetCore Database [5] using the technique of
Lazzarotto and Ebrahimi [6].



V-PCC uses a projection based method wherein the point
cloud is projected as a set of patches onto multiple planes
(usually six). The projection patches represent point cloud
texture and color, depth information and an occupancy map.
Each projected set of patches is compacted and the resulting
sequence of images compressed using traditional 2D video
techniques. MPEG V-PCC test model TMC2 version 8 [9]
with VVC was used in All Intra (AI) coding mode with
the encoding condition being C2, Lossy Geometry - Lossy
Attributes.

C. Objective Metrics

Currently, there is already a wide variety of point cloud
quality metrics available. Based on a previous study [10], the
JPEG Committee has found that the PSNR D1 and PSNR
D2 [11] quality metrics display consistent performance in
terms of point cloud quality evaluation. Since PSNR D1 and
PSNR D2 only measure geometrical accuracy of point clouds,
there is a need to include additional metrics that use both
color and geometry. For the purpose of supporting the Call
for Proposals, the authors considered some recent point cloud
quality measures, PCQM [12] and PointSSIM [13] [14]. For
each point cloud/codec/rate combination, the objective quality
metrics PSNR D1, PSNR D2, PCQM and PointSSIM were
computed. The PSNR D1 and PCQM measure point to point
distances, whereas PSNR D2 requires normal information to
measure surface to point distances and PointSSIM can also be
employed with normal-based features or color-based features.
To compute the PointSSIM metric, the variance (VAR) was
used as a statistical estimator, and a neighborhood size of 12
was used as recommended in the original work [13]. Both
normal-based and color-based features were considered. The
use of normal information in objective metric calculations
can lead to inconsistent results, particularly for sparse point
clouds. Depending on spatial sparsity of the points and the
method of normal calculation, the obtained metrics can be
subject to unwanted variation. In this work, an investigation
was conducted to inquire whether the number of neighbouring
points used to compute the normals had an effect on the
accuracy of PSNR D2 and PointSSIM. To do so, Cloud
Compare [15] was used to fit a quadric local surface based on
5, 10 and 20 neighbour points from which the normals were
computed. The estimated normals were then used to compute
PSNR D2 and PointSSIM values.

D. Subjective Testing Methodology

For the subjective quality component of this experiment,
a set of 12 second stimulus videos at 4096x2160 resolution
were created with reference and processed (encoded by a
codec at a particular rate point and then decoded to create
a reconstruction) point clouds shown side by side. The videos
were shown to subjects at a frame rate of 30fps using a
customised version of the MPV video player [16]. During the
12 second period, the reference and processed point clouds
were rotated synchronously about their respective central
vertical axes, to complete a full 360◦ path. Subjects were

TABLE I
EXPERIMENTAL SETUP AT TEST LABORATORIES

Laboratory Display Type Resolution Viewing Distance
UBI Eizo ColorEdge 4096x2160 1.2m

CG318-4K (31.1′′) (FV ±15cm)
UNIN Sony TV 55” 3840x2160 1.5m

KD-55x8505C (55′′) (FV ±15cm)

TABLE II
TEST SUBJECT INFORMATION AT TEST LABORATORIES

Males Females Total Age Average
span age

UBI 10 8 18 21-34 26.0
UNIN 17 1 18 19-59 26.4

instructed to judge visual quality of the processed with respect
to the reference point clouds according to a Double Stimulus
Impairment Scale protocol with 5 possible impairment ratings
(1 - very annoying, 2 - annoying, 3 - slightly annoying, 4
- perceptible, but not annoying and 5 - imperceptible). To
mitigate potential bias, each subject was only shown videos
with the reference on the same side of the display, with half
of subjects shown videos with the reference on the left and
the remaining half of the subjects shown videos with the
reference on the right. The content presentation order was
random, but adjusted so that subjects did not at any point see
the same content as that shown in the immediately preceding
video. Each session started with a training session using a
point cloud from the JPEG Pleno Database [4] that was not
used for subsequent data collection. Following the training
session, subjects were shown seven different content types
processed by two codecs at five different rates together with
seven reference-reference pairs (one for each content point
cloud) for a total of 77 double stimuli videos. The reference-
reference pairs were included to understand subject behaviour
in the case when no artefacts were present and to determine
if non-attentive subjects were present. Data from two test labs
is described in this work: University of Beira Interior (UBI),
Covilhã, Portugal and University North (UNIN), Varaždin,
Croatia and test environments were set up according to ITU-
R Recommendation BT.500-13 [17] as shown in Table I. The
display resolution used by UNIN is smaller than the videos,
but as no video scaling was allowed, the videos were displayed
in true resolution. After careful check, was observed that the
information of the point cloud was not cropped. This means
that subjects in UBI and UNIN saw the same information.
The cropped area did not show any point cloud information
in all cases. Outlier detection was performed according to
BT.500-13 [17] on each laboratory set of data separately with
no outliers found. Finally mean opinion scores (MOS) and
95% confidence intervals were computed. Table II presents
the gender and age breakdowns of the subjects for the two
laboratories.



Fig. 2. MOS results for the seven tested point clouds. The red lines represent results for the V-PCC codec, while the blue lines represent results for the
G-PCC codec. The error bars are 95% confidence intervals, while the green bars represent the 95% confidence intervals for the reference-reference stimuli.

TABLE III
CORRELATION OF MOS RESULTS ACROSS LABS

PCC SROCC RMSE OR
UBI vs UNIN 0.983 0.979 0.062 0.143

III. RESULTS

A. Subjective Results

Figure 2 shows the MOS plotted against bitrate for indi-
vidual labs and aggregated across all the subjects from all of
the participating laboratories. Bitrate is measured as bits per
point (bpp) and is computed as the ratio of the total number
of bits of the encoded content divided by the number of input
points in the encoded point cloud. Based on the high degree
of correlation found between the different laboratories, as will
be demonstrated in Section III-B, the authors considered the
consolidation of the scores from all the laboratories to be valid.

B. Correlation Across Labs

To determine the degree of correspondence of MOS between
the different test laboratories, the Pearson Correlation Coeffi-
cient (PCC), the Spearman Rank Order Correlation Coefficient
(SROCC), Root-Mean Squared Error (RMSE) and Outlier Ra-
tio (OR) were computed. The results are presented in Table III.
Figure 3 shows the linear fitting across all laboratories. In
general, the correlation between the test laboratories is quite
high with both Pearson and Spearman correlation coefficients
above 0.97.

Fig. 3. Linear fitting for correlation between MOS obtained from different
test laboratories.

C. Objective Metric Results

To measure the ability of the objective metrics to predict
subjective scores, we employed the methodology from Recom-
mendation ITU-T P.1401 [18]. This involves the computation
of PCC, SROCC, RMSE and OR on the original and predicted
MOS values. The predicted MOS values were obtained fol-
lowing the fitting of a logistic function to the objective scores.
The results are shown in Table IV, while the individual MOS-
objective quality pairs and fitted curves are shown in Fig. 4.



Fig. 4. MOS results plotted against objective metrics and regression curve between metric and MOS.

TABLE IV
PERFORMANCE MEASURES OF OBJECTIVE METRICS AGAINST MOS

RESULTS.

Metric PCC SROCC RMSE OR

PSNR D1 0.889 0.879 0.151 0.529

PSNR D2 0.928 0.921 0.123 0.457
Quadric 5
PSNR D2 0.928 0.918 0.123 0.443
Quadric 10
PSNR D2 0.926 0.916 0.125 0.443
Quadric 20

PointSSIM 0.761 0.765 0.213 0.671
Quadric 5
PointSSIM 0.824 0.800 0.186 0.700
Quadric 10
PointSSIM 0.765 0.763 0.212 0.686
Quadric 20
PointSSIM 0.830 0.827 0.184 0.600
Color-based

PCQM 0.916 0.913 0.132 0.586

IV. DISCUSSION AND CONCLUSIONS

Based on the results described in Section III, a number of
conclusions can be drawn. The results from the two laborato-

ries were highly consistent despite the use of different displays
and different resolutions. This robustness has been observed in
previous studies [10], [19] and is encouraging as this is crucial
to the ability of the JPEG Committee to accurately ascertain
the performance of proposals. Examining Fig. 2 it can be
observed that although different laboratories have similar MOS
for the same content, there are clear differences between
the performance G-PCC and V-PCC dependent on content.
For example, for most of the content, V-PCC outperforms
or performs as well as G-PCC with the exception of the
camera point cloud where at higher bitrates G-PCC performs
better. It is unclear as to what aspects of the camera point
cloud might be responsible. The point cloud has a number
of large flat surfaces that may have been difficult for V-
PCC to encode accurately when not aligned precisely with
the projection surfaces. For the objective metric results, we
observe in Fig. 4 that PSNR D1, PSNR D2 and PCQM show
a good relationship between the objective metrics and MOS,
however PointSSIM appears to have reduced accuracy in MOS
prediction at lower quality levels for the version that makes
use of normal features. Higher compression levels for point
clouds are generally associated with an increased sparsity of
the reconstructed point cloud. The reduced accuracy of the
PointSSIM metric may be related to the increased sparsity of



the point clouds at lower quality levels. From Table IV we
can observe a decreased correlation and an increased Outlier
Ratio for PointSSIM compared to the other metrics. In regard
to the effect that normal calculation has on the accuracy of
the metrics, we can observe that while PSNR D2 appears to
be relatively robust to the number of neighbouring points used
in the normal calculation, PointSSIM appears more sensitive
to this factor. Pearson correlation values range from 0.761
to 0.824 with the addition of normal information, below the
value of 0.830 when color-based features are employed. This
increased sensitivity of PointSSIM to the normal vectors is
probably due to the fact that the estimation has to be performed
for both the reference and the degraded models, contrary
to PSNR D2 which only requires normal vectors for the
reference.
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