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Abstract—In line with the human capacity to perceive
the world by simultaneously processing and integrating high-
dimensional inputs from multiple modalities like vision and
audio, we propose a novel model, MAiVAR-T (Multimodal
Audio-Image to Video Action Recognition Transformer). This
model employs an intuitive approach for the combination of
audio-image and video modalities, with a primary aim to esca-
late the effectiveness of multimodal human action recognition
(MHAR). At the core of MAiVAR-T lies the significance of
distilling substantial representations from the audio modality
and transmuting these into the image domain. Subsequently,
this audio-image depiction is fused with the video modality
to formulate a unified representation. This concerted approach
strives to exploit the contextual richness inherent in both audio
and video modalities, thereby promoting action recognition. In
contrast to existing state-of-the-art strategies that focus solely
on audio or video modalities, MAiVAR-T demonstrates superior
performance. Our extensive empirical evaluations conducted on
a benchmark action recognition dataset corroborate the model’s
remarkable performance. This underscores the potential en-
hancements derived from integrating audio and video modalities
for action recognition purposes.

Index Terms—Multimodal Fusion, Transformers, Human Ac-
tion Recognition, Deep Learning.

I. INTRODUCTION

Human action recognition has become a critical task in
various fields such as surveillance [1], robotics [2], interactive
gaming [3], and health care [4]. Traditionally, most approaches
have focused on visual cues [5]. However, human actions
are not limited to visual manifestations; they also consist of
rich auditory information [6]. Accordingly, Multimodal human
action recognition (MHAR) that incorporates both visual and
audio cues can provide more comprehensive and accurate
recognition results [7].

Despite these promising prospects, the performance of
current MHAR models is hampered by challenges of multi-
modal data fusion. Existing methods, including Convolutional
Neural Networks (CNNs) [8]–[10] require significantly more
computation than their image counterparts, some architec-
tures factorise convolutions across spatiotemporal dimensions.
Contrastingly, Recurrent Neural Networks (RNNs) and Long

Short-Term Memory (LSTMs) [11] have demonstrated con-
straints in processing large sequences, memory efficiency and
parallelism.

In this paper, we propose a novel transformer-based model,
Multimodal Audio-image and Video Action Recognizer us-
ing Transformers (MAiVAR-T). Our approach capitalizes on
the self-attention mechanism inherent in transformers [12]
to extract relevant features from both modalities and fuse
them effectively. The proposed MAiVAR-T model outperforms
state-of-the-art MHAR models on benchmark datasets [13],
demonstrating the potential of transformer-based architectures
in improving multimodal fusion and recognition accuracy.

To summarize, the contributions made in this paper are:
• A new feature representation strategy is proposed to select

the most informative candidate representations for audio-
visual fusion;

• Collection of effective audio-image-based representations
that complement video modality for better action recog-
nition are included;

• We apply a novel MAiVAR-T framework (see Fig. 1) for
audio-visual fusion that supports different audio-image
representations and can be applied to different tasks; and

• State-of-the-art results for action recognition on the
audio-visual dataset have been reported.

The remainder of the paper is organized as follows: we
begin with a review of related works on MHAR (Section II),
followed by a detailed discussion of the proposed methodology
(Section III). We then present the experimental setup (Section
IV) and report the results (Section V). Finally, we concludes
the paper with future directions (Section VI).

II. RELATED WORK

A. Deep Learning for MHAR
Recently, deep learning models have shown remarkable

results in MHAR [14]. They are capable of automatically
learning a hierarchy of intricate features from raw multimodal
data, which are beneficial for action recognition tasks.

CNNs have been widely adopted for MHAR to automati-
cally extract spatial features from input data [15], and LSTMs
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Fig. 1: The proposed framework contains two stages. The first stage extracts the features influencing the recognition while
the second stage performs classification on the fused features. The input sequence consists of image and audio-image patches.
These are then projected into tokens and appended to special CLS (classification). Our transformer encoder then uses self
attention to model unimodal information, and send cross-modal information flow through to fusion network.

are typically used for modelling the temporal dynamics of
actions [11]. However, the traditional combination of CNNs
and LSTMs for MHAR faces challenges such as ineffective
multimodal fusion and difficulty handling long temporal se-
quences.

Transformers, introduced by Vaswani et al. [12], have
demonstrated their superiority in many fields like natural
language processing [16], image classification [17], and video
understanding [18]. The self-attention mechanism through
its optimal complexity (see Table I) in transformers could
potentially enhance the capability of feature extraction and
multimodal fusion in MHAR tasks. However, the utilization of
transformers in MHAR is relatively unexplored and demands
further investigation.

B. Audiovisual Learning and Fusion

The field of audiovisual multimodal learning has a long and
diverse history, both preceding and during the deep learning
era [19]. Early research focused on simpler approaches, utiliz-
ing hand-designed features and late-stage processing, due to
limitations in available data and computational resources [20].
However, with the advent of deep learning, more sophisticated
strategies have emerged, enabling the implicit learning of
modality-specific or joint latents to facilitate fusion. As a
result, significant advancements have been achieved in various
supervised audiovisual tasks [21].

It is common to jointly train multiple modality-specific
convolution networks, where the intermediate activations are
combined either through summation [22]. On the other hand,
in transformer-based architectures, the incorporation of Vi-
sion Transformers (ViT) [17] and Video Vision Transformers
(ViViT) [18] has brought about significant advancements in
multimodal human action recognition. Initially, ViT proved

TABLE I: Complexity comparison for different types of layer.
Notations: n : sequence length, d: representation dimension,
k kernel size.

Layer Type Complexity
per layer

Sequential
Operations

Maximum
Path Length

Convolutional O(k · n · d2) O(1) O(logk(n))
Recurrent O(n · d2) O(n) O(n)
Self-Attention O(n2 · d) O(1 O(1)

TABLE II: Hyper-parameters of the network.

Parameter Value
Batch size 256
Initial learning rate 0.001
lr decay (every 4 epochs) 0.10
Learning rate patience 10
Epochs 100

instrumental in dissecting images into smaller segments, to
interpret these patches as a sequence for more accurate image
understanding. This ability greatly improved the recognition
and classification of human actions within still images. The
introduction of ViViT further extended this capacity, applying
transformer techniques to analyze video data. By process-
ing sequences of video frames, ViViT effectively interprets
the spatio-temporal dynamics involved in human movements.
Together, the use of Vision Transformers and Video Vision
Transformers can produce a shift in multimodal human action
recognition, enhancing the capability of systems to accurately
classify and understand complex human activities across visual
and audio domains.



III. PROPOSED METHODOLOGY

Data Collection: We collected human actions from a
benchmark dataset called UCF101 [13], with each instance
containing video clips and their corresponding audio streams.
UCF-101 contains an average length of 180 frames per video.
We observed that half of the videos in the dataset contained no
audio. Thus, in order to focus on the effect of audio features,
we used only those videos that contained audio. This resulted
in 6837 videos across 51 categories. Whilst this led the dataset
to be significantly reduced, the distribution of the audio dataset
was similar to the video dataset. We used the first train-test
split setting provided with this dataset, which resulted in 4893
training and 1944 testing samples. We reported the top 1
accuracies obtained by training on split 1.

Data Preprocessing: The video and audio data were prepro-
cessed separately, as described in the following subsections.
The video data was transformed into frames, while the au-
dio data was converted into six audio-image representations
following [14], [23]. Standard normalization techniques were
applied to both modalities.

Audio image representations: Following are some of the
key characteristics of audio-image representations (shown in
Figure 3).

• Audio image representations provide a significant reduc-
tion in dimensionality. For example, spectral centroid
images represent the frequency content of the audio signal
over time, which is a lower-dimensional representation
of the original video dataset. This can make it easier and
faster to process the data and extract meaningful features.

• Audio images are based on the audio signal, which
is less affected by visual changes, such as changes in
lighting conditions or camera angles. This makes these
representations more robust to visual changes and can
improve the accuracy of human action analysis.

• Standardization as audio images can be standardized to
a fixed size and format, which can make it easier to
compare and combine data from diverse sources. This
can be useful for tasks such as cross-dataset validation
and transfer learning. Hence, this dataset can serve as
a standard benchmark for evaluating the performance of
different machine-learning algorithms for human action
analysis based on audio signals.

• Suitable for privacy-oriented applications such as surveil-
lance or healthcare monitoring, which may require the
analysis of human actions without capturing the original
visual information.

Architecture: The MAiVAR-T model comprises an audio
transformer, a video transformer, and a cross-modal attention
layer. The transformers process the audio and video inputs
separately, after which the cross-modal attention layer fuses
the outputs. Finally, a classification layer predicts the action
present in the input data.

Audio Stream: The audio stream uses Vision Transformer
(ViT) [24] to process 2D images with minimal changes. In
particular, ViT extracts N non-overlapping image patches,

(a) (b)

Fig. 2: Image patches (a) Audio-image representation, (b)
RGB video frame.

xi ∈ Rh×w, performs a linear projection and then rasterises
them into 1D tokens zi ∈ Rd. The sequence of tokens input
to the following transformer encoder is

z = [zcls,Ex1,Ex2, ..., ExN ] + p, (1)

where the projection by E is equivalent to a 2D convolution.
In addition, a learned positional embedding, p ∈ RN×d ,
is added to the tokens to retain positional information, as
the subsequent self-attention operations in the transformer are
permutation invariant. The tokens are then passed through an
encoder consisting of a sequence of L transformer layers.
The MLP consists of two linear projections separated by a
GELU non-linearity and the token-dimensionality, d, remains
fixed throughout all layers. Finally, a linear classifier is used
to classify the encoded input based on zLcls ∈ Rd, if it was
prepended to the input, or a global average pooling of all the
tokens, zL, otherwise. As the transformer [12], which forms
the basis of ViT [17], is a flexible architecture that can operate
on any sequence of input tokens z ∈ RN×d, we describe
strategies for tokenising videos next.

Video Feature Stream: We consider mapping a video V ∈
RT×H×W×C to a sequence of tokens z′ ∈ Rnt×nh×nw×d. We
then add the positional embedding and reshape into RN×d to
obtain z, the input to the transformer.

IV. EXPERIMENTS

A. Audio preprocessing

Each audio image representation was broken into patches
as illustrated in the examples shown in Figure 2. For spatial
context, positional embeddings for each input were projected
into the architecture (see Figure 4). An internal schematic
of the transformer model has been illustrated in Figure 5.
Training data was batched into mini-batches of 16 instances
each. Augmentation techniques like random cropping and
time-stretching were applied to increase model robustness.

B. Video preprocessing

Following [18], the features extracted are then fed to the
multimodal fusion module (AV-Fusion MLP) which later per-
forms the classification for each action class.



(a) Waveplot

(b) Spectral Centroids

(c) Spectral Rolloff

(d) MFCCs

(e) MFCCs Feature Scaling

(f) Chromagram

(g) Video input

Fig. 3: Segmented video input and six different audio-image
representations of the same action.

Fig. 4: Positional embeddings.

C. Training

We utilized a multimodal cross-entropy loss function for
training, balancing both audio and video modalities. The
network hyperparameters are reported in Table II.

Hardware and Schedule: The training was performed on a
high-performance computing cluster, equipped with GeForce
GTX 1080 Ti GPUs. We trained the transformer-based model
for 100 epochs, with a learning rate (α) schedule that de-
creased the rate by 10% every 4 epochs. Optimizer: The
Adam optimizer [25] was used due to its effectiveness in
training deep networks. Regularization: Dropout techniques
[26] were applied to prevent overfitting during training.

V. RESULTS

To assess the contribution of each component in our model,
we performed an ablation study. Results demonstrate that both
the audio and video transformers, as well as the cross-modal
attention layer, contribute significantly to the final action
recognition performance. The process of attention mecha-
nism in the extraction of features through robust audio-image
representations could be visualized in Figures 6 and 7. We
have used an accuracy metric that measures the proportion of
correct predictions made by the model out of all the predictions
and defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

where TP are the correctly predicted positive values. TN are
the correctly predicted negative values. FP , also known as
Type I errors, are the negative values incorrectly predicted as
positive. FN , also known as Type II errors, are the positive
values incorrectly predicted as negative.

Table III compares the performance of transformer-based
feature extractors with CNN-based counterparts. Proposed
MAiVAR-T outperforms prior methods by a +3% as presented
in Table IV.



Fig. 5: Schematic of Vision Transformer Encoder.

Fig. 6: Attention matrix for an audio-image representation.

TABLE III: Test accuracy of different audio repre-
sentations with CNN and transformer-based backbones
(InceptionResNet-v4(IRV4) and Vision Transformer (ViT) re-
spectively)

Representation IRV4 ViT
Waveplot 12.08 19.7 (+7)

Spectral Centroids 13.22 28.65 (+15)
Spectral Rolloff 16.46 26.85 (+10)

MFCCs 12.96 18.26 (+6)
MFCCs Feature Scaling 17.43 17.44 (+0.01)

Chromagram 15.48 19.08 (+3)

VI. CONCLUSION

Over the past decade, Convolutional Neural Networks
(CNNs) with video-based modalities have been a staple in the

Fig. 7: Visualization of attention.

field of action video classification. However, in this paper, we
challenge the indispensability of video modalities and propose
a transformer-based multi-modal audio-image to video action
recognition framework called Multi-modal Audioimage-Video
Action Recognizer using Transformers (MAiVAR-T). This
fusion-based, end-to-end model for audio-video classification
features a transformer-based architecture that not only simpli-
fies the model but also enhances its performance.

Experimental results demonstrate that our transformer-based
audio-image to video fusion methods hold their own against
traditional image-only methods, as corroborated by previous
research. Given the significant improvements observed with
pre-training on larger video datasets, there is considerable
potential for further enhancing our model’s performance. In
future work, we aim to validate the efficacy of integrating text
modality with audio and visual modalities. Furthermore, the
scalability of MAiVAR-T on large-scale audio-video action
recognition datasets, such as Kinetics 400/600/700 will be
explored. Additionally, we plan to explore better architectural



TABLE IV: Classification accuracy of MAiVAR compared to
the state-of-the-art methods on UCF51 dataset after fusion of
audio and video features.

YEAR METHOD ACCURACY [%]
2015 C3D [27] 82.23
2016 TSN (RGB) [28] 60.77
2017 C3D+AENet [29] 85.33
2018 DMRN [30] 81.04
2018 DMRN [30] + [31] features 82.93
2020 Attention Cluster [32] 84.79
2020 IMGAUD2VID [6] 81.10
2022 STA-TSN (RGB) [33] 82.1
2022 MAFnet [31] 86.72
2022 MAiVAR-WP [14] 86.21
2022 MAiVAR-SC [14] 86.26
2022 MAiVAR-SR [14] 86.00
2022 MAiVAR-MFCC [14] 83.95
2022 MAiVAR-MFS [14] 86.11
2022 MAiVAR-CH [14] 87.91
Ours MAiVAR-T 91.2

designs to integrate our proposed approach with more innova-
tive ideas, such as integrating generative AI-based transformer
architectures, into our network could provide valuable insights
into the impact of transformers on MHAR.
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