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ABSTRACT

Determining the occurrence of an event is fundamental to
developing systems that can observe and react to them. Of-
ten, this determination is based on collecting video and/or
audio data and determining the state or location of a tracked
object. We use Bayesian inference and the particle filter
for tracking moving objects, using both video data obtained
from multiple cameras and audio data obtained using arrays
of microphones. The algorithms developed are applied to
determining events arising in two fields of application. In
the first, the behavior of a flying echolocating bat as it ap-
proaches a moving prey is studied, and the events of search,
approach and capture are detected. In a second application
we describe detection of turn-taking in a conversation be-
tween possibly moving participants recorded using a smart
video conferencing setup.

1. INTRODUCTION

An event is characterized by some typical change in the
state of some object. Robust detection of events thus re-
quires robust tracking of an object’s state. Typically this
state includes the object’s position, either in an absolute
frame, or relative to some other object. Further, to detect
an event change the detecting system must focus its atten-
tion on the object location (e.g., the position of a human)
at a given time. Systems that seek to recognize events in
applications such as surveillance, creating perceptually im-
mersive realities, or HCI, must thus be able to focus on par-
ticular object locations in order to obtain a better view of the
actions taking place. This focusing can involve zoom and
focus of an active camera, enhanced audio from the spot ob-
tained via a microphone array beamforming procedure, or
some other attention focusing mechanism. All these require
robust tracking of the position of an object. The tracking
algorithm might require a priori knowledge of the nature of
the actions that are of interest, and it would be desirable to
be able to incorporate data from any available active sen-
sors.

We develop a multimodal sensor fusion framework based
on particle filters and apply it to tracking and event detec-
tion using audio and video modalities. We show that the

performance of the multimodal tracker is superior to that
of unimodal tracking, and that availability of information
from a complementary modality simplifies the event detec-
tion task.

The developed algorithm is an application of sequential
Monte-Carlo methods (also known as particle filters) to 3-
D tracking using two calibrated cameras and a microphone
array. Particle filters were introduced to the vision com-
munity in the form of the CONDENSATION algorithm [1].
Improvements of a technical nature to the condensation al-
gorithm were provided by Isard and Blake [2] (importance
sampling), MacCormick and Blake [5], Li and Chellappa
[11], and Philomin et al [10]. The algorithm has seen appli-
cation to tracking people in video, and face tracking.

The reason these algorithms have attracted much interest
is that they offer a framework for dynamic state estimation
where the underlying probability density functions (pdfs)
need not be Gaussian, and state and measurement equations
can be nonlinear – situations that are commonly encoun-
tered in vision. The method is relatively robust to noise,
and recovers from tracking misses in intermediate frames.
In addition, they are relatively simple to implement, and al-
low one to conveniently combine multiple feature types in
the same tracker.

This paper is arranged as follows. In section 2 the no-
tation and the basic equations for the video tracker, the au-
dio tracker, and the particle filter are introduced. In sec-
tion 3 we introduce two event detection problems for which
the multimodal action recording setup is available (a flying
bat in a dark room and multiple speakers in an office en-
vironment). In section 4, we study the performance of our
tracking algorithm on Monte Carlo simulations and present
results of tracking and event detection for real and simu-
lated data in both bat and videoconferencing experiments.
Section 5 concludes the paper with an assessment of the al-
gorithm and a discussion of future work needed to achieve
better performance on the tracking problem.

2. FORMULATION

We describe the particle filter in general terms first. Then
the motion model and the posterior probability distributions



that are used in particle filter are described.

2.1. The particle filter

For an accessible discussion of the details of the particle
filter and its deficiencies see Forsyth & Ponce [3]. The par-
ticle filter represents the underlying pdf that describes the
state of the object by a set of random samples from the
space on which the pdf is defined. Every sample is com-
monly referred to as a particle. Associated with each parti-
cle is a weight. The particle locations and weights are used
to achieve “Monte-Carlo” approximations to integrals in-
volving the unknown pdf that is being determined.

The sketch of a particle filter update algorithm is as fol-
lows. Initially, all particles have equivalent weight attached
to them. To progress to the next time instance, two steps are
performed in sequence. First, at the prediction step, the state
of every particle is updated according to the motion model.
An accurate dynamical model is essential for robust track-
ing and for achieving real-time performance. Next, during
the measurement step, new information that became avail-
able about the system is used to adjust the particle weights
for every particle. The weight is set to be the likelihood
of this particle state describing the true current state of the
object, which can be computed via Bayesian inference to
be proportional to the probability of the observed measure-
ments given the particle state (assuming all object states are
equiprobable). The sample points are then redistributed to
obtain uniform weighting for the next algorithm iteration
by resampling them from the computed posterior probabil-
ity distribution. No explicit integral characteristics of the
process is kept by the algorithm; however, at any time such
characteristics (position, speed etc.) can be directly com-
puted, if desired, by using the particle set and weights as an
approximation to the true pdf.

The algorithm works well in many cases where the
Kalman filter (or the extended Kalman filter) would fail due
to poor approximation of the process pdf by the Gaussian
(for example, when the pdf is multimodal). An advantage
of the formulation is that it can be easily applied even when
the state update model and the measurement model are non-
linear since they are only evaluated in the forward direction,
and need not be inverted. This allows the use of error func-
tions that make “sense” for the problem, including nonlinear
ones [8].

Since it is not necessary to invert measurement equations
to perform tracking, it is possible to perform seamless in-
tegration of multiple data streams and multiple modalities.
To exploit this possibility, our tracker uses video data from
multiple cameras to obtain 3D coordinates of the object
without explicit triangulation. In addition, another modality
(audio) is used to perform joint tracking, with the audio data
being provided by the microphone array. The formulation
we are developing thus accepts multiple streams of infor-

mation with entirely different noise probability densities.
While the assumption of Gaussian noise in the video data
and cross-correlation peaks does not cause significant diffi-
culty, the fact that both the audio and video data are subject
to the presence of substantial outliers does. These outliers
arise due to spurious cross correlation peaks in audio and
due to missed or incorrect correspondences in video. In ad-
dition, the times at which the data are available from each
modality may be different. Our multi-modal particle filter
addresses these problems. The filter formulation including
the motion model, measurement equation and the posterior
probability update equation are given below.

2.2. State vector and observation vector
We use a first-order motion model to effectively learn the
motion of the tracked object. The six-dimensional state
vector of a particle is composed of its coordinates and ve-
locities and will be denoted as [xt ẋt]T . The observation
vector consists of available measurements, which include
audio and video data. ForN cameras in the system, the 2D
image coordinates of P corresponding points on the object
in all these views contribute 2NP elements to the obser-
vation vector. The microphone array consisting of M mi-
crophones provide additional C(M, 2) elements which are
the peak positions in all possible cross-correlations between
pairs of microphones. Thus, the observation vector has total
of 2NP +C(M, 2) elements. In our setup,N = 2, P = 1,
M = 7 and 2NP + C(M, 2) = 25.

2.3. Motion Model
We use a simple first-order rigid-body motion model with a
random excitation force applied to the particles. If x(t) is
a 3-D vector of source coordinates at time t and ẋ (t) is a
vector of corresponding velocities, then the motion model
can be written as

x (t+ δt) = x(t) + ẋ(t)δt, ẋ (t+ δt) = ẋ (t) + Fδt
(1)

where F is the random partition excitation acceleration – a
normally distributed random variable with zero mean and
standard deviation σ = 102m/s2. The initial distribution of
particles is chosen to be Gaussian with [xd 0]T mean and
σ = 0.2, where xd is the initial object coordinate vector
obtained by a suitable detection process. In the absence of a
detection process a uniform distribution of particles is used.

2.4. Video tracking formulation
We are given a pair of widely-spaced calibrated cameras
that can view the area under consideration. For determin-
ing the 3-D position of points from approximate correspon-
dences, the simplest algorithm to use is a classical one de-
scribed in Slama [6], that is also extensively used in the gait-
analysis and motion capture communities. An improved
version of this algorithm is discussed in Chapter 11.2 of



[8] and has the advantage that its generalization to multiple
views is straightforward – something that we intend to do in
the future.

Figure 1: The calibration object.

A large calibration object is used to perform camera
calibration; it is shown in Figure 1. The object consists
of 25 white balls on black metal sticks. The 3-D coor-
dinates of the balls are known. Using these coordinates
(xn, yn, zn), n = 1 . . . 25 and ball locations on the two im-
ages (umn, vmn) , m = 1, 2, we can calibrate the camera
using Direct Linear Transformation equations:

umn =
Amxn +Bmyn +Cmzn +Dm
Emxn + Fmyn +Gmzn + 1

(2)

vmn =
Hmxn + Jmyn +Kmzn + Lm
Emxn + Fmyn +Gmzn + 1

(3)

This is the expression for the general perspective projection.
Using the 50 equations given by the correspondences, one
can determine the 11 parameters for each camera (Am,...,
Lm), via least squares. Knowing the camera parameters,
and given a possible coordinate pair of measurements for a
(u1, v1) and (u2, v2), we can write equations (2, 3) in terms
of the unknown coordinates [x y z]:

εv=


A1−E1u1 B1−F1u1 C1−G1u1
H1−E1v1 J1−F 1v1 K1−G1v1
A2−E2u2 B2−F2u2 C2−G2u2
H2−E2v2 J2−F 2v2 K2−G2v2


xy
z

+

D1−u1
L1−v1
D2−u2
L2−v2

(4)

This system can, in principle, be solved using least
squares to obtain the 3-D position of a point whose cor-
respondences are known. The particle filter, however, never
directly solves this inverse problem for the 3-D coordinates
of the object. Instead, as described before, the posterior
probability for all particles is computed using the forward

problem solution (2, 3). If the state vector for a given parti-
cle is X = [x y z ẋ ẏ ż] and the video observation vector
is Zv = [u1 v1 u2 v2 ... uN vN ], then, first, the projected
image coordinates are obtained by

ûi =
Aix+Biy +Ciz +Di
Eix+ Fiy +Giz + 1

, i = 1...N, (5)

v̂i =
Hix+ Jiy +Kiz + Li
Eix+ Fiy +Giz + 1

, i = 1...N, (6)

and the projection error is computed as

²2v =
1

N

NX
i=1

£
(ûi − ui)2 + (v̂i − vi)2

¤
. (7)

The posterior probability pv(Zv|X) of the observation Zv
given the state vectorX is

pv(Zv|X) = 1√
2πσv

exp

µ
−1
2

²2v
σ2v

¶
. (8)

2.5. Audio tracking formulation
Triangulation is known to be prone to errors, especially with
the wide baseline that is used here, which makes matching
features difficult. Further, only a small portion of the space
is captured by both cameras. Thus having a complementary
modality for tracking would be helpful. Here we use au-
dio tracking, assuming that the object intermittently emits
sound as it moves through the space.

Audio tracking is accomplished by using time delays
measured at the microphone array . For a given particle state
vector, the time delays corresponding to the particle state
are computed and compared to the observation vector con-
sisting of the measured time delays to obtain the posterior
probability for the particle. Determining the source coordi-
nates from measured time differences at an array is an al-
most classical problem arising in many fields such as radar,
GPS or sonar; however, in the particle filter framework only
the forward transformation (from the source coordinates to
the time delay space) has to be performed. This forward
transformation can be computed easily. Assume that we
have N receivers located at known points mi = (xi, yi, zi)
and a source at xs = (xx, yx, zx). Denote the distances
between the microphones and the source by χi, where

χi =

q
(xi − xs)2 + (yi − ys)2 + (zi − zs)2. (9)

Then, for a given source position xs, in the ideal case
the measured time delay τij between microphones i and j
would be exactly equal to the computed time delay τ̂ij

τ̂ij =
χj − χi
c

, (10)



where c is the speed of sound. Thus, we use the dif-
ference between the left and the right sides of equation
10 as the error measure. Given the particle character-
ized by the state vector X as described in the previous
section, and given the audio observation vector Za =
[τ12 τ13 ... τ1M τ23 ... τM−1,M ], we can compute the time
delays τ̂ij corresponding to the stateX = [xp ẋp] by letting
xs = xp and using equation (10) and then compute the total
error as

²2a =
1

C(M, 2)

X
i,j=1...M,i<j

(τ̂ij − τij)2 (11)

In practice, we use some preliminary processing to reject
obvious outliers (a RANSAC-type approach [8]) so that the
size of the set over which the sum is taken can be less than
C(M, 2). In this case the scaling coefficient is adjusted ac-
cordingly. For real data, we obtain the time delays using a
robust algorithm that uses the noise estimate in the absence
of the signal as a weight function in the generalized cross-
correlation [7]. (More details on audio processing can be
found in [9]). Given an audio error ²2a, the posterior proba-
bility pa(Za|X) of the observationZa given the state vector
X is

pa(Za|X) = 1√
2πσa

exp

µ
−1
2

²2a
σ2a

¶
(12)

2.6. Combined posterior probability estimation
The combined probability p(Z|X) for both audio and video
data is obtained by multiplying the corresponding probabil-
ities from audio and video sources, assuming independent
estimations by the complementary modalities. If at a given
time step either audio or video data is absent, then the cor-
responding probability is simply marginalized to a suitable
value and the estimation of the posterior probabilities for
the particles is done using only video or only audio data.

3. APPLICATIONS TO EVENT DETECTION

The described method of performing multi-modal sensor
fusion can be used to track an object at it moves through
space, and to observe and detect characteristic patterns in
either video, audio or both modalities that correspond to
events. This requires human interpretation of when an event
occurs. We do this by building a statistical model of the ob-
ject state and interstate transition (e.g., using HMMs) and
using the measurements to find out the corresponding ob-
ject state or sequence of the object states (e.g., using the
Viterbi algorithm). We show two examples of the method
applied to an audio-visual event detection and classification
problem. In the first example, a free flying bat is capturing
a prey in a flight room with sound absorbing walls, and its
acoustical echo-locating emissions are captured along with
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Figure 2: A spectrogram of one bat echolocation call.

video data. In the second example, a videoconference ses-
sion or a meeting is taking place in the room, and changes of
the active speaker are detected. The experimental setup and
event detection model for these applications are described.

3.1. Flight room experimental setup
The flight room is setup primarily for biological be-
havioral study purposes. The room is relatively large
(5m×5m×2.5m), and the room walls are covered by an
acoustically absorbing material, thereby substantially mit-
igating acoustic reflection and multipath problems. The
room is normally used to study bat behavior in the absence
of visible light illumination, so that the bat is forced to
use echolocation for navigation and prey hunting. Equip-
ment in the room include two infrared cameras, several IR
light sources, and a microphone array arranged on the floor
along two corners of the room. The microphone array was
not originally used for bat localization; only the energies
of the signal in different spatially separated channels were
used to study the direction and the width of the ultrasonic
echolocation calls, and the bat trajectory was reconstructed
from video data. We extended the system to perform mul-
timodal bat tracking by incorporating the time-delay infor-
mation from the microphone array data. The trajectory re-
construction is currently performed off-line using recorded
audio and video data; work toward the on-line tracking is in
progress.

The bat used in this study, the big brown bat (Eptesi-
cus fuscus), emits ultrasonic chirps consisting of downward
sweeping FM sounds. The plot and the spectrogram of an
individual chirp are shown in Figure 2. The signal band-
width extends from 50 kHz down to 20 kHz. The duration
of the signals ranges from 2 to 20 ms. The bat was trained
to fly in a flight room and capture a mealworm suspended
from the ceiling by a microfilament. The bat’s flight was
recorded using two Kodak MotionCorderTM digital cam-



Kodak MotionCorder
cameras

Microphone array

Figure 3: Schematic of flight room experimental set up.

eras running at 240 frames/sec. Vocalizations of the bat
were recorded from six microphones (Knowles FG3329) ar-
ranged in an “L” shaped array. Sounds were digitized at 140
kHz/channel using an IoTech WavebookTM . The video and
audio data were synchronized by running the acquisition off
a common trigger. A schematic of the flight room is shown
in Figure 3.

3.2. Capture event
Behavioral studies of bats show that a flying hunting bat
uses ultrasonic echolocation pulses to navigate in the room,
to localize the target and to distinguish between edible and
inedible targets. The bat’s hunting behavior is generally di-
vided into three stages: search, approach and capture [4].
When the bat is in general flight and unaware of the pres-
ence of the target, its ultrasonic chirps are relatively rare and
powerful (search mode). As the bat acquires the target it be-
gins emitting more frequent vocalizations (approach mode).
After the capture, indicated by a joining of the estimates of
the bat track and the target track, the bat is silent for a while,
and then begins to emit search mode clicks again. Figure 4
is a recording of a bat acoustic activity over the period of
one second which includes all three hunting stages. The
end of a frequent vocalization series in the plot signifies the
capture event.

We use a simple sensor fusion method to detect the cap-
ture event. The bat trajectory must pass in the vicinity of
the target position (obtained via video detection), and the
bat acoustic activity must cease for a while (obtained via
audio detection). If both these conditions are satisfied, we
claim that the capture event took place.

3.3. Videoconferencing setup
To perform algorithm evaluation in noisy and reverberant
environments, we collected and processed data in a regular
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Figure 4: A sequence of bat vocalizations during search,
approach and capture.

office room. The setup is generally similar to the system
described in [9] and consists of a tracking subsystem with
two video cameras and two microphone arrays with seven
microphones in each array, and a single video camera used
for collecting videconferencing data. The cameras are lo-
cated at two corners along a wall of the room and are cal-
ibrated using the same calibration object as the cameras in
the flight room. The microphone arrays are attached to the
room wall between the cameras. One dual-processor Pen-
tium III 933 MHz PC was used to acquire and process the
audio and video data in real time. The capabilities of a sin-
gle PC system bus throughput limited the operation rate of
the tracker to approximately 8 updates per second.

We use both audio and video data to track the active
source using the multimodal tracker described earlier, to de-
tect an active speaker, detect the change in identity of the
active speaker and to control a third camera (used to col-
lect the videoconferencing stream) which follows the active
speaker (if any) or zooms out when a period of silence is
detected. Audio localization data is used to initialize the
tracker. Subsequently, the speaker is followed by the active
camera using multimodal tracking. The speakers are distin-
guished and identified by color histograms of their images.
The details of audio-video processing and camera control
algorithms are described in [9].

3.4. Speaker change event

When the audio localization data do not fall within a small
tolerance region around the position of the current speaker,
the system assumes that a speaker change event is taking
place. This event is often referred as turn-taking. The
record of speaker change events made over a relatively
long time (minutes), combined with identities of individ-
ual speakers, form a turn-taking sequence of the meeting.



Figure 5: A simple Markov model for a turn-taking se-
quence.

The high-level structure of the scene can be recovered from
this sequence by building a simple Markov model for the
speaker change events. Figure 5 shows an example when
three speakers are present.

The nine-element state transition probability matrix, P,
fully describes the stochastic process corresponding to the
model. Element pij of the matrix corresponds to the tran-
sition probability from state i to state j at the current time
step. Only six model parameters are independent since the
sum of the transition probabilities outgoing from one state
must equal to one. The values of individual elements in the
matrix bear relationship to the temporal structure of the cor-
responding stochastic process, e.g. to the average length of
continuous speech by a single speaker and to the frequency
of speaker change event.

From the observed turn-taking sequence we can obtain
the matrix P, and use it to classify meetings. If Nij is the
number of times when the arc from state i to the state j was
visited (i.e. when person j became the active speaker after
person i was speaking), then we define

pij = (Nij + 1)/
X
i

(Nij + 1). (13)

An extra visit is added to every arc to ensure that no prob-
ability is zero. This is desirable if one wants to create an
artificial turn-taking sequence using P .

Having computed the elements of P , the values and the
ratios of the elements on its main diagonal can be used to
classify the turn-taking sequence into three general groups
– lecture, discussion and conversation. In a sense, the value
of pii is related to the average speaking time of ith speaker.
When one pii it is close to 1.00, the conversation is likely
to be a lecture with occasional interruptions by listeners;
when three values of pii are similar, the roles of speakers are
likely to be equal. Further examination of probability distri-
bution over a row can distinguish between a discussion-type

meeting and informal conversation which correspond to the
relatively small and relatively large non-diagonal elements
of P , respectively.

4. RESULTS
We implemented the algorithm to perform multi-modal
tracking and event detection in two different setups. For the
bat in free flight, we first test the algorithm performance by
using synthesized audio/video traces using the same room
and sensor geometry and parameters as for real data. We
then apply the algorithm to real bat flight trials. We also im-
plemented the algorithm for audio-visual tracking of video-
conferencing participants. Preliminary results on automatic
meeting classification are presented. These results may be
used for content classification and retrieval purposes.

4.1. Synthetic Data
To numerically evaluate the performance of the algorithm
in the case when ground truth is available, we tested it with
synthetic data. A synthetic dataset was generated with pa-
rameters corresponding to the conditions in the real data ac-
quired from the flying bat experiments. An object is as-
sumed to move in a spiral motion for one second along the
trajectory x = sin(2πt), y = 2.0 − t, z = cos(2πt), t ∈
[0, 1]. The frame rate was set to be 240 fps, the discretiza-
tion rate to 140 kHz, and all the geometric parameters of the
system were kept the same as in the real data obtained in the
quiet room. In every frame, the object position in the two
camera images, (u1, v1) and (u2, v2), are obtained. In ad-
dition, the values of time delays τij between all pairs of mi-
crophones are also computed. Independent Gaussian noise
is added to the image coordinates and to the time delays
with zero mean and variances of 3 pixels and 10 samples,
respectively. These 25 values constitute the observation
vector for a given time instant and are fed to the conden-
sation tracker initialized with the correct initial state vector
[0.0 2.0 1.0 0.0 0.0 0.0]. For every frame, the Euclidean
distance between the object coordinates obtained from the
tracker and the true object coordinates is computed and the
average distance over all frames is taken to be the error mea-
sure. This is repeated several times with different random
number generator seeds, and the average result is presented.
In addition, the tracker performance is also measured in ab-
sence of one of the two modalities (i.e., for audio data only
and for video data only), and the performance is plotted ver-
sus the number of particles in the particle filter (Figure 6).

The results show that the performance improves when
the number of particles is increased, as might be expected.
The audio data alone gives substantially higher residual er-
ror, which drops significantly as the number of particles is
increased. That can be attributed to the high dimensionality
of the observation space and to the fact that all the micro-
phones lie in one plane, which diminishes the accuracy of 3-
D coordinate determination. The video data alone show less
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error and shows some improvement as the number of parti-
cles increases. The combined data show even better perfor-
mance which is improved by a small factor (about 15%) as
the number of particles grows. The smallest tracking error
for combined audio and video tracking (about 1.64 cm) is
approximately 2.5 times less than the error obtained by the
pure object detection in every frame without any tracking
involved (about 3.83 cm). This shows the effect that learn-
ing the object motion model has on the localization error.

To summarize, the combined audio and video tracking
provides significantly better error rate than either of these
two modalities separately, and is achieved with relatively
small number of particles. The algorithm is therefore well-
suited for real-time implementation.

4.2. Real Data

We present results from two trials of a bat moving towards
a tethered mealworm prey. There is also an inedible dis-
tracting target located in proximity to the edible target. The
bat flies in from the right towards the target located at the
left in these figures (which show a plan view of the room).
Figure 7 provides both audio and video tracks for the first
trial as well as output from the multimodal tracker. The
microphone positions are also shown as large black dots.
The video coordinates are available in every frame, while
the audio track is available when the bat emits vocaliza-
tions, and consists of a scattered set of points. The audio
localization is done using the CL1 algorithm described in
[9]. As can be seen, the audio solution tracks the video data
quite well. The output of the multi-modal tracker lies be-
tween the audio and video tracks, as also can be expected.
The slight constant disagreement between audio and video
is likely due to inaccuracies in determination of microphone
coordinates. The coordinates are determined from the loca-
tions of the microphone receivers in stereo images using the

Figure 7: Trial 1: Audio, video and combined tracks of the
bat flight.

Figure 8: Trial 2: Audio and video tracks for the second trial
with the moving target.

DLT transformation described earlier, and the calibration
for DLT is accurate only in a limited space region occupied
by the calibration object. The microphones lie far from this
well-calibrated region.

A second trial is shown in Figure 8. In this trial both the
prey and the distracting target are moving, also from right
to left. The bat is able to come near the correct target, but
misses it. Again, the audio and video tracks are in a very
good agreement, and the combined track differs very little
from the video trajectory and therefore is not plotted.

In both plots the temporal density of the echolocation
calls changes during the flight sequence. As described be-
fore, the end of the frequent vocalization pulse series with
relatively low signal power signifies the prey capture event.
It can be seen that this corresponds to the bat trajectory pass-
ing in a small neighborhood of a prey location. These two
cues combined are used to identify the moment of capture.



Figure 9: Three sample turn-taking sequences.

The capture event is identified correctly in both cases. The
event detection in this experiment is thus rather simple.

4.3. Videoconferencing setup

The accuracy of the audio localization in the videoconfer-
encing setup is sufficiently lower than in the quiet room due
to the smaller microphone array baseline, lower sampling
frequency, noise and reverberations. Thus, the width of
the Gaussian kernel for the audio distribution in the multi-
modal tracker is increased to avoid jerky tracker outputs,
and audio information serves as the supporting modality for
the more accurate video data. The details of the data pro-
cessing are given in [9].

To test the applicability of the multi-modal tracker for
the event detection application, we obtained data from sev-
eral types of simulated meetings. We selected three data sets
from the recordings. The visual depiction of turn-taking se-
quences in these three cases is presented in Figure 9. The
figure graphically shows the time segments of activity of
different participants. From these plots, it can be inferred
that the first sequence is a lecture-type session since one per-
son is a primary speaker. The second and the third patterns
can be classified as a discussion meeting (regular speaker
changes) and a less formal (or more active) conversation
(frequent speaker change and interruption). The matrices
P1, P2, P3 for these three turn-taking sequences computed
according to the rule described earlier are shown below:

P1 =

0.90 0.05 0.05
0.40 0.40 0.20
0.33 0.17 0.50

 P 2=
0.78 0.11 0.11

0.15 0.80 0.05
0.10 0.20 0.70


P3 =

0.58 0.21 0.21
0.21 0.58 0.21
0.34 0.13 0.53


It can be seen that the elements of the state transition

probability matrix can be used to describe the nature of the

meeting and that the classification according to the rules de-
scribed in section 3.4 agrees with the correct classification.
Again, this is in no way an extensive study but a simple
application showing that the developed multi-modal tracker
can be successfully used for the event detection and classi-
fication problems.

5. CONCLUSIONS
We have developed a multi-modal sensor fusion tracking al-
gorithm based on particle filtering which is able to integrate
multiple modalities and cope with temporary absence of
some measurements. The tracking is essential to the event
detection problem since it allows the system to selectively
look and listen at potentially interesting locations. We ap-
plied the tracking method for two specific simple event de-
tection problems and found that the results are promising.
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