

Newcastle University ePrints - eprint.ncl.ac.uk

Martinez D, Shafik R, Acharyya A, Merrett G.

Design and Implementation of an Adaptive Learning System:

An MSc Project Experience.

In: 11th European Workshop on Microelectronics Education (EWME).

11-13 May 2016, Southampton, UK: IEEE.

Copyright:

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to paper:

http://dx.doi.org/10.1109/EWME.2016.7496481

Date deposited:

10/05/2016

http://eprint.ncl.ac.uk/
javascript:ViewPublication(224480);
javascript:ViewPublication(224480);
http://dx.doi.org/10.1109/EWME.2016.7496481

Design and Implementation of an Adaptive
Learning System: An MSc Project Experience

Daniel V. Martinez†, Rishad A. Shafik‡, Amit Acharyya$, Geoff Merrett†

† School of ECS, University of Southampton, SO17 1BJ, UK, e-mail: {ras1n09,gvm}@ecs.soton.ac.uk
‡ School of EEE, Newcastle University, NE1 7RU, UK, e-mail: {rishad.shafik}@ncl.ac.uk
$ Indian Institute of Technology, Hyderabad, India, e-mail: {amit acharyya}@iith.ac.in

Abstract—Individual project is a major component of
MSc degrees in the UK in terms of allocated marks and
overall weight. An MSc project typically lasts for up to 14-
16 weeks, which makes it challenging to carry out elaborate
research works. In this paper we highlight our experience
in setting up one such project, which addresses the design
and implementation of a bio-inspired adaptive learning sys-
tem using cerebellar model articulation controller (CMAC)
principles. To systematically execute the project, initially
a guided and comprehensive literature survey was carried
out to analyze in detail the CMAC design tradeoffs. Under-
pinning this analysis an adaptive design methodology was
developed, leading to the implementation on a field pro-
grammble gate array (FPGA). The implementation was then
validated using a real-time audio compression application.
The validations demonstrated the advantages of adaptive
learning systems in terms of reduced energy consumption
with improved throughput and convergence. Moreover, it
underlined the importance of a good plan and systematic
delivery for a successful short-term research project.

I. INTRODUCTION AND MOTIVATION

Microelectronics design projects are typically associ-
ated with two major challenges: firstly, finding an op-
timized design methodology for energy efficiency and
secondly, dealing with the heterogeneity of the underlined
platform for implementation. Carrying out a research-
based design projects within a short time frame (typical
for MSc projects) adds to these challenges the problem
of finding a suitable problem and the applications that
will be relevant to the research interests. This particular
case has benefited from the overlap between the student’s
personal interest in automated learning systems and the
supervising teams interest in research on such learning
systems, such as cerebellar model articulation controller
(CMAC) based adaptive learning system.

Developing automated learning-based system has re-
cently gained significant attention from different sectors.
Although various systems have proved to be reliable in
practical applications, such as Real-time Control Systems
(RCS) used in unmanned ground vechicles [7] and the
system architecture for the Automated Manufacturing
Research Facility (AMRF) [8]. These two being based on
the CMAC which is a cerebellum-based neural network
originally proposed in 1975. It is considered superior
to traditional neural networks due to its fast learning
abilities of non-linear or unpredictable systems [1]–[5]. It
is typically used to model the behavior of unknown sys-
tems with reasonable accuracy. The learning is performed
by a set of cumulative hyper-rectangular functions, each

associated with a quantized weight variable. When learnt,
the system behavior can be reproduced via these functions
and weights. Besides generating the model, the CMAC-
based learning systems also benefit from a high level
of compression, which depends on the number of and
weights.

CMAC learning systems can be configured as control
systems in two major ways: with or without classical PID
controllers. When configured without PID controllers, the
system needs to be trained against a reference model.
When configured with PID controllers, the system benefits
from integral feedback from the target system, and CMAC
trains the PID controller to model the target transfer
function.

The following control applications stand out among
the existing literature reviewed as being relevant to the
current work: Learning CMAC control systems with a
PID controller used to model the walking behavior of
a bipedal robot [9] by means of a reinforced learning
algorithm. A CMAC PD torque controller to deal with
non-linearities such as friction and mechanical clearance
[10].

Additional literature reviewed has dealt with mathemat-
ical and analytical aspects of the CMAC: Convergence
has been proved for a certain range of learning rate
values [21]. Over-learning, which is the system instability
after succesful learning in systems controlling a plant,
has been cancelled after analyzing the iterative learning
model of a traditional CMAC [10]. Futhermore, hardware
realizations of CMAC-based systems have also been
reviewed, such as the color calibration module for image
reproduction between scanner & printer using a CMAC
without a PID controller [11], [12] and a photovoltaic
non-linear system [1].

To successfully set up this challenging MSc project,
three phases have been followed:

1) Comprehensive analysis of the CMAC & investiga-
tion into the tradeoffs of design parameters.

2) Development of a novel methodology design for the
CMAC & validation through proper simulations.

3) Implementation of the system on an FPGA board &
validation through a real-life application.

These three phases have implied the acquisition and
further development of the following knowledge, abilities
and skills:

• Programming skills for high level codes such as Mat-
lab and C, to initially replicate the original CMAC978-1-4673-8584-8/16/$31.00 c©2013 IEEE

model, simulate it and validate it against reported
work.

• RTL modelling abilites to propagate the high level
CMAC into a synthesizable hardware model; in-
cluding extra processes in the testbench for data
extraction for validation.

• Knowledge on FPGA boards through the manu-
facturer’s documentation, manuals and tutorials to
implement the hardware model and extract relevant
data.

• Creativity in devising a series of applications after
reviewing additional manufacturer’s documentation
on the peripherals available on the board.

Through the assessment and guidance provided on a
weekly basis by the project’s supervisors, the concurrent
project flow outlining its milestones shown in Fig. 1
emerged.

Fig. 1: Concurrent flow for the MSc project.

II. PHASE I: LITERATURE REVIEW & TRADEOFF
ANALYSIS

To carry out the project, a given set of previously
published articles were reviewed in detail with an aim
of understanding CMAC principles and the associated
design tradeoffs, Fig. 2 shows a one-dimensional CMAC
block diagram based on the originally proposed by Albus
[19]. It is comprised by a mapping block containing the
hyper-rectangular function, the weight memory block and
arithmetic blocks to compute the sum for the output and
the error times the learning rate to update the weight
memory. The main parameters have been renamed from
Albus’ original work, to better fit McCann’s [20] and
Yang’s [10] proposal in which the total length of the
association vector is: |A| = N + C:

Fig. 2: CMAC block diagram based on Albus’ original
work.

Active association cells C: equivalent to Albus’ A*
Quantization length N : equivalent to Albus’ |A| - A*

The range R of the input S needs to be determined to
set up the CMAC for N to quantize the input into a valid

number of states. Depending on the immediate magnitude
of S, a continuous group of C active association cells will
be placed in the mapping vector. These active association
cells will then map to certain weights in the weight
vector. The minimum input means the active association
cells remain on the bottom portion of the weight vector
pictured in Fig. 2, or the LSB side of a binary vector if
represented by one.

Such mapping process has been originally proposed by
[19] and is shown in TABLE V for the case where N = 3
& C = 2.

TABLE I: Effect of N = 3 & C = 2 on an input S

|A|= N + C
S S/N A0 A1 A2 A3 A4

0 0 1 1 0 0 0
1 0 1 1 0 0 0
2 0 1 1 0 0 0
3 1 0 1 1 0 0
4 1 0 1 1 0 0
5 1 0 1 1 0 0
6 2 0 0 1 1 0
7 2 0 0 1 1 0
8 2 0 0 1 1 0
9 3 0 0 0 1 1

10 3 0 0 0 1 1

N rules on the number of discrete states (N + 1)
regardless of the input range. The larger the input range
is, the larger the discrete states or the size of the steps
become.

The mapped weights in the weight vector are selected
and added up to compute the output of the system.
Learning is achieved in a Gauss-Seidel iterative scheme
[21], learning is performed by evenly distributing the
product of the error and the learning rate to the mapped
weights in each iteration.

The main parameters typically produce tradeoffs be-
tween energy consumption, performance and convergence
rate, which has been reported as follows:

1) Lane et.al. comment on how increasing the quantiza-
tion length results on higher CMAC accuracy [15].

2) Lin and Chiang [21] determined that to guarantee
stability and convergence for a CMAC with no plant,
the learning rate should be kept: 0 ≤ α ≤ 2.
For the case in which the CMAC has a plant, Yang
et.al. developed another criteria [10].

3) Yang et.al. identified that a large amount of active
association cells causes the CMAC to be less accu-
rate [10].

4) Chew et.al. have clarified that their CMAC’s param-
eters for the robot were adjusted by trial-and-error
[9].

TABLE II shows there’s a gap for completely adaptive
CMAC systems for multiple applications. Some systems
are pure simulations or HDL syntheses (rows 1, 3, 4, 7),
while others have been implemented in FPGA and real
systems (rows 2, 6) These limitations were studied and it
was felt necessary to develop an adaptive and application-
tailored CMAC system.

As shown in Fig. 1 the first milestone of the project was
to build a high level behavioural model. During the first
two weeks of the project plan, the high level behavioural
model has been adapted from [20] in MATLAB by
stripping it off of any PID functionality to emulate a

TABLE II: Summary of the existing CMAC systems

Approach Application
adaptive?

Implementation? Features

[9] No Simulation Q-learning
[10] No Real System Solved instability in practi-

cal applications
[11] No Simulation Variable set-up
[18] No Simulation Reduced memory require-

ments
[15] No Theoretical Differentiable
[1], [5] No Real System Differentiable

Improved learning & accu-
racy

[17] No Simulation Differentiable CMAC
Proposed Yes FPGA Adaptive for multiple appli-

cations

classical CMAC. The heuristics of the code are listed in
TABLE III.

Two important figures in the CMAC: convergence rate
and accuracy were measured for three types of periodic
signals.

The measurement takes place for the ranges of C =
{1, 2 . . . 39, 40} and N = {10, 20 . . . 390, 400} and a
unitary learning rate α = 1, the latter has been decided
to prevent the necessity of a floating point operator hence
simplifying future hardware implementation. To increase
the relevance and accuracy of the measured data a phase
sweep is done for each periodic signal from 0◦ to 360◦

and the individual values recorded averaged at the end.
1) Convergence Rate: A neural network converges

when its memory contents remain unaltered for the same
sample in two consecutive learning cycles [21]. The
high level behavioural model compares the difference in
the weight vectors between two consecutive cycles to
determine convergence, it records the cycle for each phase
shift to average it at the end.

2) Accuracy: By deasserting the learning function after
convergence, the CMAC responds only with the informa-
tion already learnt, this depends heavily on N & C. The
recorded value is the absolute average of the individual
errors for each sample in the whole signal cycle.

Heuristics in TABLE IV describe the loops added to
perform such measurements. Two days were devoted to
the analysis and interpretation of the results, the outcomes
are in Fig. 3 for the convergence rate and Fig. 4 for
accuracy.

From Fig. 1, the second milestone was to develop an
HDL block for the CMAC in System Verilog, the standard
in every MSc lecture. Three weeks were devoted to the
creation and validation of the HDL model. CMAC was
split into two separate blocks: the mapping block and the
weight memory block. Parting from [20] in which the

Fig. 3: Convergence rate and its relationship to N & C

TABLE III: Heuristics for the high level behavioural
model

1 Set learning rate
2 Create and initialize mapping and weight vectors sized N + C
3 Determine signal maximum amplitude and resolution
4 FOR each time sample:
5 Compute the input of a periodical function
6 Compute the position of C in mapping vector
7 Compute output as the product of the weight
8 vector and the transpose of the mapping vector
9 Compute the error as the difference
10 between output and input
11 IF the CMAC is in learning mode:
12 Distribute error evenly among C active weights
13 Repeat for next iteration

verilog code made no distinction between each, the split
was intended to reduce the gate count by reducing the
amount and complexity of combinational FOR loops.

The mapping block has been designed as a purely
combinational block which computes the range as the
maximum possible values due to the selected word length.
A combinational FOR is used to initialize the mapping
vector, with a shift left operation << to place the active
association cells C according to the quantization of the
input. The output is the whole association vector, the only
input is the input to the system S. The main portion of
the SystemVerilog code can be seen in TABLE V.

The weight memory block is an active low reset,
active high enable, synchronous block which computes
the output through a combinational FOR loop, adding

Fig. 4: Accuracy and its relationship to N & C

TABLE IV: Heuristics for computing convergence &
accuracy

1 Set learning rate
2 Create and initialize mapping and weight vectors sized N + C
3 Determine signal maximum amplitude and resolution
4 Initialize N
5 FOR every value of N
6 Initialize C
7 FOR every value of C
8 Initialize phase shift ph
9 FOR every value of ph
10 Activate learning mode
11 FOR each time sample:
12 Compute the input of periodical function
13 Compute the position of C in mapping vector
14 Compute output as the product of the weight
15 vector and the transpose of the mapping vector
16 Compute the error as the difference
17 between output and input
18 IF the CMAC is in learning mode:
19 Distribute error evenly among C active weights
20 Repeat for next iteration
21 Increase ph value by 1 until 360
22 IF previous weight vector equal to current
23 Record cycle
24 Exit learning mode
25 IF learning mode off
26 Record absolute average error
27 Increase C value by 1 until 40
28 Increase N value by 10 until 400

TABLE V: Combinatorial mapping

1 always_comb
2 begin
3 Smax = (1<<(ADC-1))-1;
4 //Range is determined by ADC & bit count
5 Smin = -(1<<(ADC-1));
6 //ADC’s work with 2’s complement
7 //a negative semicycle is taken into account
8 range = Smax+((∼Smin)+1);
9 //Total range calculation
10 minstep = range / (N-1);
11 //Minimum shift step depends on N
12
13 for(int i=0;i<((N+C)-1);i++)
14 //FOR to assign active association cells
15 if(i<C)
16 A[i] = 1;
17 else
18 A[i] = 0;
19
20 A = A << ((S-Smin)/minstep);
21 //Final shift to compute output vector
22 end

up each mapped weight. Whenever the learn signal is
asserted it synchronously updates the weight memory
values with another combinational FOR loop with the
error adjust. The inputs are S and the association vector,
the outputs are the computed total, and the error. The
main part of the HDL code can be seen in TABLE VI.

To validate the HDL model it was necessary to add
the following output commands: $fopen selects a file
to read from or write to. $fscanf reads from a file, a
CSV file in this case, storing the read data in a variable.
$fwrite works similarly to $monitor but saving the
information to a CSV file instead of displaying it on
screen.

Given the availability of Synopsys Design Compiler
at the University of Southampton, this tool has been
chosen to perform the synthesis of the block, mapping
it onto the 350nm library also available. Another three
weeks were devoted, this time to research the available
commands in Synopsys DC, discovering that it features
the possibility of command line working and automated
scripting, utilized to perform multiple batch syntheses and
report power consumption and area usage. The main part
of the script used to generate these syntheses is presented
in TABLE VII.

Regarding the range of N values in TABLE VII, the
quantization in the hardware application is accomplished

TABLE VI: Weight block, reset has been omitted

1 always_ff @ (posedge clock, negedge n_reset)
2 for(int i=0;i<(N+C);i++)
3 //Loop to update the weight vector
4 if(enable & learn & A[i])
5 w[i] <= w[i] + d_w;
6 y_out <= y_out_1;
7 //Computed result and error output
8 error <= error_1;
9 end
10
11 always_comb 12 begin 13 y_out_1=’0;
14 error_1=’0;
15 for(int i=0;i<(N+C);i++)
16 //Loop to calculate the output
17 if(enable & A[i])
18 y_out_1=y_out_1+w[i];
19
20 error_1=S+∼y_out_1+1;
21 //Error and weight update calculation
22 d_w=error_1/C;
23 end

by an analogue-to-digital converter (ADC), which is lim-
ited to work on powers of two. Four days were allocated
to analyze the information reported by Design Compiler,
which has been interpreted and presented in Fig. 5 and
Fig. 6.

As per Fig. 1 concurrently to the modelling, a tradeoff
analysis has been devised by analyzing the graphs pre-
sented. The characteristic we are interested the most is
a fixed trend in the main figures, meaning optimization
can be achieved. The three periodic signals are taken into
account in this analysis. The most relevant conclusions
are outlined below:

3) Convergence rate: From Fig. 3 convergence in sine
and multisine signals show no clear trend for values of
C less than 10, therefore C has to be larger than 10.
Also, whenever C is larger than N , convergence in square
signals show a rising trend, therefeore C must be lower
than N .

4) Accuracy: From Fig. 4 accuracy shows to be di-
rectly proportional to N and inversely proportional to
C. However, N values below 100 show a significant
degradation.

5) Power: From Fig. 5 power shows to be directly and
linearly proportional to N as powers of two. However it
is inversely proportional to C as powers of two: the larger
the power of two C is the less power CMAC consumes.

6) Area: From Fig. 6, area shows no relevant influence
from C while showing to be linearly proportional to N
as powers of two.

III. PHASE II: DESIGN OPTIMIZATION
METHODOLOGY

Following the literature survey, a systematic optimiza-
tion flow was devised. The main objective has been
to generate a learning system with minimized energy
consumption, while meeting the application-specific per-
formance and accuracy requirements. Extensive analyses
have been made to develop the optimization methodology
outlined in Fig. 7. The four tradeoffs analyzed, their
relationship to N & C and the suggestions to achieve
an optimizable trend are shown.

TABLE VII: Script for parametric synthesis

1 for {set N 256} {$N < 1025} {set N [expr {$N * 2}] } {
2 for {set C 1} {$C < 40} {set C [expr {$C + 1}] } {
3 #Analyzing the SystemVerilog format of
4 every module of the CMAC
5 analyze -format sverilog $cmac_source
6 analyze -format sverilog {./cmac8_Ferr.sv
7 ./w_mem_Ferr.sv ./map_clk_F.sv}
8
9 #Elaborating the top level
10 elaborate $cmac_top -architecture verilog
11 -library DEFAULT
12
13 #Creating a clock
15 create_clock clock -name clock -period 10
16
17 #This command allows for division
18 set synthetic_library {dw_foundation.sldb}
19
20 #FOR loops to a value less than the clock
21 compile
22
23 #Exporting each of the reports
25 report_power > power_${N}_${C}.rpt
26 report_area > area_${N}_${C}.rpt
27 remove_design -all
28 } }

Fig. 5: Power Consumption for a 350nm CMAC vs N &
C

Fig. 6: Area required for a 350nm CMAC vs N & C

Depending on the particular application for the CMAC
and its specific requirements, the steps below are sug-
gested as guidelines for a successful implementation:

1) Understand the application: The most important
thing is for the student to understand the application and
its priorities, whether it is a wearable technology in need
of optimized power or a critical control loop that requires
high accuracy or even a fast learning system for limited
training data.

2) Develop a high level behavioral model: A high level
behavioural model allows the student to take advantage
of the data extraction and display utilities for analyzing
accuracy and convergence rate. Following Fig. 7 accuracy
is improved by increasing N and decreasing C. Conver-
gence rate is improved by decreasing N and increasing
C.

3) Develop an HDL model: An HDL model can be
created to extract approximate of power consumption and
area usage.

According to Fig. 7 if power needs to be reduced N
can be stepped down a power of two. As for C it can be
stepped up a power of two. For area, a step down of N
to the power of two below, directly reduces the total area
usage.

4) Implement into FPGA: The implementation into an
FPGA depends mostly on the size of the CMAC and the
timing requirements, these data can be properly estimated
from synthesis in the previous step.

Fig. 7: Relationship of main figures with main parameters

IV. PHASE III: IMPLEMENTATION & VALIDATION

The design optimization methodology in Phase II was
implemented on an Altera Ciclone IV FPGA available
in the DE2 evaluation board from Terasic. After the
SystemVerilog HDL files were successfully synthesized
by Quartus II, the student had to create the appropriate file
system to emulate SystemVerilog’s output commands for
CSV files. This was done by thoroughly revieweing the
available documentation from Altera. The whole system
was built up using the graphical system creation tool
Qsys. A softcore processor, the Nios II was instanced
to manage communication with the PC via JTAG-UART.
The final C code was implemented in Eclipse, using the
Nios II SBT. [22]–[24]

Finally, the whole system was programmed into the
FPGA and data was written in and read out. Such data,
presented in Fig. 8 validates the FPGA implemented
CMAC response in black, implicitly validating the HDL
model as well, by comparing it to the high level model
response in magenta against a determined dashed input.
This is done for N = 64 and C = 32, expecting low
accuracy but fast learning or convergence rate.

A. CMAC as an Audio Compressor

One of the applications devised by the student was that
of an audio compressor, thought of to exploit accuracy
tradeoffs and to observe the effects in real signals. Due to
time constraints, the development of such application was
aided by the Altera University Program. The Laboratory
Practice 12: Basic Digital Signal Processing [25] deals
with real time audio input, processing and output by
using the included drivers to configure and interface the
Wolfson WM8731 audio CODEC directly from Quartus
II [26].

CMAC can be understood as a compressor in the sense
that it takes an analogue input and produces two digital
outputs.

1) A weight vector sized [(N +C),1] which at conver-
gence remains constant.

2) An association vector sized [(N+C),1] which varies
in time in accordance to the instantaneous input.

This raises the question of how well could the sound
be reinterpreted once it has been compressed. To answer
this and further extend on the virtues of the CMAC, it
was trained with a sound wave to regenerate it as per
the Heuristics in Fig. VIII. The experiment has been

Fig. 8: Validation of FPGA CMAC against high level
CMAC

TABLE VIII: Heuristics for the compression application

1 A WAV file is recorded with standard PC utilities
2 It is read in with the wavread available in MATLAB 2012b
3 The WAV file is processed into a single column vector
4 The WAV vector is fed into a CMAC until convergence is attained
5 After convergence, learning behaviour is cancelled
6 The WAV vector is fend into the CMAC again
7 The error is accounted as noise in MATLAB’s snr function
8 snr function returns the signal to noise ratio in dB

performed exhaustively for the hardware friendly range
of interest of N & C. From Fig. 9 the SNR of a CMAC
regenerated audio signal is directly proportional to N and
inversely proportional to C.

For the given ranges, the highest signal-to-noise ratio
happens at N = 1024 & C = 1 with a magnitude of
40.8dB. The lowest signal-to-noise ratio happens at N =
8 & C = 39 with a magnitude of 0.7647dB. Fig. 9 shows
that the signal to noise ratio is proportional to N in a
square root scheme and inversely proportional to C.

This validates the assumption that quality, is directly
proportional to N and inversely to C. This application
was further validated by the student by recording his own
voice through the Audio Codec and a microphone into the
FPGA implemented CMAC. Depending on the choice for
N and C the sound quality was perceived ranging from
grainy (low N , high C) to clear (high N , low C), as
expected.

V. EXPERIENCES AND CONCLUSIONS

Carrying out projects with novel insights in limited
times is well known to be challenging. This, together
with the broad range of papers, technical manuals and
other materials that had to be reviewed from scratch, have
represented a personal milestone in the student’s personal
career. Despite the stated challenges, it has been seen
that such projects can be guaranteed to succeed if the
following can be ensured:

a. Students’ aptitude to carry out challenging project(s).
b. Good time and contingency plans.
c. Supervisors’ awareness of the various design and

implementation challenges.
d. Systematic multi-tasking in the project work.
The paper has presented the major outcomes from the

work, highlighting the design tradeoffs studied initially,
developing a systematic optimization methodology, and
prototyping it on an FPGA platform. The outcomes
demonstrate that the envisioned goals were achieved with
the required adaptability and energy efficiency of CMAC
based learning systems.

REFERENCES

[1] C.-M. Chung et al., “Hardware Implementation of CMAC Neural
Network using FPGA Approach,” 2007 International Conference
on Machine Learning and Cybernetics, vol. 4, no. August, pp.
19–22, 2007.

[2] F. Lewis et al., “Multilayer neural-net robot controller with guaran-
teed tracking performance,” Neural Networks, IEEE Transactions
on, vol. 7, no. 2, pp. 388–399, March 1996.

[3] C. Gan and K. Danai, “Model-based recurrent neural network for
modeling nonlinear dynamic systems,” in Control Applications,
1999. Proceedings of the 1999 IEEE International Conference on,
vol. 2, 1999, pp. 1749–1754 vol. 2.

[4] C.-M. Lin and C.-F. Hsu, “Neural-network hybrid control for
antilock braking systems,” Neural Networks, IEEE Transactions
on, vol. 14, no. 2, pp. 351–359, Mar 2003.

Fig. 9: N & fixed C vs SNR in dB for an audio signal

[5] C. Ching-Tsan and L. Chun-Shin, “{CMAC} with general basis
functions,” Neural Networks, vol. 9, no. 7, pp. 1199 – 1211,
1996.

[6] D.Lide, “A century of excellence in measurements, standards,
and technology.” Measurement Science and Technology, vol. 13,
no. 10, p. 1653, 2002.

[7] J. S. Albus, “The NIST Real-time Control System (RCS): An
Application Survey”, Proceedings of the AAAI 1995 Spring
Symposium Series, Stanford University, pp.27-29, 1995.

[8] J. Simpson et al., Automated manufacturing research facility
of the national bureau of standards. Natl. Engineering Lab,
Washington,, DC, USA: SME, 1984.

[9] C.-M. Chew and G. a. Pratt, “Dynamic bipedal walking assisted
by learning,” Robotica, vol. 20, no. 05, 2002.

[10] B. Yang, H. Han, and R. Bao, “An intelligent cmac-pd torque
controller with anti-over-learning schemke for electric load
simulator.” Transactions of the Institute of Measurement and
Control, vol. 38, no. 2, pp. 192 – 200, 2016.

[11] R.-C. Wen et al., “A cmac neural network chip for color
correction,” in Neural Networks, 1994. IEEE World Congress on
Computational Intelligence., 1994 IEEE International Conference
on, vol. 3, Jun 1994, pp. 1943–1948 vol.3.

[12] J.-S. Kerl et al., “Hardware realization of higher-order CMAC
model for color calibration,” Proceedings of ICNN’95 -
International Conference on Neural Networks, vol. 4, pp.
1656–1661, 1995.

[13] Bowsher, David, “Introduction to the anatomy and physiology of
the nervous system.,” 1988.

[14] Albus, James S., “A theory of cerebellar function,” Mathematical
Biosciences, vol. 10, pp. 25–61, 1971.

[15] S. H. Lane et al., “Theory and development of higher-order cmac
neural networks,” Control Systems, IEEE, vol. 12, no. 2, pp.
23–30, April 1992.

[16] C.-t. Chiang and C.-m. Chong, “Hardware Implementation of A
Simple Structure of Addressing Technique for CMAC GBF,”
Electrical Engineering, pp. 139–144, 2005.

[17] M.-F. Yeh and C.-H. Tsai, “Standalone CMAC control system
with online learning ability.” IEEE transactions on systems, man,
and cybernetics. Part B, Cybernetics : a publication of the IEEE
Systems, Man, and Cybernetics Society, vol. 40, no. 1, pp. 43–53,
2010.

[18] J.-s. Ker et al., “Brief Papers,” vol. 8, no. 6, pp. 1545–1556,
1997.

[19] J. Albus, “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),” Journal of Dynamic
Systems, Measurement, and Control, pp. 220–227, 1975.

[20] D. Mccann, “Cerebellar Model Articulation Controller,”
Dissertation, University of Bristol, 2013.

[21] C. S. Lin and C. T. Chiang, “Learning convergence of CMAC
technique.” IEEE transactions on neural networks / a publication
of the IEEE Neural Networks Council, vol. 8, no. 6, pp.
1281–1292, 1997.

[22] A. Corporation, “Introduction to the Altera Qsys System,” pp.
1–33, 2015.

[23] QSYS, “Making qsys components,” pp. 1–36, 2015.
[24] Altera Inc., “Introduction to the Altera Nios II Soft Processor,”

pp. 1–27, 2011.
[25] Altera Inc., “Laboratory Exercise 12 - Basic Digital Signal

Processing,” pp. 1–4, 2015.
[26] Wolfson Electronics, “WM8731 Specifications,” 2004.

