UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

Teaching HW/SW codesign with a Zynq ARM/FPGA
SoC

Balasch, Josep; Beckers, Arthur; Bozilov, Dusan; Sinha Roy, Sujoy; Turan, Furkan;
Verbauwhede, Ingrid

DOI:
10.1109/EWME.2018.8629481

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Balasch, J, Beckers, A, Bozilov, D, Sinha Roy, S, Turan, F & Verbauwhede, |1 2018, Teaching HW/SW codesign
with a Zyng ARM/FPGA SoC. in J Haase (ed.), 2018 12th European Workshop on Microelectronics Education
(EWME 2018). IEEE Computer Society Press, pp. 63-66, 2018 12th European Workshop on Microelectronics
Education (EWME), 24/09/18. https://doi.org/10.1109/EWME.2018.8629481

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Final published version available via DOI: 10.1109/EWME.2018.8629481

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1109/EWME.2018.8629481
https://doi.org/10.1109/EWME.2018.8629481
https://birmingham.elsevierpure.com/en/publications/2085428e-2d50-4db8-8ba8-a68b5d852ece

Teaching HW/SW codesign
with a Zynq ARM/FPGA SoC

Josep Balasch, Arthur Beckers, Dusan BoZzilov, Sujoy Sinha Roy, Furkan Turan, Ingrid Verbauwhede
KU Leuven COSIC
Kasteelpark Arenberg 10 bus 2452
B-3001 Heverlee, Belgium
firstname.lastname @esat.kuleuven.be

Abstract—In this paper we describe a lab session-based
hardware/software (HW/SW) codesign course for implementing
embedded systems. The goals of the course are to teach the fun-
damental concepts of embedded system design, develop hands-on
HW/SW codesign skills, and to show that there are many possible
ways to explore the design space. The reason behind choosing
HW/SW codesign approach is that it brings the best of the two
worlds: the flexibility of SW and the power/energy/computation
efficiency of HW. As an example project, students codesign the
well-known RSA public-key cryptosystem in the Xilinx Zybo
boards that contain a Xilinx 7-series FPGA coupled with an
embedded ARM processing unit. Students are required to explore
the design space, weigh the various alternatives and take design
decisions. Besides, the project cultivates non-technical skills such
as team building and management, sharing of work-load, decision
making, presentation and technical report writing.

I. INTRODUCTION

The Design of Digital Platforms course is a compulsory
module in the Master of Science in Electrical Engineering
programme taught at the Department of Electrical Engineering
(ESAT) from KU Leuven, Belgium. The course takes place
during the first semester and has a workload of 6 ECTS. Its
aim is to give students insight into what a digital platform is
through an overview of the different design steps and impor-
tant design decisions in the development of a digital platform.
It serves as an introduction to the topic of hardware/software
(HW/SW) codesign [1].

The course is split into lectures (2.41 ECTS) and hands-on
sessions (3.59 ECTS). The former give students a theoretical
base to the design of digital integrated circuits. Topics covered
include, among others: abstraction levels, design goal trade-
offs (area, throughput, delay, power, energy, flexibility), con-
trol/data flow graphs or gate level design for low power and for
low energy. The latter consists of a series of project-oriented
sessions where students develop a digital platform that imple-
ments a public-key (PK) cryptographic algorithm. In recent
editions of the course, the final assignment is to implement
encryption/decryption based on the RSA cryptosystem [2].
However, earlier editions targeted alternative constructions
such as Elliptic Curve Cryptography (ECC) [3], [4].

The goal of the project sessions is to experience first-
hand the many options in the HW/SW codesign space by
allowing students to explore different design strategies and
implementation trade-offs. In this context, the selection of a

PK cryptographic application is a suitable target. Its modular
nature enables to arrange assignments that gradually build
on top of each other. Moreover, the complexity of certain
underlying operations stimulates the search of solutions in
the HW/SW design space. In the first half of the sessions,
students develop all necessary arithmetic blocks both in SW
and HW. In the second half of the sessions, they combine
the blocks into a HW/SW codesign according to their own
design strategy. Grading of the project involves evaluating
how the implementation results (in terms of silicon-area,
speed and flexibility) match the original design goals of the
students. Mapping functionalities to the SW side generally
results in slower but smaller designs, while leveraging to the
HW side yields faster but larger solutions. Flexibility can be
incorporated by enabling extra functionalities, for instance,
generic interfaces that allow re-using (parts of) the HW blocks
for other purposes or capabilities for the system to be upgraded
if required (e.g. to larger key lengths or to implementations
with built-in resistance against physical attacks).

In the first editions of the course, the platform used in
the project sessions was a resource-constrained 8-bit micro-
controller (8051-based) connected to an FPGA module (Xilinx
Virtex-4). Software development was done in C and assembly,
while both hardware development and co-design simulation
were done using the GEZEL environment [5]. However, in
2014 a more modern target platform was introduced in the
project: the Zybo Zyng-7000 ARM/FPGA System-on-chip
(SoC) [6]. Equipped with a dual-core 32-bit ARM Cortex-
A9 processor interfaced with a Xilinx 7-series FPGA, the
architecture of this platform offers native support for the
development of codesign projects.

The aim of this paper is to introduce the current format
of the course project after migration to the Zybo platform.
For more details about earlier editions of the course using the
8051+FPGA platform, we refer the reader to [7].

II. PROJECT SESSIONS

Around 50 students take part in the course. Of these,
roughly half come from the Bachelor of Engineering taught at
KU Leuven. The rest are international students from various
countries. This diversity has a positive impact on the teaching,
as the project assignment is carried out in teams of three.
It allows students to work in an international environment

INTRODUCTORY SESSIONS

! SOFTWARE |{ HARDWARE || IDE |
A J

| |

/" IMPLEMENTATION SESSIONS

intermediate
presentation

¢ 1
->i MULTI-PRECISION ARITHMETICLIBRARY i

¥
=r HW/SW INTERFACE i
final ¢ v .
presentation \ | PUBLIC-KEY CRYPTO :/
[FEEDBACK SESSION]

Fig. 1. Project schedule.

with people from different backgrounds, a useful experience
towards their future careers. On the other hand, such diversity
demands to incorporate several introductory sessions to an
already demanding schedule in order to bring all students to
a common technical base.

The complete project consists of 16 sessions of 2.5 hours
each. A high-level view of the schedule is shown in Figure 1.
A description of each block follows.

A. Introductory Sessions

The goal of these sessions is to provide the technical back-
ground necessary to enable the development of the project.
This includes the fundamentals of our selected programming
languages for SW and HW, as well as the inner workings of
the used Integrated Development Environment (IDE)

1) Software: students are given an introduction to the C
programming fundamentals with particular emphasis on data
types and usage of pointers. To this end, they are given a
few warm-up tasks to be completed on the lab PCs. Next,
we move the target platform to the Zybo boards. Due to
the lack of simulation support for this platform, we provide
students with a board and a project template that demonstrates
how to interface over serial port for stdout, e.g. using the
dedicated xil_printf () function. We also show how to
debug code (line-by-line or setting breakpoints), and how to
set watch to variables. Functions to read cycle-counter registers
of the platform are also provided, so that students can measure
execution time and profile the performance of their code.
Lastly, we introduce the basics of big-number representation
necessary to build up a multi-precision arithmetic library.

2) Hardware: we begin by describing logic elements for
combinatorial circuits, memory elements and clocking, re-
spectively, for sequential and synchronous design. We also
introduce the fundamentals of a hardware definition language
(HDL). For this project, we select Verilog as the target HDL
due to its syntax similarities to C. Along with the basics of
Verilog, we also explain datapaths and finite-state machines
(FSM) while highlighting good coding practices, e.g. separa-
tion of control and datapath in the code. Similarly to the SW
sessions, we provide students with a preconfigured project and
let them start with a warm-up task. This task involves several

logic circuits and demands students to identify various design
types and memory elements. Next, we introduce a traffic light
controller task by giving students an exemplary datapath and
FSM from which they can built upon in the next phases of the
project.

3) IDE: throughout the project we use the tools provided
by Xilinx for development with Zynq SoC. SW development
is done in XSDK, while HW development is done in Vivado.
Our department has licenses for these tools. They are installed
in the classroom PCs and even offer remote desktop access.
However, as our project does not make use of advanced
features, it is possible for students to install local copies using
free licenses. Students are given a custom project package
consisting of fundamental code files (in C, ARM ASM and
Verilog), a TCL script and a Makefile. The make targets (i.e.
create, open, clean) make use of the TCL script to construct
both Vivado and XSDK projects from scratch. This method is
useful for reducing the project package size to few kilobytes,
and giving us full control of the project configuration. It
allows us to change the severity of some important warnings
to an error so that the compilation flow is interrupted and
the students are forced to address the issues presented by
these warnings. Our experiences collected in previous years
show us that students often miss paying attention to synthesis
and implementation results, which may hide very important
problems such as latches or multi-driven nets. In such cases,
even though the design works on simulation, it often fails when
programmed to the device. Therefore, we use the TCL scripts
to adjust the severity levels. Demonstration on how to use
the IDE is done through video tutorials prepared with screen
recordings showing the following steps: opening a HW design
in Vivado, simulation, synthesis and implementation, exporting
the bitstream to XSDK, compiling SW, programming the
device and interfacing with it.

B. Implementation Sessions

The implementation sessions represent the bulk of the
project. In a first phase, students develop the necessary build-
ing blocks to enable arithmetic computations (both in SW and
in HW). In a second phase, they tackle the final codesign
assignment by combining their blocks according to their own
design strategy.

1) Multi-precision Arithmetic Libraries: starting with basic
multi-precision arithmetic functionalities, e.g. addition and
subtraction, students are asked to gradually build on them to
enable modular arithmetic operations. The target operation at
this level is modular multiplication. To debug and/or verify
the correctness of all implementations, we provide a python
script that generates random test vectors of all target arithmetic
functionalities.

In the SW sessions, students are given pseudo codes from
Chapter 14 of [8] to implement basic arithmetic. For modular
multiplication, we opt to use the efficient algorithms due
to Montgomery [9]. More specifically, students are asked to
implement one of the algorithms in [10] offering different
memory/computation trade-offs. Lastly, students are motivated

to improve their code using assembly-instruction level opti-
mizations.

In the HW sessions, students start similarly with basic
arithmetic and later target a multiplication module build on
top of it. For these assignments, we set a minimum clock
frequency goal that prevents implementing a single cycle
adder. Therefore, smaller word sizes are used to execute
the addition in multiple cycles. We motivate the students to
find the optimum word size which meets with the timing
goal, while minimizing the number of execution cycles. In
the following sessions, the task is changed to implement the
Montgomery multiplication following single-bit scanning. The
HW tasks are introduced with Verilog template files defining
the modules with preferred IO behavior, which enforces the
implementation of start and done signals. Each module is
associated with a ready-made testbench file which follows the
same IO behavior for simulation.

2) HW/SW Interface: making the HW in FPGA accessible
by the SW running on the ARM cores, requires to build
a suitable interface. The Zynq platform supports only AXI
based interfacing, a sophisticated interface that is hard to get
across entirely. Therefore, we provide a design that introduces
a simplified interface at both SW and HW endpoints, while
uses AXI at the background to transfer data and command
between them. This simplified interface enables two methods
of communication. The first method makes a set of 32-
bit registers available to SW with port-mapping for sending
commands to HW and reading its status. The second enables
bulk data transfers with DMA between the DDR system
memory and block RAM respectively accessible to SW and
HW. Once the interface to HW/SW is made available, students
find means to compare the performance of modular arithmetic
functions in SW and HW. On the Zynq device, optimizing a C
code with Assembly do not always offers great returns without
cleverly handcrafted techniques, since the CPU architecture
and compiler are already advanced. In comparison, execution
on HW is naively faster including the overhead of interfacing;
however, demands significant amount of work for such gains.

3) PK Crypto: the last development task of the project
focuses on a PK crypto application. As students may be
inexperienced with cryptography, we first describe the basics
of cryptography at a very high level by exemplifying their
use in our daily life. Later, we describe the target application
which encrypts and decrypts a message by calculating modular
exponentiation of it with either the encryption or decryption
exponent. For that purpose, Montgomery modular exponenti-
ation [8] is introduced and students are asked to implement it
using their Montgomery multipliers. While implementing the
exponentiation, students prefer either managing the underlying
multiplications with controlling the HW multiplier in SW, or
implement the whole exponentiation scheme in the HW. The
former is obviously easier to implement, favour flexibility and
lower area utilization. The latter cuts-off the communication
overhead and yields to a performance optimized design. The
RSA algorithm favours a small exponent for encryption but
a large one for decryption as it requires better protection.

Therefore, executing the decryption requires more multipli-
cations, making the performance differences become clear in
the comparison of various implementations.

C. Presentation Sessions

We expect students to explain their design and optimization
twice during the semester. The first is the intermediate presen-
tation held after they complete library implementations in SW.
The second is the final presentation which centers upon the
HW/SW codesign. Both are five minute presentations followed
by questions. To urge students evaluate each other, we provide
a list nominating each group to another in a wrap-around
fashion. In addition to presentations, a report is expected which
discusses, among other, design decisions, handling of trade-
offs, implementation results or debug/test strategies.

D. Feedback Session

The goal of this recently introduced session is to provide a
clean end of the project. Its main purpose is to wrap-up the the
project by presenting students a summary of the results of all
teams. We highlight the features and/or optimizations of the
best designs, emphasize on the good coding/debug practices
taught during the course, and discuss other relevant design
criteria (e.g. low power or low energy) which are not in the
scope of the assignment. Additionally, it is also a opportunity
for students to provide feedback on the course so that further
editions can be improved.

III. PROJECT OUTCOME

In this section we present the outcomes of the project.
We provide some notes on the development of soft skills,
summarize the implementation results of the last edition of
the course, and discuss which mechanisms are introduced in
order to prevent plagiarism.

A. Development of Soft Skills

Besides teaching and helping students develop their un-
derstanding of embedded systems, hands-on hardware and
software system design skills, throughout the sessions we
put effort in cultivating non-technical skills such as team
building and management, sharing of work-load according
to the expertise of the members, decision making, project
presentation and technical report writing etc. We encourage
novelty and out-of-the-box thinking during the implementation
of the project. For example, to add a competition among
the project teams, we set three different optimization goals,
namely silicon-area, speed and flexibility and ask the students
that they have to ’sell’ their products to us. This friendly
competition indirectly motivates the students to ’innovate’ and
every year we see innovations such as use of algorithmic
optimization, fast adder structure, pipelining, etc.

B. Implementation Results

The implementation results of the project for the edition
2017 are presented in Figure 2. The plot visualizes where each
codesign implementation sits in the area vs. speed trade-off.

In general, submitted designs can be clustered into two cate-
gories: teams who leverage on the HW for most computations
fall into the top-left corner (green), while teams who keep
functionalities on the SW side, sit into the bottom-right corner
(red). Such results are to be expected: adding HW resources
often results in faster yet larger designs, while SW keeps area
consumption low at a cost of less performance.

30 T T T T T T T T T

G4 601
¢ -
20 1

large FF count

Area (in KFFs + KLUTS)
&
T

{’ _____ = | scanning in SW |
6g3 |
10 1 Ga7 [|
GL5 GQs ~
optimized | ,
interface | constant timing
5T 611 €000 1
A '

. .
0 2 4 6 8 10 12 14 16 18 20
Execution time (in Mcycles)

Fig. 2. Project results: area vs. speed trade-off.

Differences within clusters are a product of the various
optimizations carried out by the teams and/or their skills in
coding. In the HW side, for instance, some groups do not
opt for a basic ripple-carry adder. Instead, they explore other
constructions such as carry-select and carry-save adders. The
reasons why some teams fall outside their ‘expected’ cluster
are varied. Looking at the plot, one can see for instance that
G15 achieves in a SW-oriented design a speed comparable to
the HW-oriented designs. In this case, this was the result of
heavy optimizations in the ARM code. Other groups, e.g. GO9,
were significantly slower that the rest of SW-oriented groups.
The reason, however, was that the students opted to modify
their high-level implementation in order to provide security
against timing attacks [11]. Such out-of-the-box thinking is
naturally rewarded during the grading phase.

C. Prevention of Plagiarism

To prevent use of source codes that were developed in
the previous academic years, every year we adapt the project
mildly. For the SW sessions, the selected Montgomery mul-
tiplication algorithm from [10] intentionally changes from
year to year to limit plagiarism. For the codesign assignment,
we leverage on the rich literature of implementing the RSA
algorithm. The RSA algorithm can be implemented in various
ways. For example, in the year 2015, the students were asked
to implement a unified architecture that can compute both
1024 and 2048 bit RSA algorithms. In 2016, the goal of
the project was to explore the design-space by tuning the
width of the adder circuit for implementing the 1024-bit RSA.

Till 2016, the performances of the HW/SW codesign projects
were mostly determined by the hardware as most of the
computation took place in the hardware. The role of the SW
was limited to instructing the HW-based coprocessor. In 2017,
we increased the contribution of the SW by introducing the
Chinese Remainder Theorem (CRT) based RSA decryption.
The HW computed the CRT-based decryption and the SW
computed the relatively cheap encryption.

IV. CONCLUSIONS

In this paper we have presented a HW/SW co-design
project for Design of Digital Platforms course, which aims at
acquainting students with development in both SW and HW.
They experience the development effort in each level, observe
the design challenges, and find out the optimization potentials.
The design tasks gradually building on top of each other allow
them develop insights on how to partition problems, and how
to handle verification and debugging steps. Furthermore, they
are given plenty of freedom, which enable approaching to the
problems diversely and introducing their particular solutions.
Moreover, they acquire soft-skills such as project management,
teamwork and presenting their work.

ACKNOWLEDGMENT

The authors would like to thank Xilinx for providing the
Zybo development kits used in the course through the Xilinx
University Program (XUP). Thanks are extended to former
teaching assistants of the course (Begiil Bilgin and Ruan de
Clercq) for contributing to the development of the project
sessions. This work is supported in part by the the Horizon
2020 research and innovation programme Cathedral ERC
Advanced Grant 695305.

REFERENCES

[1] P. Schaumont, A Practical Introduction to Hardware/Software Codesign.

[2] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203-209, 1987.

[4] V. S. Miller, “Use of Elliptic Curves in Cryptography,” in Advances
in Cryptology - CRYPTO ’85, ser. Lecture Notes in Computer Science,
H. C. Williams, Ed., vol. 218. Springer, 1985, pp. 417-426.

[5] P. Schaumont, “GEZEL: Hardware/Software Codesign Environment,”
http://rijndael.ece.vt.edu/gezel2/, 2010, last visited: July 2018.

[6] Digilent Inc., “Zybo: Zyng-7000 ARM/FPGA SoC Trainer
Board,” https://reference.digilentinc.com/reference/programmable-
logic/zybo/start, 2012, last visited: July 2018.

[71 L. Uhsadel, M. Ullrich, A. Das, D. Karaklajic, J. Balasch, 1. Ver-
bauwhede, and W. Dehaene, “Teaching HW/SW Co-Design With a
Public Key Cryptography Application,” IEEE Trans. Education, vol. 56,
no. 4, pp. 478483, 2013.

[8] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[9] P. L. Montgomery, “Modular multiplication without trial division,”

Mathematics of Computation, vol. 44, pp. 519-521, 1985.

C. K. Koc, T. Acar, and B. S. Kaliski, “Analyzing and comparing

Montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3,

pp. 26-33, 1996.

P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems,” in Advances in Cryptology - CRYPTO

’96, ser. Lecture Notes in Computer Science, N. Koblitz, Ed., vol. 1109.

Springer, 1996, pp. 104-113.

[10]

[11]

