
A practical experience in designing
an OpenFlow controller

Roberto Bifulco, Roberto Canonico
Universita’ degli studi di Napoli “Federico II”
{roberto.bifulco2, roberto.canonico}@unina.it

Marcus Brunner, Peer Hasselmeyer, Faisal Mir
NEC Laboratories Europe

{brunner, faisal.mir, peer.hasselmeyer}@neclab.eu

Abstract—Software Defined Networking (SDN in short) is
reshaping the future of computer networks. By decoupling
control and data planes, SDN technologies allow a more flexible
management of network infrastructures, whose resources may
be operated by means of a well defined programming interface.
Several approaches have been recently proposed to implement
the SDN concept. OpenFlow is maybe the most prominent SDN
component, having been supported by several device vendors.
This paper discusses a practical experience in designing an
OpenFlow controller for a Mobile Cloud Management system.
We present the programming model and the designed abstraction
and discuss the lesson learned.

Index Terms—Software-Defined Networking, OpenFlow con-
troller, scalability, programming model

I. INTRODUCTION

Software Defined Networking (SDN) suggests the sepa-
ration of control and data planes, providing well defined
interfaces among them, in order to enable flexible configura-
bility and programmability of the network. Programmability
is one of the characterizing properties of Software Defined
Networks: the control-plane behavior can be defined writing
“network programs” that manage a set of switches, providing
rich network applications and features. In some way, SDN
is bringing into computer networks the same shift that in
past decades electronic devices had from special purpose
machines, to general purpose ones. With SDN, the current
special purpose network can become a general purpose, hence
programmable, network. Programmability, in a new context
like computer networks, calls for new programming models,
tools and languages. In this sense, to continue with the general
purpose computer metaphor, SDN are still in the “machine
language” phase, where the programming languages are rudi-
mentary, strictly connected to the hardware, and the main part
of network programming is still performed manually, without
the aid of any tool. The potentially increased complexity,
paid to gain in flexibility, can be tamed by using appropriate
abstractions and methodologies, as it happens in the software
engineering field. Methodologies, abstractions and tools have
to address the complexity taking into account, at the same
time, classical networks issues, such as scalability.

OpenFlow is one of the most popular SDN-enabling tech-
nologies. OpenFlow was born as a means to enable network
experiments on campus networks [1], and its first deployments
were actually universities’ networks. Over time, the advantages

of an SDN approach to networks have been explored, leading
to applications of OpenFlow to other environments, such as
enterprise networks, as in the OpenFlow implementation of
the Ethane architecture for network security [2]. More recently,
OpenFlow has been also applied to challenging scenarios like
datacenter networks [3] and wide-area networks [4]. The Open
Networking Foudation [5] (ONF), that is responsible for the
OpenFlow specification, currently involves a number of aca-
demic and industrial partners. An increasing number of device
manufacturers have implemented OpenFlow in their products
and Google recently declared the adoption of OpenFlow in its
networks [6].

This work presents practical experience in developing a
distributed OpenFlow controller for supporting a Mobile Cloud
Computing technology, i.e., Follow-Me Cloud (FMC) [7],
developed at NEC Laboratories Europe. We introduce the
problems we faced in developing the FMC controller and the
solutions we adopted in terms of programming methodology
and abstractions. In particular, we highlight the scalability
issues to be taken into account while developing a controller,
how our design describes the network through an object model
and handles operations to provide scalability and extendability.
The paper is organized as follows: in section II we introduce,
the Follow-Me Cloud technology. In section III we present our
FMC Controller design and in section IV we discuss the lesson
learned. Related works are presented in section V. Finally, we
conclude in section VI.

II. FOLLOW-ME CLOUD

Follow-Me Cloud (FMC) provides mobility features in a
TCP/IP network for both users and services, maintaining all
the ongoing network connections active. FMC is applied to a
TCP/IP network (see fig. 1.a) in which L2 access networks are
connected to an L3 “core” network, that provides connectivity
among them, through OpenFlow switches (OFS). Hence, the
network core is unchanged and totally unaware of FMC. To
provide mobility to a mobile node (MN) that is changing
its access network from an “home” to a “foreign” network,
FMC requires that a new IP address, belonging to the foreign
network, is assigned to MN to work as “locator”. The original
IP address of MN, that belongs to the home network, is still
used by MN itself and by any node that is communicating with
MN, since it works as “identifier”. When a network node (we



Fig. 1. a. FMC example scenario; b. FMC distributed architecture

call such a node correspondent node or CN in short) sends
a packet to MN, it uses the identifier address as destination
address. The OFS connecting the CN’s network (CNet) to the
core network performs an address translation, to substitute the
identifier with the locator address. When the packet reaches
the foreign network, the OFS at the edge of such network
performs a new translation, substituting the locator with the
identifier, in order to deliver the original packet to the MN.

There are several issues to be solved in order to make FMC
usable. In particular, (i) FMC must scale with the number of
users and migrations1, and (ii) must be easily deployable in
traditional networks.

Scalability is provided by a distributed architecture. The
design of the distributed architecture follows the principle
of distributing knowledge to where it is actually needed.
The needed information at a particular network is the iden-
tifier/locator mapping for a given network entity, while the
networks that need to know about this mapping are the
ones that are connected to the core network through the
Home Switch (HS), the Foreign Switch (FS) or Correspondent
Switches (CS). To manage this information and to distribute it
among networks, FMC uses the architecture depicted in Figure
1.b. With respect to the migrating node, the FMC architecture
comprises three different roles: Home Controller (HC) that
controls the network to which the identifier address belongs
to; Foreign Controller (FC) that controls the network to which
the locator address belongs to; Correspondent Controller (CC)
that controls one or more CSes. The architecture is flexible
enough to enable a single controller to play one, two or
all the roles for the same migrating node, e.g., because the
same controller is in charge of managing multiple networks.
This approach also offers the possibility to adapt the number
of controllers used in the network, in order to tackle the
actual network load. Upon MN migration, the HC informs
the FC that MN is moving to the foreign network, so that a
new identifier/locator mapping can be established. During this
process, the HS and the FS are configured accordingly. When
a CN that resides on a correspondent network, that is unaware
of the MN migration, sends a packet to MN, the packet reaches
the home network where it is intercepted by the HC and
redirected to the correct location. Moreover, the HC sends
to the CC the updated identifier/locator mapping information
for MN, so that subsequent packets are early redirected to the

1Scalability of FMC is discussed in [7]

correct location.
To make deployment of FMC in a TCP/IP network as easy

as the placement of OFSes at the edge of L2 access networks,
FMC managed OFSes have to provide traditional switching
functions in addition to FMC ones. E.g., OFSes work as
Learning Switches (LS), i.e., they learn MAC addresses and
associate them with switch ports. When a node migration has
to be handled, the switch extends the packet handling with
FMC functions.

III. CONTROLLER DESIGN

The presented logical architecture has been implemented
as a distributed OpenFlow controller on top of the NOX [8]
OpenFlow Controller Framework (OCF), even if we believe
that all the concepts can be ported to any other OCF. In this
paper, we are are referring to NOX as an OCF, even if its
authors define it as a Network Operating System (NOS) in [8].
NOX provides a set of helper methods and APIs to interact
with OpenFlow switches, while we assume that a NOS should
also provide advanced hardware and programming abstrac-
tions. Moreover, we use the term “OpenFlow controller” to
identify the combination of an OCF with the OF applications
running on top of it.

From a programming perspective, to support FMC opera-
tions, the controller has to provide these features:

1) it should easily become a distributed application if
needed, i.e., different parts of the controller should be
able to be moved to different computing nodes (in a
different network location);

2) it must be extensible, providing the ability to combine
different network functions, even not FMC related;

The raw outcomes of an OpenFlow controller are Flow Table
Entries (FTE) to be installed at switches, and network packets
to be forwarded by switches, both generated in response to
network events and/or in response to high level control opera-
tions. To accomplish such tasks providing the aforementioned
features, efficient models and abstractions must be provided.
In particular, controller design has to provide both a data
model to describe the network and its state, and a control
logic programming model to interact with such data model.
The design phase has to address also the so called non-
functional requirements, e.g., performance and scalability of
the implemented system. Using again the general purpose
computer metaphor, in a general purpose computer the system
behavior depends both on the hardware architecture and on
the software running on top of such architecture, likewise in
OpenFlow, it depends both on the network architecture and on
the control logic implemented by the controller. Understanding
the effects brought by different ways of interacting with the
OpenFlow network is an important step to drive the design
decisions. Hence, during the development of the FMC Open-
Flow controller, we performed a preliminary analysis of the
different dimensions that characterize an OpenFlow controller.
We refer to this dimensions as “Control Logic Dimensions”.



A. Control logic dimensions

In OpenFlow the actual control plane behavior is defined by
the Controller. Given the flexibility of the OpenFlow approach,
we can try to perform an high level classification of the
characteristics of different control logics, identifying coarse-
grained dimensions to classify such applications, the same way
computers’ programs are classified as CPU-bound, I/O bound
and so on.

• Flows Granularity: defines the granularity of the net-
work flows managed by the control logic. The granularity
is defined after the header fields of current data packets.
For example, a flow identified by the solely destination
MAC address is coarse grained, while a flow identified
by the combination of IP addresses and port numbers is
much more fine grained;

• Network Visibility: an OF application may need detailed
network traffic information or links statuses, for, e.g.,
load balancing or route reconfiguration. Depending on
the control logic, the quantity and frequency of switches
status update may vary;

• Network state: network state is related to the information
the control logic has to manage, in order to provide its
functions. Typical examples of network state are routing
tables, end-points identity information, etc.;

• Reactivity: OpenFlow provides a mean to reactively
program switches, through the forwarding of network
packets to the controller. A control plane can range from
being fully reactive, when each OF table entry is installed
in response to a packet coming to the controller, to
proactive, when all entries are installed before network
traffic arrives to the switch.

In designing the FMC controller, some dimensions where
dictated by the mobility technique adopted in FMC, e.g., the
flows granularity. The other dimensions may vary according to
the taken implementation decisions. In particular, in the FMC
implementation, we decided that we can tolerate an increased
network state to maintain at controllers, instead of increasing
the number of OpenFlow messages exchanged to retrieve the
switches’ status. At the same time, we adopted a control logic
as much proactive as possible, i.e., pre-installing FTEs when
it is possible.

B. Hierarchical control

FMC architecture suggests a hierarchical controller orga-
nization. In FMC the hierarchy is mainly related to the
geographic locations, and, in particular, there are two hier-
archical levels. A (i) local level, related to the handling of
the Learning Switch functions and low level FMC mobility
technique operations, and a (ii) global level, that provides
a global view of the network and that coordinates the local
levels to provide FMC functions on a geographic scale.
The two levels differ for both the performed operations and
the processed data. The local level handles OFSes directly,
providing FTEs and handling network events. The global level
task is to coordinate the local levels to provide the required

network functions, i.e., in the FMC case the network addresses
mobility. Hence, the global level is also the place in which the
controller north-bound interface is implemented. The north-
bound interface, in the FMC example, provides methods to,
e.g., define identifier/locator mappings or to request a node
migration2.

C. Data model

The controller is built around an easily accessible view of
the switches, so that advanced functions can be defined using
a common network model. We defined the network model
using an object-oriented (OO in short) approach. The decision
is motivated by the suitability of the OO paradigm for the
description of network devices like OF-switches, and by the
deep understanding of the OO model by programmers, that are
highly involved in the design and management of a Software
Defined Network.

The object-oriented network model is composed of the
following base classes:

• Network: contains a globally unique identifier and a set
of OFSwitch objects. It works mainly as a container for
OFSwitch objects and for network state that is related to
the whole network, i.e., it is part of the global level of
the hierarchy;

• OFSwitch: is the base class used to represent and manage
an OpenFlow switch. It includes both the state of the
switch, that can be used programmatically by controller
functions, and a set of methods used to handle network
events.

The network model is dynamic, OFSwitch objects are added
or removed in response to the connections initiated by corre-
sponding switch devices. The model is dynamic also in the
sense that an OFSwitch object contains information about
the switch current internal state, such as the installed FTEs.
The implementation of the described classes can be tuned
according to the desired impact on the different Control Logic
Dimensions. For example, the OFSwitch can be designed to
cache FTEs installed at the represented switch, but can also
dynamically retrieve the FTEs from the switch, i.e., sending
OpenFlow messages.

D. Scalability

To provide scalability, the controller uses several Controller
nodes to execute the network control logic. At this aim, the
network model is extended to include in each OFSwitch class,
in addition to switch related network state, also the related
control logic. The control logic implemented in an OFSwitch
object can operate only on the switch represented by the
object itself. The network control logic, hence, belongs to
the OFSwitch instances and not to the controller as a whole.
Since each OFSwitch instance contains also all the data related
to the represented switch (as explained in sec. III-C), each
instance can be moved among controller nodes when needed.

2In the current implementation the north-bound interface is implemented
as a REST interface that exchanges JSON serialized data.



Fig. 2. FMC controller architecture and deployment example: network
OFSes are distributed among two OF Controller Nodes. OFSes are managed
through OFSwitch objects. The Network object dispatches events coming from
switches to the correspondent OFSwitch objects, and implements transparent
communication among OFSwitch objects hosted at different controller nodes.

Each controller node contains at least a Network object, that
is in charge of dispatching network events it receives from
controlled switches: each event is forwarded to the corre-
sponding OFSwitch object, that executes proper algorithms
to handle it (See Figure 2). Using this programming model,
distributing the controller application becomes a problem of
partitioning the OFSwitch objects among different controller
nodes. The controller nodes are assumed to be placed in
locations that are near the switches they are controlling (from
the network perspective), in order to reduce the delay of
controller-switch communication. The current FMC controller
implementation takes care also of the distribution of messages
destined to OFSwitch instances, that are used to develop
control algorithms that involve more than one switch, i.e.,
algorithms belonging to the global level of the hierarchy. Such
communications are handled in a way that is transparent to
the programmer, using a “proxy” object in case the OFSwitch
object is located on a different OFC node. The model provides
the programmer with a clear separation of the control decisions
that could be taken at the single switch level (local level), from
the ones that need a broader view of the network (global level).

E. Extensibility

Extensibility is provided using OO paradigm characteristics,
like inheritance (See Figure 3.a). The OFSwitch class can
be extended to provide new or enhanced functions, e.g, by
overriding and extending methods. For example, it is possible
to provide a LearningSwitch implementation, that resembles
classical L2 switches functions, and then, extending this class,
other functions can be added (e.g., the FMCSwitch class
implements the FMC functions). The main issue in providing
extendability through an OO model is the paradigm mismatch
between OO programming and OF switches programming,
since the switches programming is performed by means of
FTEs. Because of this, the OO paradigm is not used to program
the network itself, but to interact with the network devices in

a (hopefully) simplified way.
The final outcomes of the execution of methods from

OFSwitch class and derivatives are a set of FTEs to be
installed on the switch, and a set of packets to be sent by the
switch. The extended classes and methods, hence, are in charge
of providing a set of FTEs and network packets modified
accordingly to the desired result. This process is tricky: the
addition of a FTE can have unexpected effects on the behavior
of the switch, that is defined by the combination of all the
FTEs installed on that switch. Moreover, some packets coming
from a super-class’s methods may not be sent anymore in the
extended function, and so on. We are actually handling a two
levels programming problem:

1) high-level programming is performed by using API pro-
vided by OFSwitch classes and derivates. Programmers
are in charge of defining convenient APIs to allow the
extensions of the functions they are providing in a given
class;

2) low-level programming is performed by means of FTEs
and packets sent through the switch. All the high-level
functions are finally translated in FTEs and packets to
be sent.

Our purpose is to provide extendability in any case, so, also
when the developer of an OFSwitch sub-class is not providing
methods to easily modify its application behavior before the
FTEs and network packets are generated.

To this end, the OFSwitch class provides convenient meth-
ods to perform network events handling. For example, when a
packet is forwarded from a switch to the controller, a packet in
network event is generated. The event is handled by a specific
method in the OFSwitch class, that implements the control
logic to handle the packet, and provides (i) an ordered list
of FTEs to install at switches, and (ii) an ordered list of
network packets that must be sent by the selected switches.
This approach allows for the extension of the OFSwitch class:
a subclass that inherits from the OFSwitch can still use the
methods from the superclass, to get the lists of FTEs and
packets to send, and adjust them according to the extended
control logic.

In addition to this feature, the OFSwitch class provides a
dedicated method to install rules on the corresponding OF-
switch, in order to intercept all the FTE installation requests
(and network packets sending requests) before actually issuing
them at the corresponding switch. Using this approach, it is
possible to introduce some extended logic that, before the
actual switch programming happens.

IV. DISCUSSION

In this section we discuss how the design we made helped
us in developing the FMC distributed controller. As stated
in section III-B, FMC is well suited to use a hierarchical
organization of the control logic, with a good separation
between local and global operations. The Object Oriented
model used to describe switches and networks is particularly
useful at this aim. The Network class, working as a container
for a set of OFSwitch objects, is a good place to implement the



Fig. 3. a. FMC controller object model: the basic OFSwitch class is extended to introduce LearningSwitch functions and, then, it is further extended to
introduce FMC functions. b. FMC controller operations sequence diagram, when an Home Switch receives a packet from a not updated correspondent network:
the Network object contains information about the location of the correspondent node, hance, the related CC can be updated with the identifier/locator mapping
information.

global control logic, while the OFSwitch objects, being closely
related to the network device, are in charge of handling the
local control logic. If necessary it could be possible also to
provide more intermediate levels in the hierarchy, but for our
purposes it was not the case.

Local control logic includes also the handling of local net-
work events, generated by switches, that are actually handled
at corresponding OFSwitch objects. This approach helped in
the distributed controller implementation, since all the local
events are kept local, requiring no interactions among different
Controller nodes. The OFSwitch class (and its sub-classes),
in this context is used both as an aggregation and filtering
point for local network events, that then are passed up in the
hierarchy shaped as “high-level events”. The implementation
of such filtering and aggregation functions , i.e., the shape
of “high-level events“, is tightly coupled to the required
global control logic. E.g., in figure 3.b the event linked to
the reception, at the home network, of a packet destined
to a migrated MN is handled locally by the HC and then
translated into a high-level event, that is implemented through
the call of the set locator addr() method on the (proxy)
of the FMCSwitch object representing the CC. Using OO
inheritance, The OFSwitch class can be extended by a sub-
class that implements the required filtering and aggregation
logic, then, the sub-class is associated with the switches that
require the application of such logic. The final outcome is the
association of different OFSwitch classes to different switches,
according to the control logic we have to implement at such
switches, in an elegant and easy way.

The combination of OFSwitch sub-classes that expose an
interface and network events related to the global control logic,
with the presence of global-level Network objects made the
implementation of the north-bound interface functions straight
forward. The Network object is a good place to expose the
north-bound interface, while the mapping of this interface to

the low level FTEs is made easy using OFSwitch sub-classes,
that translate a set of high-level methods in corresponding
FTEs. Hence, the north-bound interface interacts with OF-
Switch sub-classes instead of having to take care of low-
level FTEs, separating the development of low level FTEs
programming from the development of high-level network
functions.

While OO paradigm is really useful in providing separation
of concerns and scalability, it does not help in providing
extensibility, that still requires a direct handling of FTEs,
i.e., the function that is going to be extended must be well
known by the programmer, to correctly handle the provided
FTEs. Our design helped the extensibility by providing a mean
to manipulate FTEs before they are installed at switches. In
particular, the abilities to intercept FTEs that are going to be
installed and network packets that are going to be sent are
crucial to this end. Moreover, the use of FTEs caching at
OFSwitch objects made the analysis of the actual switches
behavior much easier, simplifying both the network functions
extension and controller debugging.

V. RELATED WORK

The design of an OpenFlow controller, like the design of
any software application, requires the application of languages,
methodologies/abstractions and tools. In this section we pro-
vide an overview of available network languages, models
and abstractions as implemented by OFCs, and tools to aid
OpenFlow controller development.

A. Programming languages

Frenetic [9] is a high-level language based on the functional
programming paradigm, that provides the programmer with
an omniscient, centralized view of the network. A run-time
system, linked to the language, “translates” the high-level
instructions to a set of low-level packet processing rules, and
manages them interacting with network equipment. NetCore



[10] is an evolution of Frenetic, that extends the high-level
language and provides some improvement in the compilation
algorithms and run-time system, trying to speed up the network
performance.

B. Programming Frameworks

Hyperflow [11] provides a Distributed OpenFlow Controller
Framework that separates the network in partitions. Each par-
tition is assigned to a controller instance and all the instances
are synchronized by means of a publish/subscribe mechanism.
In this approach each controller instance runs the same control
logic, while the framework distributes the network events and
OpenFlow messages to the appropriate controller instance.
Hence, HyperFlow provides transparent scalability of the Con-
troller. To provide its features, Hyperflow distributes consis-
tently the network state updates and OpenFlow messages. Onix
[12] defines a Network Information Base (NIB) that is read and
written by the control logic. The NIB is actually distributed
using different strategies defined by the developer, that chooses
the storage system type for the NIB data, according to their
needs in terms of speed, consistency and reliability. All the
synchronizations and operations on the physical network are
performed through the NIB, so, by partitioning the NIB among
several controller instances, it is possible to share the overall
load and distribute responsibilities. A third approach is based
on a service view of the Controller: the control logic is
implemented as a collection of services that collaborate among
them. Each service is able to run on a separate controller
instance, hence, several instances can be used to share the
workload. Clearly this approach requires a careful design of
the control logic, whose implementation as a collection of
services, and the way such services are distributed, dictates
the actual shape of the system [13].

C. Tools

To test the correctness of OpenFlow applications, NICE was
proposed in [14]. NICE is a tool for automatic OpenFlow ap-
plications testing, that combines model checking and concolic
execution to explore the state space of OpenFlow programs
written for the NOX controller platform. In FlowChecker [15]
the aim is to detect OFS misconfigurations. FlowChecker uses
manually built binary decision diagrams to encode OpenFlow
rules and then applies model checking in order to detect
OpenFlow switches misconfigurations.

VI. CONCLUSIONS

Software Defined Networking is a promising paradigm for
future network management, and OpenFlow is emerging as
a successful industry-supported SDN building block. In this
paper we presented the design decisions and the experience
we made in developing a distributed OpenFlow controller for
supporting the Follow-Me Cloud technology. We introduced
a hierarchical view of the control operations, as well as a
network model based on the Object Oriented paradigm. Fur-
thermore we introduced a first coarse-grained classification of
OpenFlow controller behavior in respect to a few parameters,

and explained how the OO paradigm can be exploited to
support both scalability and extendability of the OpenFlow
controller, taking into account the paradigm mismatch among
OO model and the OpenFlow programming model.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” in Proceedings
of the 2007 conference on Applications, technologies, architectures,
and protocols for computer communications, ser. SIGCOMM ’07.
New York, NY, USA: ACM, 2007, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1282380.1282382

[3] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying nox
to the datacenter,” in Proc. of workshop on Hot Topics in Networks
(HotNets-VIII), 2009.

[4] Y. Kanaumi, S. Saito, and E. Kawai, “Toward large-scale programmable
networks: Lessons learned through the operation and management of a
wide-area openflow-based network,” in Network and Service Manage-
ment (CNSM), 2010 International Conference on, oct. 2010, pp. 330
–333.

[5] “Open networking foundation,”
https://www.opennetworking.org/. [Online]. Available:
https://www.opennetworking.org/

[6] Wired - going with the flow: Googles secret switch
to the next wave of networking. [Online]. Avail-
able: http://www.wired.com/wiredenterprise/2012/04/going-with-the-
flow-google/

[7] R. Bifulco, M. Brunner, R. Canonico, P. Hasselmeyer, and F. Mir, “Scal-
ability of a mobile cloud management system,” in Proc. of SIGCOMM
workshop on Mobile Cloud Computing (MCC-2012), 2012.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: a network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011. [Online].
Available: http://doi.acm.org/10.1145/2034574.2034812

[10] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” SIGPLAN
Not., vol. 47, no. 1, pp. 217–230, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2103621.2103685

[11] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, ser. INM/WREN’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 3–3. [Online].
Available: http://dl.acm.org/citation.cfm?id=1863133.1863136

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker,
“Onix: a distributed control platform for large-scale production
networks,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924968

[13] H. Shimonishi, S. Ishii, L. Sun, and Y. Kanaumi, “Architecture, imple-
mentation, and experiments of programmable network using openflow.”
IEICE Transactions, vol. 94-B, no. 10, pp. 2715–2722, 2011.

[14] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A nice
way to test openflow applications,” EPFL Technical Report, Oct. 2011.

[15] E. Al-Shaer and S. Al-Haj, “Flowchecker: configuration analysis and
verification of federated openflow infrastructures,” in Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
ser. SafeConfig ’10. New York, NY, USA: ACM, 2010, pp. 37–44.
[Online]. Available: http://doi.acm.org/10.1145/1866898.1866905


