
OFTEN Testing OpenFlow Networks

Maciej Kuźniar

EPFL

Marco Canini∗

TU Berlin / T-Labs

Dejan Kostić

EPFL

Abstract—Software-defined networking and OpenFlow in
particular enable independent development of network devices
and software that controls them. Such separation of concerns
eases the introduction of new network functionality; however, it
leads to distributed responsibility for bugs. Despite the common
interface, separate development entails the need to test an
integrated network before deployment. In this work-in-progress
paper, we identify the challenges of creating an environment
that simplifies and systematically conducts such tests. We dis-
cuss optimizations required for efficient and reliable OpenFlow
switch black-box testing and present a possible approach to
address other challenges. In our preliminary prototype, we
combine systematic state-space exploration techniques with
real switches execution to explore an integrated network
behavior. Our initial results show that such methods help detect
previously unrevealed inconsistencies in the network.

I. INTRODUCTION

Software-defined networking (SDN) empowers third-party

developers to create control software that tailors the network

behavior to specific applications—a vision currently enabled

by OpenFlow [1], which is de-facto the standard interface

for programmatically managing switches. Like others, we

believe SDN provides the opportunity for defining a more

principled approach to networking than the current state-of-

the-art. However, it is clear that the introduction of greater

programmability, despite its many advantages, raises the risk

of software faults (or simply bugs). This has undesirable

implications for the success of SDN, since developers are

relatively inexperienced, especially in this early stage.

The SDN architecture, still undergoing redefinition and

refinement through the literature [2]–[4], effectively decou-

ples the computation of network state from its distribution.

As such, there are several opportunities for bugs to creep

in. That is, faults may take place in any of the components

across the SDN stack. To start with, the high-level controller

application logic may be buggy. Programming errors may

also affect the SDN platform, that is, a software layer

that isolates the application from low-level details such as

topology discovery, state distribution, fault tolerance, etc.

The software agents running and implementing OpenFlow

on the switches may contain software defects. Additionally,

since SDN enables independent development of network

equipment and its control software, vendors may misinter-

pret the OpenFlow specifications or create implementations

that are not fully compatible and interoperable.

∗Work done while the author was with EPFL.

In an attempt to ensure that network reliability is not

impaired by bugs, researchers have recently started working

on a rapidly-growing set of tools and techniques for de-

bugging and troubleshooting software-defined networks. For

example, our NICE [5] tool finds bugs in controller appli-

cations through systematic testing of application behaviors.

OFTest [6] is the reference suite of functional tests to check

an OpenFlow agent for adherence to protocol specifications.

OFLOPS [7] is a switch performance testing framework.

Finally, HSA [8] and VeriFlow [9] verify that the forwarding

tables satisfy desired network-wide invariants.

Note that these works focus on specific classes of prob-

lems and on a particular layer of the SDN stack. However,

an important aspect that has not received much attention is

that ultimately, it is necessary to test whether all components

of an SDN system work correctly when they are integrated

together. Our inability to formally verify complex systems or

the prohibitive costs associated with such an approach make

integration testing a common best practice. Therefore, for

SDN as for any complex system, testing is a crucial process

to gain confidence about correct intra- and inter-component

behavior.

Testing an integrated network is not alternative but rather

complementary to individual component testing. In partic-

ular, it addresses several shortcomings that are introduced

when testing components separately. For instance, testing

control software in isolation requires using an OpenFlow

switch model, which reduces fidelity [5]. Conversely, testing

a switch for OpenFlow compliance [6] validates the imple-

mentation at the level of individual protocol features but does

not shed light on the cross-feature interactions exercised by

a certain controller application.

Conceptually, testing an integrated network is a straight-

forward process. This form of testing involves setting up

a testbed with deployment-like conditions including wiring

the switches in a meaningful topology, configuring multiple

controllers based on performance and availability require-

ments, etc. Next, by following a testing specification, the

testbed is subjected to several exemplary scenarios while the

system behavior is compared to the desired outcome (which

is expressed in the testing specifications). Unfortunately,

writing testing specifications is a tedious, manual process.

Beside considering scenarios that account for common cases,

one also needs to reason about how to capture corner cases

that arise due to unforeseen delays and event reorderings



in the network. Moreover, the testing process requires a

precise and detailed specification of desired system behavior.

For complex scenarios, specifying correct behavior is often

nontrivial and error-prone.

In this work, we experiment with another approach that

leverages an observation that existing tools for testing

controller applications employ techniques to identify test

case scenarios. Moreover, using such tools already requires

high-level application correctness properties to be specified.

Therefore, we want to explore what is the effort required

to take an existing testing tool (we choose the home-grown

NICE [5]) and extend it to enable testing an SDN system

consisting of one or more controllers and a potentially het-

erogeneous collection of real switches. In doing so, we check

that the system operates without violating a preexisting list

of correctness properties.

NICE uncovers bugs in controller applications by system-

atically exploring the state space of an SDN system. Here,

system refers to the composition of an unmodified OpenFlow

controller with a model of the network environment. While

state-space exploration is essentially a brute-force approach,

NICE makes the process more efficient by augmenting

model checking (the core technique for systematic testing)

with symbolic execution (to automatically derive relevant

test inputs). The network model, which includes switches,

end hosts and a stub replacement of the NOX controller

platform, also contributes to the tool efficiency, though at

the expense of testing fidelity

Our goal is to enable systematic testing of an integrated

OpenFlow network with the ultimate objective of gaining

confidence in whether controllers and real switches work

correctly together in deployment-like settings. The high-

level idea is to systematically exercise behaviors of control

software (as thoroughly as possible), let the controller exe-

cution interact with real switches, and observe whether there

exist any erroneous conditions.

The main challenge we face is the inclusion of real

switches instead of using switch models in the testing

harness. In particular, we need to deal with several low-

level details such as communicating with the switches and

coalescing network state without affecting the representa-

tiveness of the underlying state. In addition, we want to

keep the number of assumptions we make about switch and

controller behaviors to a minimum.

We argue that a possible approach is to create OFTEN: an

OpenFlow Testing Environment. OFTEN is a tool for sys-

tematic testing of integrated OpenFlow networks. Building

upon NICE, it explores possible execution paths of controller

applications and network event orderings. It extends NICE

by enabling communication between the model checker and

real switches. To do so, we construct an environment model

for the switches that is capable of emulating controller,

end hosts and communication channels. We then add the

necessary glue to synchronize the state of the switch model

used in NICE with the state of this dual environment model

surrounding the real switch. The synchronization works by

fetching the flow tables from real switches and by controlling

the timing of network events such as processing packets or

OpenFlow messages. Finally, OFTEN reports both network-

wide correctness issues as well as inconsistencies between

switch models and real switches used for testing.

The rest of the paper is organized as follows. In Section II,

we discuss the challenges that need to be tackled while

creating OFTEN. In Section III, we describe our approach to

testing OpenFlow network components. Section IV presents

preliminary results of our OFTEN prototype. We place our

work in the context of related work in Section V and

Section VI concludes the paper.

II. CHALLENGES

The design and development of any network-wide testing

tool entails a variety of challenges. In addition to usual

requirements such as providing high coverage and being

scalable, there are several domain specific problems that

need to be addressed.

Switch as a black-box: To provide a general solution,

the switches should be treated as black-boxes. We expect

the number of different OpenFlow switches to grow rapidly.

Therefore, the testing process should rely on a common,

standardized interface to minimize the overhead for testing

different network gears. Therefore, switches under test are

expected to expose the interface following the OpenFlow

specification [1]. The specification does not define how the

internal mechanisms are implemented, leaving choice to

vendors. Thus, only the externally visible behavior of the

switch should be checked.

However, the specification does not provide any interface

to fetch a device’s state. Specifically, there is no preexist-

ing way to reliably check whether a switch has finished

processing a test packet. In principle, such a mechanism

exists for message processing on the control channel: the

barrier request message from the controller forces the switch

to process all previous messages before replying with a

barrier response. In practice, for data-plane packets no such

information is available and there are sources [7] suggesting

that the barrier command is not implemented reliably.

Correctness definition: To verify that the system behaves

as desired, one needs to specify the expected behavior

for each test case. Validating network correctness requires

reasoning about correctness at two levels.

First, the network-wide correctness properties need to be

defined and checked to ensure there are no implementation

and/or logic bugs in the controller causing invalid net-

work behavior. Although there are some common properties

that can be predefined (e.g., loop-freedom), preparation of

application-specific ones might be a nontrivial and time-

consuming process. Moreover, it is difficult to define cor-

rectness properties that are never violated even during some



Figure 1: High-level overview of the tool. Combination of

systematic state-space exploration of the whole network

and execution of specific transitions on a real device.

transient conditions.

Second, to improve testing precision and aid in debugging,

low level switch correctness needs to be checked each time it

executes any action. Traditionally a developer specifies when

the test case succeeds and when it fails. However, because

the testing process is automated, the valid response of the

switch (accounting for the current state) to a given input

should be deduced without human interaction. Moreover,

OpenFlow switch behavior may in some cases be nonde-

terministic. Thus, the checking methodology must take this

into account and accept multiple correct outputs.

III. OPENFLOW TESTING ENVIRONMENT

We start by presenting a high-level overview of OFTEN,

our tool for systematic testing of integrated networks.

As mentioned, there are several layers and different parties

that may be responsible for incorrect network behavior in

an OpenFlow network. Thus, we aim to systematically test

interactions between network components before deploy-

ment. To do so, we use a model checker to explore possible

system execution paths and we create a testing harness that

enables us to extend the reach of the model checker to

real OpenFlow switches. Fig. 1 presents an overview of the

OFTEN architecture.

We use the home-grown NICE [5] tool as the engine

driving the testing process. At the core of NICE is a model

checker. NICE views an OpenFlow network as a transition

system. At each state, the system exposes a set of possible

transitions, each of which evolves the system from one state

to another. Model checking systematically explores system

behaviors by exercising possible system executions, that

is, sequences of transitions. To check system correctness,

NICE tests after each transition that predefined correctness

properties hold in the current state.

However, NICE is designed to test controller applications.

Therefore, all system components except for the controller

are replaced by simplified models. Thus, we must employ

additional techniques that enable us to replace the envi-

ronment model with real network devices. In the rest of

this section, we describe the techniques we adopt to create

OFTEN.

(a) topology

(b) test environment setup

Figure 2: Topology of a tested network (a) and a

corresponding test environment setup (b).

First, to make the controller–switch interaction possible,

we associate each switch model in the network environment

with a physical switch. Communication with the switch

happens at the level of network interfaces. The tested device

has to expose data-plane network interfaces to which an

OFTEN test harness running on a testing machine directly

connects. Additionally, the OFTEN test harness contains an

emulated controller that is capable of sending and capturing

OpenFlow messages in a controlled fashion. We connect

all tested switches to this controller. OFTEN supervises the

emulated controller, listens on the aforementioned interfaces,

and injects packets directly to them. Fig. 2 shows a topology

of a tested network (a) and a corresponding testing setup

with OFTEN (b). The test harness emulates end hosts and

is directly connected to both switches.

To increase usability, we minimize the requirements that

the switch must satisfy. The only assumption we make about

the switches is that they are compatible to some extent

with the OpenFlow protocol. This assumption is reason-

able considering that OpenFlow is the functionality we are

testing. The required specification subset is not defined and

depends on what features are used by the controller under

test. However, OFTEN relies on basic, mandatory protocol

features to coordinate the testing process.

Moreover, a model checker needs to be aware of the

state and possible transitions for each component of the

system it is testing. It also needs to execute transitions on

the components in a controlled and organized fashion. A

purposefully designed model provides an easy access to such

data and all features required by a model checker. However,

a real device exposing a narrow interface does not guarantee

such level of external control as the OpenFlow protocol is

not designed with testability in mind.

We choose to check correctness on two levels when testing

with real devices. We decide to rely mostly on user-defined

network-wide correctness properties, but complement them

with a fine-grained comparison of switch outputs. We argue,

that the network administrator is not interested in switch-

level differences unless they significantly affect the network.



Moreover, the OpenFlow specification is at times ambiguous

and allows certain nondeterministic switch behaviors. A low

level comparison of outputs for a model and the real switch

would unnecessarily report such cases and introduce false

positives. Although two switches that temporarily behave

differently lead to an inconsistent network state, the final

result may be correct for both. In our approach, the user

receives a high level report with property violations, and

is warned about differences in switch outputs for the same

input.

Unfortunately, some correctness properties specified in

NICE are too fine grained to be useful in our approach.

They require access to internal components of the switch in

order to, for example, verify if there are no packets that

are permanently left in any buffer. Such properties need

to be redesigned taking into account the assumed interface

of the switch. However, other, higher level properties (e.g.,

detection of lost packets in the network) stay unchanged and

may be reused in OFTEN.

A. Propagating switch state to a model

We now describe how we gather all required state from

switches. A model checker explores a space of system

states based on a system model composed of the controller

applications and models of switches and end hosts. Each

model describes the state and available transitions of its

corresponding component. In particular, a switch is defined

by: (i) content of its flow table, (ii) communication channels

and (iii) available transitions. The switch state kept in the

model has to be consistent with the state of the real device.

Thus, OFTEN synchronizes both states after finishing each

transition affecting the switch.

The first important element of switch state is the flow

table. A switch may be queried for the content of its

flow table using the OpenFlow interface. Thus, getting such

information requires just interpreting the switch response.

Switches use two types of communication channels: one

per port for packets and one for OpenFlow messages. There

is no standard interface used by switches to expose informa-

tion about the content of the buffers used to temporarily store

packets in the switches while processing them. However,

although these buffers are parts of an OpenFlow switch, in

our solution they are included only in the model. OFTEN

sends a packet to the switch immediately before the switch

runs the transition processing the packet. Therefore, the

buffers in the switch are empty after each transition finishes

and we do not have to query the switch for such information.

There are two types of transitions available for a switch:

(i) related to data packets and OpenFlow messages handling,

and (ii) time-related flow table modifications. We consider

only transitions that have externally visible effects. The

transitions that belong to the first group are available only

if there are packets in the corresponding communication

channels. As the communication channels are modeled ex-

ternally to the switch, the availability of the aforementioned

transitions is implied from the model.

The transitions in the second group represent timer-

initiated removal of rules from the flow table. To check in-

terleaving of different time-related events, the model checker

explicitly forces the timer event as one of the available

transitions. Therefore, the availability of such transitions is

not defined by the switch timers, but by the model itself.

B. Executing atomic transitions

A model checker performs a step of state space explo-

ration by executing one of the transitions enabled in current

state. Therefore, we need to define a set of transitions

and provide mechanisms to execute them. While applying

a transition to a model controlled by the model checker

is straightforward, it is more complex in the context of

OpenFlow switches. An OpenFlow switch is a nonterminat-

ing program that runs continuously, handling internal (e.g.,

timers) and external (e.g., packet arrival) events.

OpenFlow switches run close-sourced, proprietary soft-

ware that is also difficult to modify in case of hardware

switches. Therefore, we assume no access to the source

code and treat switches as black-boxes that satisfy only one

compulsory requirement: providing the OpenFlow interface.

There are two phases (shown in Fig. 3) of the externally

controlled execution of transition in the switch: (i) forcing

a transition to start and (ii) determining when it ends.

Starting packet processing. We need to induce a transition

execution at the right time. In a standard switch mode,

packet handling starts soon after the switch receives a new

packet. Therefore, transitions used in OFTEN are fired by

sending a packet (a data-plane packet or an OpenFlow

message) to the switch. Additionally, the order of handling

packets that arrive in a short time period and are placed in

different queues is nondeterministic. To make this process

deterministic, OFTEN keeps external packet queues in the

network model. When the model checker executes a packet

handling transition, the testing harness sends the first packet

in the queue to the switch. As a result, OFTEN can control

when the transition starts in a real switch. It is safe to

assume that soon after an input is available it is processed

by the switch. That is, we do not expect a situation where

the switch receives a packet and does not process it for

a long time. As we still have no precise guarantees how

much time the processing takes, we have to additionally

determine when it ends. We present our solution in the next

subsection. Additionally, using external queues allows us to

apply transitions simulating network events. Such transitions

include packets reordering, dropping, duplicating and other

events happening in the network.

Determining the end of event processing. As mentioned,

the ability to reliably determine when the black-box device

finished all internal processing related to the provided input



Figure 3: Execution of a handling transition on a real

switch. Sequence of communication and data propaga-

tion events between a switch model and a real switch

supervised by OFTEN.

is a nontrivial problem. The OpenFlow interface does not

provide a way to get such information. The simplest solu-

tion would be to wait for a predefined time interval after

supplying the switch with an input. However, this approach

is not reliable and requires choosing an interval sufficiently

long to minimize the probability of missing any behavior,

which increases the overhead while still offering no certain

guarantees. To solve this problem, we propose a few tech-

niques that depend on an additional assumption about the

switch capabilities. Although according to the OpenFlow

specification [1] a switch is allowed to arbitrarily reorder

processing of control-plane messages, our observations of

existing software and hardware devices show this not to be

the case. Therefore, we assume that events are processed

according to their arrival order at the switch. We also assume

that all packets arriving to the same data-plane port are

processed sequentially. We believe these assumptions are

reasonable since we inject inputs in a controlled fashion and

at a relatively slow pace. Next, we describe the issues that

we tackle in more detail.

• Control-plane message processing: The most reliable solu-

tion is to follow each message with a barrier request. When

a switch receives a barrier message from the controller, it

has to finish processing all earlier messages before sending

back a barrier response. However, this feature is not widely

and reliably supported in hardware switches [7], [10]. As a

workaround, OFTEN injects an additional Packet Out com-

mand containing a well-known packet after each message

from the controller. When we detect this packet, we assume

all processing is finished. Another solution is to follow each

control message with a flow install–flow remove pair and

wait for the flow removed notification.

• Data-plane packet processing: As there is no equivalent to

the barrier request for data-plane packets, we have to provide

a different way to detect when the switch finishes processing

a packet. There is a wide range of possible actions applied

to a packet. It can be dropped, forwarded to one or multiple

ports, or sent to the controller inside a Packet In message.

Therefore, assuming no knowledge of the forwarding state,

it is not possible to know in advance how many packets

should appear as output. Thus, we implement a general

solution based on the assumption that all packets arriving

to the same data-plane port are processed in their arrival

order. We first install two high-priority rules that forward

special well-known packets to a particular port and to the

controller, respectively. Then, OFTEN follows each injected

testing packet with two well-known packets matching the

aforementioned rules. When both are processed (one appears

on the expected port and the other is sent as the Packet In

message to the controller), we assume the original packet

was also handled.

C. Specifying root-causes of problems

Finding a problem in the network without pinpointing the

misbehaving device and conditions of when it happens does

not help administrators and developers sufficiently. To aid in

the debugging process, we take advantage of the diversity

of multiple OpenFlow switch implementations based on the

same specification.

There are two possible correctness properties violation

scenarios when testing a network with OFTEN. First, the

same correctness properties are violated when running with

both model and the real device. Such a result suggests the

controller is the source of the problems and need to be

investigated first. In the second case, there are differences

in correctness properties violated when using a model and

a real device. Then, it is unclear which component should

be blamed. However, in such a situation, testers may run

OFTEN using OpenFlow switches from different vendors.

Then, they compare the detected problems and choose the

most common behavior as a correct one. This approach is

based on the assumption that the same error can be made

by many vendors with a very low probability [11]. Finally,

if the tested device violates correctness properties others

do not violate, this device is probably faulty or does not

support features the controller application expects. On the

other hand, if multiple real devices uncover failures the

model is not able to detect, there is likely a problem with

the controller. Additionally, the model should be fixed as it

does not simulate a real switch correctly. Another hint that a

model is wrong is when it reports problems that real devices

do not detect.

D. Discussion

Approach limitations. The approach we take entails a

few limitations. Some are due to using model checking,

while others are consequences of the level of interaction

with the switches we choose. First, model checking forces

sequential execution of transitions. Therefore, it does not

put tested devices in a high load situation, thus missing

problems that may arise under stress conditions or when

performance bottlenecks are hit. For the same reason, it



is not possible to observe issues related to many events

happening within a short time interval. In fact model check-

ing explores transitions one by one and checks correctness

properties after each transition. Thus, there is a time gap

between each pair of events in the switch. Additionally, such

lack of control over time means that we are not able to

exercise timers. When it is possible OFTEN emulates them

(for example installing persistent flows and then sending

explicit flow remove command instead of relying on timer

induced removal). Finally, as all packets and messages stay

in the network model, the switch buffers are never full.

Thus, OFTEN does not detect issues visible only when many

packets are waiting for processing.

Alternative testbed design. In our design each switch is

directly connected to the testing harness. This way the net-

work needs to be rewired before testing. However, there are

other solutions that improve system scalability for running

with an unmodified network but they introduce additional

time overhead in exchange. In such a design, switches

stay connected to each other on a data-plane level. The

control-plane communication channel is directly connected

to the OFTEN harness. End hosts are also emulated by the

harness. In this setup, each transition on a switch (S) consists

of additional preliminary and cleaning phases. During the

preliminary phase, OFTEN installs the highest priority send-

all-to-the-controller rule at all switches directly connected to

S. As a result, all packets leaving S are captured by OFTEN

testing harness as Packet In messages. To inject a data plane

packet, OFTEN sends a Packet Out message containing this

packet to the correct neighbor of S. After the transition ends,

all rules installed during the preliminary phase are removed.

Communication with the controller stays unchanged.

Desirable switch features. Most challenges that OFTEN

solves are related to the fact that OpenFlow is not designed

with testability in mind. Although, as we show, it is possible

to use features specified by OpenFlow to conduct testing,

the introduction of just a few additional mechanisms can

make the process much simpler. First, like a barrier request

forcing synchronization for control messages, there should

be a similar way to determine when all data-plane packet

buffers are empty and no packets are being processed.

Additionally, switches may expose a standardized interface

to get detailed information about the internal state (e.g., con-

tents of buffers with packets sent to the controller). Finally,

determining when packet processing ends and obtaining the

switch state require sending additional OpenFlow messages.

This could have side effects on the tested OpenFlow agent,

and therefore, should be avoided. As there already is a

management and configuration protocol for OpenFlow [12],

a similar debugging protocol may be introduced that would

define a standardized, but external to OpenFlow, method

for acquiring information useful in troubleshooting a switch.

Such a protocol, supported by switches and specifying all

required features would make testing easier and help to

increase the reliability of OpenFlow networks. We will

consider this direction as part of our future work.

IV. PRELIMINARY RESULTS

Using a preliminary OFTEN prototype, we tested three

real OpenFlow applications that were previously tested with

NICE [5]: a MAC-learning switch, energy-aware traffic

engineering and a server load-balancer. In all cases we

used the OpenFlow reference switch implementation (most

current version as of Apr 2012), OpenVSwitch (version

1.0.0) and an HP ProCurve E5406zl switch with OpenFlow

support (firmware release K.15.05.5001). OFTEN identified

two new issues.

Issue #1. OFTEN reveals one issue in the load-balancer

application that was previously undetected by NICE. Ac-

cording to the new OpenFlow specifications [1], the max-

imum length field of the send-to-controller action always

means the number of bytes to send. On the other hand,

until version 0.8.9, the specification defines zero as a special

value with the semantic of sending the whole packet. The

switch model ignored this field, always sending the whole

packet. When used with real switches, the load-balancer

was losing packets (NoForgottenPackets property violation)

during its reconfiguration phase. Further investigation shows

that the load-balancer, during reconfiguration, installs send-

to-controller rules with maximum length field set to zero

and expects to receive the whole packet. Therefore it is

incompatible with OpenFlow specification versions later

than 0.8.9.

Issue #2. The in-port field of Packet In messages set by

the switch model was incorrect when following the send to

controller action. However, this bug did not affect property

violations for any of the controllers. It was reported as a

warning and led us to improve the switch model.

V. RELATED WORK

Testing OpenFlow switches OFTest [6] is a unified frame-

work used to test correctness of OpenFlow switches. To

provide high coverage, developers need to design a large

number of test cases each of which targets a specific feature.

Additionally, there are usually tests developed with each

specific OpenFlow switch version provided by its creators.

OFLOPS [7] is a performance testing tool for OpenFlow

switches. It detects problems appearing when the device

is heavily loaded, but is also capable of discovering some

inconsistencies between data-plane and control-plane unde-

tectable in other ways.

Debugging a network Mininet [13] helps in prototyping

the network design. It allows to create a virtual network con-

sisting of a controller and multiple switches on one machine.

However, it does not enable systematic testing nor does

it provide low level correctness properties. The simulation

testbed developed by Google [14] uses a similar approach.

It uses real binaries of both controller and OpenFlow agents



while hardware and network are virtualized. Although it can

run multiple scenarios covering the entire network, it does

not target such a fine-grained systematic scenario exploration

as OFTEN.

There are also tools that aid in debugging a deployed

OpenFlow network. Such an approach accepts that bugs

affect the running network, while OFTEN detects them

before deployment. OFRewind [15] records traces of events

in a running network. When the network operators realize

incorrect behavior, OFRewind helps to locate its root cause

by replaying filtered traces. NDB [16] is a similar debugging

tool working on a finer granularity level.

VeriFlow [9] also works in a deployed network, but it

detects violations of safety properties upon rule modification

messages issued by the controller, preventing the update

from affecting the network.

Violations of basic network-wide properties may be de-

tected using the static data-plane configuration analysis tech-

nique proposed in [8]. Depending on the size and complexity

of the network this may be either an online or offline tool.

VI. CONCLUSION AND FUTURE WORK

Despite the detailed specification and assumed separation

of concerns in OpenFlow networks, the behavior of an

integrated network might still be unexpected. In this paper

we argued for the necessity of having a network-wide testing

tool for OpenFlow. We identified the challenges that have to

be addressed when creating such a tool, and proposed the

initial approach for tackling them. We developed a prototype

of the tool that approaches the problem from one point of

view, and concentrates on systematic testing that achieves

high state-space coverage. We plan to further develop and

improve the tool to utilize other techniques suitable in

different scenarios.

OpenFlow is an emerging technology, which gives its

designers an opportunity to consider testability as one of the

key requirements. Our discussion shows that some problems

may be easily solved by including appropriate features in the

switch specification.

ACKNOWLEDGMENT

We are grateful to Jennifer Rexford for useful discussions

and comments on earlier drafts of this work. The research

leading to these results has received funding from the

European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC

grant agreement 259110.

REFERENCES

[1] “OpenFlow Switch Specification,” http://openflow.org/
documents/openflow-spec-v1.1.0.pdf.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: Enabling Innovation in Campus Networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, pp. 69–74, March 2008.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker, “NOX: Towards an Operating System
for Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 105–110, July 2008.

[4] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama
et al., “Onix: A Distributed Control Platform for Large-scale
Production Networks,” OSDI, 2010.

[5] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford,
“A NICE Way to Test OpenFlow Applications,” in NSDI,
2012.

[6] “OFTest,” http://oftest.openflowhub.org.

[7] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore, “OFLOPS: An Open Framework for OpenFlow
Switch Evaluation,” in PAM, 2012.

[8] P. Kazemian, G. Varghese, and N. McKeown, “Header Space
Analysis: Static Checking For Networks,” in NSDI, 2012.

[9] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Ver-
iFlow: Verifying Network-Wide Invariants in Real Time,” in
HotSDN, 2012.

[10] “HP Switch Software, version 1.15.06.5008, OpenFlow
Supplement,” http://h20000.www2.hp.com/bc/docs/support/
SupportManual/c03170243/c03170243.pdf.

[11] L. Hatton, “N-version design versus one good version,” IEEE
Software, vol. 14, no. 6, pp. 71–76, Nov. 1997.

[12] “OpenFlow Management and Configuration Protocol,”
http://opennetworking.org/images/stories/downloads/
of-config/of-config-1.1.pdf.

[13] B. Lantz, B. Heller, and N. McKeown, “A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks,”
in HotNets, 2010.

[14] “OpenFlow @ Google,” Open Networking Summit 2012.

[15] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,
“OFRewind: Enabling Record and Replay Troubleshooting
for Networks,” in USENIX ATC, 2011.

[16] B. Heller, N. Handigol, V. Jeyakumar, N. McKeown, and
D. Mazieres, “Where is the debugger for my software-defined
network?” in HotSDN, 2012.


