OpenFlow Needs You! A Call for a Discussion About a Cleaner OpenFlow API

Peter Peresini

EPFL EPFL

Abstract—Software defined networks are poised to dra-
matically simplify deployment and management of networks.
OpenFlow, in particular, is becoming popular and starts being
deployed. While the definition of the ‘“northbound” API that
can be used by the new services to interact with an OpenFlow
controller is receiving considerable attention, the traditional,
“southbound”, API that is used to program OpenFlow switches
is far from perfect. In this paper, we analyze the current
OpenFlow API and its usage in several controllers and show
semantic differences between the intended and actual use. Thus,
we argue for making the OpenFlow API clean and simple.
In particular, we propose to mimic the process that exists
in the Python community for deriving changes that result
in a preferably only one, obvious way of performing a task.
Toward this end, we propose three OpenFlow Enhancement
Proposals: i) providing positive acknowledgment, i) informing
the controller about “silent” modifications, and ii) providing
a partial order synchronization primitive.

I. INTRODUCTION

Software defined networks are poised to dramatically sim-
plify deployment and management of networks. OpenFlow,
in particular, is quickly becoming popular and starts being
deployed. One of the reasons for OpenFlow’s success is
the separation of control and data planes. The developers
write network logic that resides in the controller, which
in turn, installs rules in the OpenFlow-enabled switches.
Another reasons for the adoption of this protocol is the
relative simplicity of the OpenFlow API, which effectively
gives programmatic access to the flow tables in the switches.

Programming the network means managing all switches.
Recent work shows the difficulty in getting this ensemble of
switches to perform correctly [6]. For example, the network
forms an asynchronous system in which messages can be
lost or delayed, which can lead to violations of correctness
properties. Thus, writing correct controller logic is a difficult
task.

Once network operators started considering deploying
OpenFlow, they started to formulate a higher-level API,
the so-called northbound API that enables the operator’s
service (application logic) to leverage the OpenFlow’s ease
of deploying new services. The OpenFlow API itself is now
referred to as the southbound API. The definition of the
northbound API has recently received considerable attention.
However, in this paper we argue that the southbound API is
far from perfect and that additional work on it is needed to
make it easier to develop correct controller programs.

Maciej KuzZniar

Dejan Kosti¢
Institute IMDEA Networks

The southbound API itself is part of the OpenFlow spec-
ification. With the rapid advancement of the specification
(three revisions within just over a year), one would think
that seemingly simple task of having a way to install rules
in the switches is now complete. Unfortunately, that is not
the case. We analyze the current OpenFlow API and its usage
in several controllers. Our analysis of the API use reveals
semantic differences between the intended and actual use.
In particular, we: i) identify issues related to OpenFlow
Barrier command, i) discuss the impact of missing
responses from switches after receiving control messages,
and 44) discuss silent modifications and current changes.

Existing work also shows that there exists room for
different interpretation of the specification, which leads to
inconsistent behavior of switches in response to the control
messages from the controller [9], [10]. Moreover, a large
number of features was added to the specification (currently
around hundred pages long), which diminishes the chances
of getting each of the features implemented correctly.

In this paper, we argue for the importance of the simple
and clean OpenFlow API. Toward this end, we propose
adjustments to avoid using software “anti-patterns”. It is
crucial to do make these modifications to the API, because
OpenFlow is in early stages of development and many
changes and improvements are still possible. If we let
developers get used to the anti-patterns and switch vendors
to build switches accordingly, we will be stuck with these
for the foreseeable future. One only needs to look at the
lamentation at the Internet ossification to see what happens
when it becomes difficult to change a set of protocols.

We propose to mimic the process that exists elsewhere,
for example in the Python community. There, the develop-
ers propose new features and cleanups in PEPs - Python
Enhancement Proposals. The proposals are accepted after
they are carefully evaluated if they are a) useful, and b)
consistent with the rest of the language, and c) there is only
one obvious way to do it. In particular, we propose three
OpenFlow Enhancement Proposals (OFEPs): i) providing
positive acknowledgment, 7) informing the controller about
“silent” modifications, and #i¢) providing a partial order
synchronization primitive.

The remainder of the paper is organized as follows. We
analyze the use of the OpenFlow API in Section II, discuss
community-involved improvements to it in III. Section IV
contains the related work, and we conclude in Section V.



II. MOTIVATION — OPENFLOW API USE ANALYSIS

We motivate our paper by observing that some OpenFlow
API uses we came across do not match use cases envisioned
by the API designers. In this section we look at some of
these (mis)uses and discuss why these are real problems
that should be addressed at the API level. Note that some
of the problems that we discuss overlap.

A. Case I - Barrier as OpenFlow Swiss knife

We start with probably the most pronounced example of

an overused command, and that is the Barrier command.
According to the OpenFlow protocol, a switch can process
commands in any order. However, when a switch receives
a Barrier command, it needs to finish processing all
previously received commands before moving to messages
after the Barrier. Moreover, when finished executing
all operations before the Barrier, the switch sends a
BarrierReply message to inform the controller. We
observe that developers use the Barrier command as a
way to achieve different and unrelated goals. In software
anti-pattern terminology, such behavior would be called “god
object” as it concentrates too many functions into a single
part of the design. The right solution is to separate these use
cases into different API calls.
Barrier to enforce dependencies and order events The
most common usage of barrier is to order the execution of
messages. The envisioned use case is described directly in
the OpenFlow specification [4]:

“If two messages from the controller depend on
each other (e.g. a flow mod add with a following
packet-out to OFPP_TABLE), they must be sepa-
rated by a barrier message.”

Another real use can be found in the POX controller [5]:
After the connection between the switch and the controller
is established, POX resets the switch to a clean state by
clearing all switch tables. To avoid accidental mixing of
this delete message with further controller actions (such as
a proactive controller module installing rules immediately
after receiving SwitchUp event), the controller issues the
Barrier command to enforce the message ordering and
make sure the switch clears its flow tables first.

Barrier as the only way to verify success In the current
OpenFlow API, there is no easy way to test for the absence
of errors as the controller does not receive success notifica-
tions for some commands. As an example, a controller trying
to check whether a particular F1owMod command (typically
used to install new forwarding rules) was successful must
wait for some time and listen for errors. If it receives no
error message associated with the particular request, the
controller may assume that the command succeeded. As a
particular use case, consider a controller issuing multiple
FlowMod commands during a big network reconfiguration
task, or after the controller startup. The controller may want

to monitor the progress of rule installations and the only way
to achieve this goal is to issue barrier commands. Depending
on the granularity at which the barriers are sent (i.e., after
each FlowMod or just after all F1owMods), the controller
either risks performance problems due to serialization, or
it cannot accurately determine the progress. Further, in the
second case the controller verifies if the previous commands
are successful less frequently. This means that the switch
receives larger batches of commands at once, and may keep
installing unnecessary rules despite early errors that may
change the installation policy.

Controller synchronization Traditionally, in the concur-
rent programming, barriers are used to synchronize several
threads before they can continue further. We observe that
OpenFlow programmers can use barriers in a similar way.
The first example of such use is in the [2_multi POX
controller where the controller waits for the flow installations
on all switches on the end-to-end path. Only then it sends
the PacketOut message (instructing the switch to forward
the packet) for a packet that caused the creation of the
aforementioned path. Similarly, consistent network updates
[15] require the controller to wait until the first phase of
two-phase commit ends, and only then the second phase
can start. The next usage example is similar to checking
if a command is successful, albeit with different goal. In
this example, the controller reconfigures a spanning tree by
sending PortMod messages. However, the controller needs
to wait before flooding any packets until all switches confirm
their new configuration. Otherwise, the packets may enter
transient forwarding loops which will hurt the performance
of all other flows.

Are these three uses bad? We start by arguing that
the second case is an apparent API misuse as it forces
developers to reimplement the “success verification in a
clumsy, inefficient and error-prone way. This not only leads
to programs which are hard-to-understand, but also wastes
switch resources forcing them to process an additional
command.

While the first use is very similar to the intended use
case, it contains one important distinction: The programmers
usually need to enforce only partial order — they need
to ensure order of several related messages but it is not
necessary to ensure ordering between unrelated messages.
As an example, consider two concurrent flows, each is-
suing FlowMod + Barrier + PacketOut as in the
OpenFlow specification. By inserting barrier between each
FlowMod and PacketOut, we force the switch to serialize
all these FlowMods. This disables the switch-specific rule
installation optimizations (e.g., batching of TCAM updates,
etc.). Moreover, the solution incurs an additional penalty
for the second FlowMod/PacketOut pair as it needs to
wait till the first command is finished and acknowledged
by the Barrier. Instead, OpenFlow API should enable
programmers to specify real dependencies and enable only



partial ordering of commands.

Finally, we see that in the third use, programmers use
barriers as a notification service. This again hurts the per-
formance of the system because of the unnecessary serial-
ization.

B. Case II - Missing response from the switch

As already pointed out in the previous section, OpenFlow
relies only on the negative acknowledgment (e.g., Open-
Flow switch does not have a way to inform the controller
about success of some events) which we believe is insuf-
ficient. One particular example can be found in the POX
spanning tree module. When the spanning tree needs to
query the switch for the current port configuration, it sends
FeaturesRequest to the switch because the OpenFlow
protocol does not provide any direct command to query
the port configuration. While FeaturesRequest does
the job and returns the port configuration, it does that at a
cost of sending all port configurations in the same message.
Moreover, the FeaturesRequest message is commonly
used only during the switch connection setup and therefore it
may be a point of further interoperability issues (e.g., vendor
not implementing FeaturesRequest in the middle of the
connection).

Similarly to the spanning tree module in POX, controller
platforms which return an answer to the query via north-
bound API must know if the configuration change was
applied correctly before returning the answer. Finally, we
conclude this section by noting that absence of negative
acknowledgment is not equivalent to receiving a positive
acknowledgment. Authors of SOFT [10] show that some-
times switch implementations lack correct error reporting or
silently change requests as discussed in the next section.

C. Case III - Silent modifications and concurrent changes

One of the frequently discussed issues in the NOX/POX
mailing list archives concerns OpenFlow 1.0 switches. Be-
cause of the lack of precise specification, some Open-
Flow switch implementations choose to accept and sani-
tize ambiguous requests. As such, FlowMod request in-
stalling rule “match(ip_src=10.0.0.1)" without including
“match(ethertype=0x800 (IP protocol))” would be sanitized
to match all packets regardless of their ethertype or ip
addresses. While this issue was clarified in the subsequent
versions of the protocol, we believe that silent modifications
might be a real threat to any OpenFlow deployment and not
all cases can be properly caught by the specification. Here
we showcase popular software vs. hardware rule problem.

Vendors currently use their internal knowledge of hard-
ware limitations to place the rules in software or in hard-
ware. This decision is often not very well documented and
developers might spend a lot of time decyphering it from
the experience [13]. As a point of reference, we look at
switch from one of the vendors — the switch does not support

priority field in the hardware and the specification is not
dictating any particular behavior in this case (e.g., should
the switch allow only single value of priority field?).
Thus, instead of failing all F1owMod requests with different
priorities, the switch silently ignores this field.

Moreover, silent modifications are not the only concern. In
particular, while an OpenFlow controller is often presented
as a sole component in control of the switches, there still
may be concurrent access issues. One particular example can
be found in the documentation inside the POX spanning tree
module:

“When the spanning tree adjusts the port flags,

the port config bits we keep in the Connection

become out of date. We don’t want to just set them

locally because an in-flight port status message

could overwrite them. We also might not want to

assume they get set the way we want them.” [11]
Clearly, the authors of the module code were reluctant to
update the port configuration variables directly in the con-
troller because of fear of concurrent updates. In particular,
such updates can stem from ) other controller modules; %)
network operators managing switches via console; iii) other
controllers in the multi-controller scenario; iv) simply port
state changes. In the first case, changing the configuration
variables and sending configuration requests by several con-
current modules may cause race conditions, especially when
some of the configuration requests will fail with an error and
the modules would not be able to clean up the controller
state consistently. In the second and third cases, a blind faith
that the controller configuration did not change will cause
similar race conditions with controller state diverging from
the switch state.

III. IMPROVING THE OPENFLOW API WHILE INVOLVING
THE COMMUNITY

The point we made so far is that the OpenFlow API does
not always provide the right tools to perform given tasks.
Inspired by Python’s success, we believe that the right way
to fix the problems is to engage in a deep and transparent
discussion within the community. In this paper, we argue
that adapting some of Python’s design principles can guide
API design toward a cleaner and simpler API. Specifically,
we will mention two important basic principles:

One obvious way to do it One of the design principles
behind Python programming language is very well captured
in the following citation from The Zen of Python [14]:
“There should be one — and preferably only one —
obvious way to do it.”
In essence, we should have the right tools for the right
job. While easy to write, this principle is hard to realize
in practice and certainly cannot be realized in a single
version of the specification. Instead, the API should evolve
concurrently with the evolution of its use cases as is the case
with the Barrier command.



The Principle of Least Astonishment In programming,
surprises lead to unexpected bugs which are hard to debug.
Developers follow their intuition when using an API so
they tend to be confident that such use is correct and
look for the errors elsewhere. The API therefore should
be consistent, easy to understand and with no corner cases
or race conditions possible. Current OpenFlow API violates
this principle, for example, if the port configuration changes
concurrently to the controller sending PortMod command.

Inspired by Python community PEPs (Python Enhance-
ment Proposals) [17], we recommend publishing OpenFlow
Enhancement Proposals (OFEPs) which will describe all
important aspects of the issue starting from the use cases
and impact analysis, and ending at describing possible
implementations and implications for ASIC vendors. After
such proposals are made, the community should critically
judge and discuss their usability and overall aspect on the
clean and simple API design. After the discussion concludes
with clear, intuitive and practically feasible solution, the
OpenFlow API should be modified accordingly in the next
version. To provide some examples, we created the first few
OFEPs.

A. OFEP-0001 - Positive acknowledgment (Report not only
errors but also successes)

Abstract This OFEP proposes that the switch should
confirm all completed commands, even if there was no error
involved.

Motivation Programmers tend to misuse the Barrier
command to check whether the switch successfully finished
processing of FlowMod commands. To amend this issue,
we propose that OpenFlow protocol specifies that the switch
should always report success/error information about every
command it processes.

Implementation proposal We propose to add new
OFP_ACTION_COMPLETED OpenFlow message holding
the information (i.e., xid, completion time, etc..) about
the completed request. An alternative to introducing new
message is to introduce a new error code E_NO_ERROR.

Pros/Cons While making the API symmetric can greatly
help controller programs with the main focus on consis-
tency, the change may negatively affect high-performance
controllers because of the additional controller-to-switch
bandwidth and processing these responses incur. Here, we
propose two possible improvements:

1) Make success notifications optional, for example by
adding a single-bit flag to the OpenFlow header in-
dicating if the sender is interested in receiving any
success response; and

2) Piggyback notifications on top of other messages (e.g.,
PacketIn).

B. OFEP-0002 - Inform about “silent” modifications

Abstract This OFEP proposes to add detailed feedback
about the action that the switch performed. In particular, if
the switch applied modifications to the request, the controller
should be able to learn about them.

Motivation Many current switch implementations sanitize
requests and may silently change or ignore parts of the
request. Although the specification is getting better at finding
and eliminating these cases, the switch vendors may lack the
full implementation of the specification, or may simply fail
to implement it correctly. Consequently, determining what
the switch really does is hard to debug.

Implementation We propose to extend OFEP-0001 to not
only provide positive acknowledgment, but to include exact
modifications performed to the request. As an example, if
the request is F lowMod, the reply will include the sanitized
match field (i.e.change fields ignored by the hardware to
wildcards). Additionally, we argue that the FlowMod re-
sponse should contain new is_in_hardware field indi-
cating whether the switch installed the flow in a hardware
table or the flow is processed in the software.

Pros/Cons Including the response can greatly help with
debugging of interoperability issues as the controller will
learn about particular switch nuances. The response, how-
ever, creates an additional load on the control channel.
We advocate to use the same mechanism as in OFEP-
0001 to indicate whether the switch should send positive
acknowledgment.

C. OFEP-0003 - Provide partial order synchronization
primitive

Abstract This OFEP proposes to add the possibility of spec-
ifying dependencies between different controller messages.
Motivation Barrier synchronization is important prim-
itive in OpenFlow. Unfortunately, applications that do not
require total order of commands still need to use Barrier
if there is any dependency between messages they issue.
Doing so hurts the performance.

Implementation proposals There are the proposed Open-
Flow API changes:

1) An application should track positive responses (as
per OFEP 0001) and issue command after receiving
confirmation. This proposal does not require changing
the wire protocol but incurs additional delay because
the messages with the dependency cannot be batched
together.

2) Add the dependency field to OpenFlow header. The
switch will be required to postpone processing of the
message until the dependency (identified by an xid
— message identifier) is processed. The exact behavior
needs to be decided. For example, what happens if
there is no message with such xid and/or for how
long the switch needs to retain the xid information.



3) Add new BatchRequest message which encap-
sulates a set of OpenFlow messages. The batch is
executed sequentially until the first error.

Pros/Cons While the change will help to improve the
performance of controllers, its implementation on the switch
side is nontrivial. As a workaround, vendors may decide to
transparently fall back to sequential processing of batches
or treat dependencies as barriers.

D. OFEP-0004 - The controller should be able to learn
about configuration changes

Abstract This OFEP proposes to add a new mechanism for
the controller to learn about the configuration updates.
Motivation The switch configuration may be changed by
itself, other (e.g.master) controller or simply via the operator
console. Subsequently, if the controller is not informed about
these changes, it may diverge from the reality. Thus, accord-
ing to the Principle of Least Astonishment, the controller
should be informed about the configuration changes.
Implementation We propose to add new OpenFlow
OFPT_»_CHANGED message complementing each
of the following messages: OFPT_SET_CONFIG,
OFPT_PORT_MOD, OFPT_TABLE_MOD,
OFPT_METER_MOD. The switch will be required to
send the message each time the configuration changes
(regardless of who initiated the change). Note that it is
possible to extend this proposal by making the reply for
the controller-initiated changes optional as in OFEP-0001.

E. OFEP-0005 - Explicit configuration check

Abstract This OFEP proposes to add a mechanism that
detects and avoids concurrent modifications of the switch
configuration.

Motivation While switch reconfiguration by the controller
might be an infrequent process, there is a high-impact risk
of inconsistencies if the configuration is changed concur-
rently i) by other controllers (in multi-controller mode); %)
through the switch operator console; or iii) by two different
controller modules.

Implementation proposals We propose to check whether
the configuration as known by the controller matches the ex-
pected configuration. We provide two possible alternatives:

1) Expand each configuration message with fields hold-
ing expected values of the old configuration. The
controller then fills the current configuration values
(the expected state of the switch) and the switch will
issue a new error E_STALE_CONF IG if the values do
not match.

2) Expand the configuration message with a version
number. The switch increments the version number
each time the configuration changes. Upon receiving
a configuration request from the controller, the switch
checks the included version number and if the numbers
does not match, the switch reports an error. Otherwise,

the switch updates its state and increments the version
number.

Pros/cons The controller’s view of the switch configuration
would not go out of sync. This, however, adds additional
burden for the controller to maintain the switch state even
if the controller is not interested in it. In the extreme
case, while configuration changes should be rare events,
this proposal will lead to deadlocks if the rate of the
configuration change is faster than the controller response
time. If this is a concern, additional discussion about the
solution will be needed.

F. OFEP-0006 - Check overlap by default

Abstract This OFEP proposes to modify the default behav-
ior of the rule overlap checking.

Motivation Controller bugs may lead to overlapping rules
that will go unnoticed, especially because the checking for
overlaps is not enabled by default. According to the Principle
of the Least Astonishment, this should not be the case.
Implementation Replace the CHECK_OVERLAP flag with
the TGNORE_OVERLAP flag.

IV. RELATED WORK

Perhaps the most related work to the effort in this paper is
the standardization process maintained by Open Networking
Foundation (ONF). What ONF lacks, though, is a real
openness:

“The working and discussion groups are restricted
to ONF member company employees.” [1]

Moreover, while the specification provides “Release notes”
describing all changes between protocol versions, the spec-
ification lacks an explanation why these changes were
proposed and what purpose do they serve. In particular, the
specification does not (and should not) contain all rejected
modification proposals. Instead, we propose a truly open and
transparent solution where the proposals are discussed in
public, and where the decisions are backed up by a rationale
why the proposal was accepted/rejected. A venue that serves
a similar purpose as our OFEPs are OpenFlow discussion
wiki pages [2], [3]. They form a centralized repository
of proposals regarding the future OpenFlow specification
versions as well as short explanations what happened to
older suggestions. However, they lack frequent updates and
do not leave space for open discussion.

Our work is certainly not the first attempt to improve the
OpenFlow protocol API. There are proposals for extending
OpenFlow protocol introducing new functionality like circuit
switching [7], [16]. Others [8] suggest to extend the protocol
by providing hooks for easier debugging. Mogul et al. [12]
consider the issues in implementing an OpenFlow agent that
stem from limited TCAM space and rule installation speed.
Our main goal in this work is to concentrate on making
the protocol itself more intuitive and to bootstrap creation
of a common platform where other proposals for extensions



(circuit switching, debugging, etc.) can be easily discussed
and evaluated by the community.

V. CONCLUSIONS

The main goal of this short paper is to emphasize the
importance of getting the OpenFlow (Southbound) API right
— it should be simple and clear. In particular, we believe
that the API should adhere to clean design principles as
is the Principle of the Least Astonishment (e.g., no nasty
surprises and special cases) and the principle of having the
right tools for the job (e.g., allow controllers to be informed
about the command success instead of inferring it through
some obscure workaround). As such, these principles are not
enough.

What OpenFlow needs is a lot of discussion in the
community (and not restricted only to ONF members) about
the potential uses and problems with the API, as well as a
transparent process of integrating this knowledge into the
APIL. Inspired by Python community and its way of working
with the language, we propose to create a centralized place
for the discussion in a format we tentatively call OFEPs —
OpenFlow Enhancement Proposals.

To start the discussion, we provide here the first few
OFEPs and the rationale behind them. We hope that the com-
munity will notice these proposals, create one centralized
place to store and discuss them, and continue improving and
simplifying the already complex specification — let us jointly
create an elegant API for SDN and not turn OpenFlow into
a spaghetti mix of RFCs as we used to do in the past.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement 259110.

REFERENCES
[1] ONF Discussion Groups. https://www.opennetworking.org/

working-groups/discussion- groups.

[2] OpenFlow 1.2 Proposal. http://www.openflow.org/wk/index.
php/OpenFlow_1_2_proposal.

[3] OpenFlow 1.X Discussion.  http://www.openflow.org/wk/
index.php/Openflow_1.X_Discussion.

(4]

[3]

(6]

[7]

(8]

191

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

OpenFlow  Switch  Specification. https://www.
opennetworking.org/images/stories/downloads/specification/
openflow-spec-v1.3.0.pdf.

POX Controller. http://noxrepo.org.

M. Canini, D. Venzano, P. Peresini, D. Kostié, and J. Rexford.
A NICE Way to Test OpenFlow Applications. In NSDI, 2012.

S. Das. Extensions to openflow protocol in support circuit
switching, 2010. http://www.openflow.org/wk/images/8/81/
OpenFlow_Circuit_Switch_Specification_v0.3.pdf.

N. Handigol, B. Heller, V. Jeyakumar, D. Mazieéres, and
N. McKeown. Where is the Debugger for my Software-
Defined Network? In HotSDN, 2012.

M. KuzZniar, M. Canini, and D. Kosti¢.
OpenFlow Networks. In EWSDN, 2012.

OFTEN Testing

M. Kuzniar, P. PereSini, M. Canini, D. Venzano, and
D. Kostié. A SOFT Way for OpenFlow Switch Interoper-
ability Testing. In CoNEXT, 2012.

J. McCauley. POX Spanning Tree Module. https://github.
com/noxrepo/pox/blob/betta/pox/openflow/spanning_tree.py.

J. C. Mogul, P. Yalag, J. Tourrilhes, R. Mcgeer, S. Banerjee,
T. Connors, and P. Sharma. Api design challenges for open
router platforms on proprietary hardware. In HotNets, 2008.

B. Owens. OpenFlow Switching Performance: Not
All TCAM Is Created Equal. http://packetpushers.net/

openflow-switching-performance-not-all-tcam-is-created-equal/.

T. Peters. The Zen of Python .
peps/pep-0020/.

http://www.python.org/dev/

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for Network Update. In SIGCOMM,
2012.

M. Shirazipour, Y. Zhang, N. Beheshti, G. Lefebvre, and
M. Tatipamula. OpenFlow and Multi-layer Extensions:
Overview and Next Steps. In EWSDN, 2012.

B. Warsaw, J. Hylton, D. Goodger, and N. Coghlan. PEP
Purpose and Guidelines . http://www.python.org/dev/peps/
pep-0001/.



