The QueuePusher: Enabling Queue Management in
OpenFlow

David Palmal, Joao Goncalves!, Bruno Sousa', Luis Cordeiro!,

Paulo Simoes?, Sachin Sharma®, Dimitri Staessens

3

!OneSource, Portugal, ? University of Coimbra, CISUC, Portugal, 3Ghent University, iMinds, Belgium
E-mail: 1{palma, john, bmsousa, cordeiro}@onesource.pt,
2psimoes @dei.uc.pt, ®{sachin.sharma, dimitri.staessens} @intec.ugent.be

Abstract—The evolution of Software-Defined Networking and
the overall acceptance of protocols such as OpenFlow, demon-
strates the added value of decoupling the data plane from the
control plane. Existing SDN Controllers enable the expected
flexibility from such networks by dynamically providing a fine-
grained control of each flow. However, hardware-specific config-
urations, such as the creation of queues or other mechanisms
is out of the scope of these controllers. This work presents an
extension to a well known OpenFlow controller (Floodlight) to
efficiently handle the management of Traffic Control Queues in
OpenFlow switches, resorting to a RESTful northbound interface.
The obtained results demonstrate further possibility of developing
innovative on-demand resource reservation mechanisms in SDN
without adding unbearable overheads.

I. INTRODUCTION

Quality of Service (QoS) assurance in networking is indis-
putably one research topic that has always raised significant
challenges. While many solutions have been proposed for
typical networks, such as DiffServ [1] or IntServ [2], vendor-
specific hardware and management protocols make more com-
plex their overall integration.

An emerging Future Internet technology that introduces a
new networking paradigm is Software Defined Networking
(SDN), such as OpenFlow (OF) [3], which separates the
control plane from the data plane by removing management
software from forwarding equipment such as switches or
routers. This responsibility is now shifted and embedded into
one or more external entities called Controllers.

By using the OpenFlow protocol the enforcing of net-
working rules can be achieved by exchanging OF messages
between the Controllers and the forwarding equipment. This
is done per flow by matching a rule or set of rules, allowing
also to assign a flow to available traffic shaping queues. The
availability of existing network resources can be discovered
through the OF standard protocol messages, however the
configuration of the network components is not foreseen.
In fact, specific OpenFlow Configuration Protocols such as
the OpenFlow Management and Configuration protocol (OF-
CONFIG) [4] or the The Open vSwitch Database Management
Protocol (OVSDB) [5] have been proposed in order to allow
the configuration of parameters and resources such as queues.
However, these protocols are still not available in existing OF
Controllers.

The presented work proposes an implementation of the
OVSDB protocol integrated with the northbound API of one
of the most well known OF Controllers, Floodlight [6]. An
analysis of existing works on the topic of providing QoS in

OpenFlow networks is presented in Section II, followed by
the proposal of the QueuePusher module (Section III), which
enables the dynamic creation of traffic shaping Queues in Open
vSwitch [7]. Finally, considerations about the obtained results
and future thoughts are presented in Section IV.

II. QUALITY OF SERVICE IN OPENFLOW NETWORKS

The study of Quality of Service mechanisms in Software-
defined Networking scenarios has already been addressed by
different authors [8], [9], [10]. However, these works rely
on existing Queues or other reserved resources previously
configured in the forwarding hardware. While this approach
may be considered, it goes against the SDN paradigm and
limits its potential. By relying on previous configurations these
approaches are able to map Flow Entries to a particular queue,
resorting to the enqueue action provided by the OpenFlow pro-
tocol. This is specified since OpenFlow specification 1.0 [3],
which also allows Controllers to query switches about existing
queues.

While QoS can be provided in OpenFlow switches or
routers by configuring priority queues and mapping Flow En-
tries onto these priority queues, to the extent of our knowledge
no available controllers provide a standardized management of
queues and other works resort to virtualized frameworks [11].

For configuring queues, OpenFlow already describes a
central entity, known as the configuration point, responsible for
configuring the queues using the OF-Config or OVSDB proto-
cols. The OF-Config protocol is currently being standardized
by ONF, however, the OVSDB protocol is already standardized
by the Internet Engineering Task Force (IETF). Moreover, the
OVSDB protocol is already implemented in Open vSwitch,
one of the most commonly used OpenFlow switches, reason
why this work focuses on OVSDB.

III. THE QUEUEPUSHER

The required communication for queue configuration, be-
tween an OpenFlow Controller and its corresponding Switches,
is not foreseen in the current implementation of the used Open-
Flow Switch, the Open vSwitch (OVS). Consequently, we have
designed an architecture capable of generating the appropriate
queue configuration messages, following the OVSDB standard
that is present in OVS.

Since OVSDB is not part of existing OF Controllers,
the QueuePusher was created with the intention of providing
an interface to be exposed by the well-known Floodlight
controller, in order to ease the process of queue creation within

Floodlight
REST API QueuePusher
Hook
Remove:
[—Create:
QoS/Queue
removal OVS-DB
No Assembler
Create QoS I
Ovs-DB Create QoS
Assembler 0OVvSs-DB
Assembler
Create Queue Yes I
OVS-DB Queue linker
Assembler Oovs-DB
Assembler

e

‘ Final OVS-DB Assembler ’

!

“ OVS-DB Interface }_

Open vSwitch

Fig. 1. QueuePusher Architecture and Operations

our OF enabled switch. The QueuePusher presents itself as an
extension to Floodlight, as a module per se, rather than as a
standalone application. This approach allows the QueuePusher
to be easily embedded in different Controllers and these
controllers with the ability of handling the entirety of event
processing, avoiding the creation of additional overhead on
the controller communication with the forwarding hardware.

A. Architecture

Presently, our architecture is based on a client/server model
that follows the OVSDB standard, depicted in Figure 1. The
role of the client is played by Floodlight (which, while running
the QueuePusher module, is able to issue messages according
to the OVSDB standard) whereas the server role is played
by an OpenFlow enabled switch that receives the requested
commands and configurations.

Following the guidelines for Floodlight module develop-
ment, the QueuePusher is registered against the controller
and implements the appropriate methods to handle internal
messages originating from it. To provide an interface to third
parties, as other Floodlight modules do, the QueuePusher
provides a comprehensive extension to the existing Floodlight
REST API [6], registering specific addresses from which
different methods can be accessed.

B. Operation and Results

The designed QueuePusher module provides a CRUD
(Create, Read, Update, Delete) API, exposed by Floodlight that
allows external entities to manage Open vSwitch. Whenever
these REST requests are issued, the QueuePusher, with infor-
mation provided by the Floodlight controller, assembles a new
queue-related request and dispatches it to the appropriate OVS

TABLE 1. QUEUE MANAGEMENT PERFORMANCE

[[Average Time for Completion | Standard Deviation

Queue Creation 36,65481481 (ms)

387,5219259 (ms)

3,837278602 (ms)

Queue Deletion 40,1214679 (ms)

enabled switch (according to its Datapath Identifier, DPID),
using the OVSDB protocol. All REST requests are responded
to, providing the inquiring party with meaningful responses
regarding the state and result of their requests.

The overall operations undertaken by the QueuePusher
module are depicted in Figure 1, where it is possible to
understand the architecture and the steps necessary to configure
an OpenFlow Switch.

A preliminary evaluation has demonstrated that this ap-
proach is able to handle a large amount of configuration
requests in a timely fashion. This evaluation consisted in cre-
ating 254 queues simultaneously, which took less than 37ms.
Moreover, the deletion of queues was also tested, revealing
that the consistency checks performed by Open vSwitch are
more time consuming, averaging 388ms for the removal of 254
queues. These results are presented in Table I, for 200 runs.

IV. CONCLUSIONS AND FUTURE WORK

A Queue Management extension to OpenFlow controllers
was defined, supporting the OVSDB standard. The obtained
results reveal the feasibility of the solution and the chosen
paradigm motivates further experiments in additional con-
trollers.

ACKNOWLEDGMENT

This research has received funding from the EU FP7 under
agreement n° 317576 (CityFlow).

REFERENCES

[1] Blake et al., “An architecture for differentiated services,” in IETF RFC
1633, Dec 1998. [Online]. Available: http://tools.ietf.org/html/rfc2475

[2] Braden et al., “Integrated services in the internet architecture: An
overview,” in IETF RFC 1633, June 1994. [Online]. Available:
http://tools.ietf.org/html/rfc1633

[3] Plaff et al., “Openflow switch specication,” Feb 2011. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf

[4] Bansal et al., “Openflow management and configuration protocol,”
Apr 2014. [Online]. Available: https://www.opennetworking.org/sdn-
resources/onf-specifications/openflow-config

[S] Pfaff et al, “The open vswitch database management
protocol,” in [ETF RFC 7047, Dec 2013. [Online]. Available:
http://tools.ietf.org/html/rfc7047

[6] Project Floodlight, “Floodlight,” Jul 2014. [Online]. Available:
http://www.projectfloodlight.org/floodlight/

[71 OpenSource Community, “Open virtual switch,” Jul 2014. [Online].
Available: http://openvswitch.org

[8] Sonkoly et al., “On qos support to ofelia and openflow,” in Software
Defined Networking (EWSDN), 2012 European Workshop on, Oct 2012,
pp. 109-113.

[9] Bueno et al., “An opennaas based sdn framework for dynamic qos
control,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN
for, Nov 2013, pp. 1-7.

[10] Bari et al., “Policycop: An autonomic qos policy enforcement frame-
work for software defined networks,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, Nov 2013, pp. 1-7.

[11] Sonkoly et al., “Openflow virtualization framework with advanced ca-
pabilities,” in Software Defined Networking (EWSDN), 2012 European
Workshop on, Oct 2012, pp. 18-23.

