TeleScope: Flow-Level Video Telemetry using SDN

Yu Wang, Chayut Orapinpatipat, Hassan Habibi Gharakheili, Vijay Sivaraman
Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia
Emails:{yu.wangl @student., c.orapinpatipat@student., h.habibi @, vijay @ }unsw.edu.au

Abstract—Internet Service Providers (ISPs) are struggling to
cope with the growing volume of streaming video traffic in their
network, and the problem will only exacerbate as Virtual Reality
applications proliferate. To classify and manage bandwidth for
video streams, current practise is to either sample traffic for of-
fline analysis or deploy middle-boxes for in-line packet inspection
— such solutions are inaccurate and/or expensive. In this paper
we present Telescope, a low-cost system comprising a commodity
SDN switch and a commodity server, to identify and profile
individual video flows at line-rate. We develop an architecture
that dynamically manages flow-table entries to classify video flows
with minimal mirroring of packets; we prototype our solution
using a Noviflow OpenFlow switch, coupled with the Bro packet
inspection engine and our application on a Ryu controller; lastly,
we validate our solution with real video streams in a campus WiFi
network, and test its scaling to thousands of video flows using a
hardware-based traffic generator. We believe our solution offers
great potential for real-time video classification in an operational
network at very low cost.

I. INTRODUCTION

Internet Service Providers (ISPs) world-wide are facing a
formidable challenge in coping with the volume of video
traffic in their network — streaming video already accounts
for more than half of Internet traffic in most countries; higher
resolutions (HD and UHD) are slated to increase from 53%
in 2015 to over 80% by 2020; and virtual reality (VR) is
predicted to increase 61-fold by 2020 [1]. Over-provisioning
the network is not an option, since the video traffic adapts its
rate to use up any and all available network capacity [2]. ISPs
are therefore feeling the need to get a better understanding
of the video flows traversing their network, so they can
better manage bandwidth sharing amongst video flows without
degrading user quality-of-experience.

Over the past two decades, various network telmetry and
monitoring tools (SNMP [3], NetFlow([4], sFlow[5]]) and spe-
cialized boxes (DPI hardware and software) have been used to
retrieve information of network resources and traffic profiles.
The SNMP mechanism is limited to coarse-grained statistics at
the port-level. NetFlow is a flow analysis technology whereby
aggregated information of IP flows are captured and stored in
a cache and then exported based on active/inactive timeouts.
NetFlow has two fundamental issues: (a) It does not offer a
real-time statistics, since the information of active flows are
available after a delay of minimum one minute, and (b) it is
not scalable, since the data-plane hardware needs to decode
packets, extract information and create entries in the cache,
which is then updated and exported. According to Cisco [6],
NetFlow export at 10,000 flows-per-second causes around 7%
additional CPU utilization. At 65,000 fps, additional CPU uti-

lization jumps to about 22%. sFlow is used for statistical traffic
analysis, since it provides packet and counter sampling to an
external collector. Therefore, the accuracy of sFlow may not be
comparable to NetFlow and depends a lot on selected sampling
rate. On the other hand, specialized monitoring boxes such as
deep packet inspectors hardware (e.g. Sandvine) or software
(e.g. Vedicis) are indeed advanced telemetry tools, since they
process “all” data-plane traffic but require large investments
in the range of $100K - $1m, depending on the speed of
interfaces (i.e. 1G or 10G) and the overall system capacity
and feature set. Further, deep packet inspection approaches
fail if payload is encrypted.

The research community has developed many proposals for
traffic monitoring and identification [7]], [8l], [9], [10], [L11,
[12], [13], using various methods ranging from inspecting few
bytes in the payload, to processing headers or characterizing
the signatures of packets streams. While these methods hold
promise for characterising network traffic, their cost/benefit
trade-offs are not validated, particularly since they largely
use custom (and expensive) hardware for real-time classifi-
cation and often have little flexibility (i.e. data-plane traffic
is statically configured to be analysed in-line or mirrored to
an external engine). We believe that Software Defined Net-
working (SDN) can provide a flexible and low-cost approach
to monitoring video traffic that can be realized using any
vendor equipment supporting standard OpenFlow interfaces.
By dynamically adapting the flow-table rules on the OpenFlow
switch, only one or a few initial packets of a video stream can
be mirrored for analysis, and the stream can be subsequently
characterized based on flow-table counters polled periodically.

In this paper, we present TeleScope, a low-cost SDN-based
telemetry tool that enables ISPs to profile and characterize
video flows in real-time. Our contributions are:

o We develop a “bump-in-the-wire” architecture for char-
acterizing video traffic in terms of end-points, bandwidth,
duration, and resolution. Our method protects data-plane
forwarding performance, is resilient to control plane
failures, and keeps mirror traffic load to a minimum.

o We prototype our solution using off-the-shelf components
including a NoviFlow SDN switch, the Bro packet inspec-
tion engine, and the Ryu SDN controller.

o We validate our solution in a campus WiFi network to
identify video flows from Netflix, Youtube, iView, and
Facebook, and evaluate its scalability to thousands of
flows using a hardware traffic generator from Spirent.

The rest of this paper is organized as follows: describes

prior work on network monitoring solutions, and describes
our solution approach that captures and evaluates flow-level
information. In §IV| we describe our prototype implementation
used to validate our solution, while in and we evaluate
the efficacy and scalability of our system. The paper is

concluded in §VII|

II. RELATED WORK

Traffic classification: The large body of literature about
traffic classification is an evidence of a growing interest from
the research community towards this topic. Surveys of existing
classification techniques have revealed accuracy, computing
cost and scalability problems as major impediments [7]], [8],
[9]. Among widely used approaches; (a) port-based classifiers
have become less reliable since modern sophisticated applica-
tions use non-standard or random port numbers, (b) payload
inspectors come at high cost of processing and fundamentally
fail by encrypted contents, (c) statistical or behavioural clas-
sifiers are fairly light-weight due to their focus of flow-level
information and employ machine learning algorithms to detect
various traffic. Most of existing techniques try to classify all
traffic by application type, we instead focus on those traffic
that contribute to majority of network load. Our TeleScope
instead relies on combination of header-based (i.e. IP header
5-tuple) and behavioural information to detect and monitor
heavy video flows.

SDN-based monitoring: There are several measurement
and monitoring proposals that share our flow-based approach
empowered by SDN [14], [15], [16]], [L7]. OpenSketch [14]]
proposes a clean slate redesign of data plane to support moni-
toring in SDN. This however requires replacement or upgrade
of data-plane which translates into more investment for net-
work operators. Others instead, consider standard OpenFlow-
based approaches for traffic monitoring. For example, PayLess
[15], FlowSense [16] and OpenNetMon [17] insert rules and
collect per-flow counters in response to standard PacketIn
and FlowRemoved messages respectively. PayLess tries to
balance the accuracy of flow-level statistics against the cost
of control-plane overhead, by adjusting the time-out attribute
of rules, based on their counters (i.e. a large byte-count
shortens the time-out). However, we believe that these reac-
tive interactions between the controller and the switch (i.e.
PacketIn and FlowRemoved), impose an expensive cost
to the network operator, since it can cause disruption in data-
plane if the controller or control-plane fails. We therefore
use no Packet In message in our TeleScope architecture for
insertion of rules. Further, per-flow counters are polled by the
controller proactively in adaptive time intervals.

The work in [18] proposes an interactive tool based on
SDN to monitor and visualize the network nodes, links uti-
lization and the state of rules inside each node. The network
administrator can configure the time-out of rules as well as
the frequency of statistics collection. Likewise, our TeleScope
provides the network administrator with an intuitive web-
based user interface, abstracting the state of video traffic.
Network rules in our system are configured and managed

| -TeleScope

DSL

3G

Internet

Cable Gateway

Gateway bump-in-the-wire

SDN switch

Fig. 1. System architecture

automatically by the network controller. The work in [19]]
conducted empirical studies to evaluate the accuracy of flow-
based measurement operations on OpenFlow switches that are
available in the market. Authors found that flow-level counters
are not accurate. Our experiments in §VI|also shows an average
error of less than 1% in byte-counts from a commercial grade
NoviFlow switch.

III. SYSTEM DESIGN AND ARCHITECTURE

We now outline our solution architecture that operates at
the flow-level method to detect, measure and monitor video
traffic in the network. We first outline the major architectural
choices and trade-offs (§III-A)), then describe the operational

scenario ({lII-B)), the traffic analyser (§lII-C), network rules
management (§I1I-D), and the telemetry algorithm and APIs

(§UL-E) .
A. Architectural Choices and Trade-Offs

The aim is to design a video telemetry tool for ISPs at
low cost and in a programmatic way, so that the network
resources are used as efficiently as possible for providing a rich
visibility into video traffic. Unlike other proposals that require
the use of deep packet inspection (DPI) or other techniques for
classifying all network traffic, we advocate the use of dynamic
characterization of heavy-load video traffic at the flow level.
This requires us to inspect headers of only a tiny fraction
of data plane traffic, thereby limiting the processing cost and
network bandwidth overheads. The type of flows that need to
be processed are chosen proactively and can change according
to the video applications. We manage and process flows from
cloud-based software, instead of embedding the processing
unit into the data-plane that requires large investment and is
difficult to maintain. Lastly, thank to our “bump-in-the-wire”
architecture, any latency or failure in the control-plane would
not disrupt the data-plane and network forwarding process
functions independently.

B. Operational Scenario

Fig. [I] shows our system architecture. Each ISP serves its
subscribers over various access technologies (e.g. DSL, 3G,
or Cable) via an access gateway. The Internet gateway offers
the Internet connectivity to the ISP’s network. We propose
an SDN switch is installed as “bump-in-the-wire” on the link
which video monitoring is desired. The SDN-enabled switch
is managed by a controller. We propose a “traffic analyser
that interacts with the SDN controller via northbound APIs. It

issues requests to the SDN controller on which selected flows
are inspected. The controller then programs the bump-in-the-
wire SDN switch with rule(s) to mirror selected traffic flows
toward the traffic analyser. Therefore, the traffic analyser will
be able to actively probe video traffic with specific headers as
well as measuring the load of selected flows. Whenever traffic
analysis is concluded, then traffic mirroring can be stopped by
modifying the pertinent rule(s) inside the SDN switch.

C. Traffic Analyser

The SDN switch is proactively programmed by rules to
mirror traffic (to the traffic analyser) that has certain headers
(e.g. source IP belongs a known address block). Note that ISPs
have a broad visibility into the range of IP addresses that come
from popular content providers to their network subscribers.
Much of the video enters from Content Delivery Networks
(CDNs) such as Akamai, to which the ISP network connects
either at public or private peering points; some fraction of
video, that is not distributed via CDNs or for which a replica is
currently not available from the CDNs, is fetched directly from
the source (such as Netflix head-end); lastly, video traffic may
also be handed to the ISP from another ISP (via the network-
to-network interface). When the mirrored traffic comes in to
the traffic analyser, an algorithm is run to inspect the flow
headers, e.g. recording source and destination entities. The
traffic analyser next requests the controller to install rule(s)
corresponding to that video flow. This reactive rule ensures that
no more data-plane traffic is forwarded to the traffic analyser.
In what follows we describe the rules in more detail and
elaborate on their specific match and action fields.

D. Network Rules Management

We advocate a hybrid (proactive/reactive) management of
network rules inside the SDN switch. Since specific video
traffic is characterized by known packet headers, we propose
to push proactive rules into the SDN switch to make a copy
of certain packets and forward them to the traffic analyser.
Note that these rules will ensure normal forwarding of traffic,
along with sending a “mirror” copy to the traffic analyser.
Note that in our system no Packetln message is generated.
This allows the SDN switch to provide standard forwarding
of data-plane without being affected by the video telemetry
process. Low-priority proactive rules are typically configured
by a zero time-out to persist forever and match source IP in
a specified range. For example, Netflix owns an AS number
2906 that comprises over 130 IP subnets. Thus, having rules
that match source IP address of these subnets would capture
all Netflix traffic transferred in the ISP’s network.

Detection of flows, based on source IP subnets is not
sufficient to provide the network administrator with a fine-
grained telemetry tool. By receiving the first packet of a flow,
the traffic analyser will gain full visibility into the flow (i.e.
source/destination IP address and Layer-4 port number). The
traffic analyser will therefore instruct the controller to install
a pair of higher-priority rules that match 5-tuple header fields.
Since the flow table of the SDN switch has a limited size,

reactive rules are configured with a non-zero idle time-out
(i.e. a reactive rule is removed after a period of inactivity).
This allows the controller to reduce the number of state over
time. Note that reactive rules no longer mirror traffic to the
analyser. This immediately causes the cost of our inspection
process is reduced (we will quantify our processing cost in

V).

E. Telemetry Algorithm and APIs

The primary aim of our TeleScope is to measure, determine
and present an abstract state of video traffic to the network
administrator via a visual and intuitive user interface. When
proactive rules are installed, per-flow statistics (counters and
timers) are queried by the controller, stored in a time-series
database and tracked in real-time from the user interface.
Therefore, we propose a northbound application that operates
on the controller for collection of per-flow usage. Further,
an algorithm is run to determine attributes of a given flow,
i.e. ensuring that it represents a video stream, identifying the
content provider (e.g. Netflix, Youtube, or Facebook) that it
comes from and estimating the resolution at which the video
stream is played (i.e. SD, HD or UHD).

Usage Collection: As reported by other researchers [14],
it is crucial to choose an optimal frequency to collect flow-
level counters from the data-plane. We found that the usage
collection request for all rules causes the switch to return
a multi-part reply (e.g. The Noviflow switch returns usage
statistics of 25 flows per each reply). This imposes a significant
delay to the controller to collect the flow-level usage counter
of all reactive rules, specially with large number of entries
(e.g. over 10000). We therefore choose to use group tables to
collect aggregate counters at a more granular level (i.e. few
seconds) without losing per-flow counters. We instead propose
that a per-flow usage be collected in an adaptive manner. This
means that we adapt the frequency of counters collection based
on the number of reactive rules that are mapped to a group
table in the switch, to balance the controllers workload against
the accuracy of measurement. We group reactive rules based
on their content provider’s identity (e.g. Netflix or YouTube).

Network APIs: We have designed two APIs that are ex-
posed by the northbound application of the controller, namely
(a) [Request] flow insertion and (b) [Query] usage collection.
The RESTful flow insertion API is consumed by the traffic
analyser by a POST method that passes a JSON data including
5-tuple (srcIP, srcPort, dstIP, dstPort, protocol) and the data-
path-ID of the SDN switch. The controller next inserts the
pertinent rule into the flow-table of the switch. The usage
collection API is used via a GET request and returns a JSON
message containing four sections: usage, controllerStats, stats
and flows. The usage section contains aggregated byte counts
each provider (e.g. Netflix, Facebook, etc). The controllerStats
contains metadata of the controller such as version, up-time,
and name. The stats provides the couter of individual flows,
while the flows section only contains the most recent detected
flows.

Bro
traffic analyser

Web Ul QY.)
(ReactJS)

%@;glnfluxoa
oS

Controller +App
Q (

(R))

ssid: "uniwide_sdn” N\

(@)
) &
Campus WiFi ((‘))

network __ /

—~—

NoviSwitch 1248

Fig. 2. TeleScope prototype

IV. PROTOTYPE IMPLEMENTATION

We have implemented a fully functional prototype of our
“TeleScope” system that uses our proposed bump-in-the-wire
architecture and APIs to provide the ISP with a video telemetry
tool. Our system includes an application of the Ryu controller,
and an event handler script of the traffic analyser (Python
Binding for Bro) and web-GUI (React]S) all operated by the
ISP. To emphasize their distinction, each component operates
on a separate virtual machine in our laboratory cloud en-
vironment that is empowered by industrial scale hypervisor
VMware Esxi 6.0. All VMs run Ubuntu server 14.04 LTS and
are allocated by one core of CPU, 4 GB of memory and 32
GB of disks.

Our implementation is currently functional in two settings:
(a) an SDN-enabled campus network (emulating an ISP net-
work) spanning over 4000 WiFi access points (described in
this and the next section), and (b) a point-to-point link over
which an industrial scale traffic generator Spirent feeds traffic
into our set-up. Our implemented design is depicted in Fig. 2]
and http://129.94.5. 46 shows our user-interface live.

SDN switch: Our bump-in-the-wire switch runs on a high
performance programmable switch of Noviflow model 1248,
and as shown in Fig. [2] exposes standard OpenFlow APIs
to the controller and feeds the traffic analyser with selected
mirror traffic.

Network Controller: We used the Ryu (v4.0) OpenFlow
controller for operating the TeleScope, and developed Python
application to implement the algorithm and APIs presented
in (these APIs are exposed via RESTful interfaces to
the traffic analyzer and the user interface, as shown in Fig. |Z[)
Successful API calls result in appropriate actions (e.g. network
rules insertion and counters collection) at the SDN switch
serving data-plane.

Traffic Analyser: We chose an open-source tool, Bro
(v2.4.1) [20] for analysing mirror traffic. We developed scripts
using Python Binding intermediating between the Bro (parsing
5-tuple header information) and the TeleScope application
(calling flow insertion API).

Web Interface: provides the front-end for network admin-
istrators to visualize the state of video traffic in their network,
and is implemented in React]S that uses Rubix template and
D3 library. Snapshots are shown in Fig. 3-5, and we encourage
the reader to see it live at http://129.94.5.46. Upon
clicking on “Demo” button at top-right corner, the administra-
tor sees top five recent video flows, aggregated load of video

Recent Flows

Total Bytes Estimated Rate Duration

Tag Server IP Client IP (MB) (Mbps) (s)
youtube 203.5.76.206 129.94.5.89 7.04 19
facebook 31.13.95.12 129.94.5.87 2.79 32
iView 203.2.218.24 129.94.5.90 40.98 0.70 172
netflix 23.246.29.137 129.94.5.88 70.75 1.59 251

Fig. 3. Recent video flows.

Network Load

Download Bitrate (Mbps)

B 4 3 T
Minutes Ago
= Total = NFLX mYouTube = Facebook

Fig. 4. Load of the network and video traffic.

= Spirent

traffic per each content provider, and total number reactive
flows.

V. VALIDATION IN CAMPUS WIFI NETWORK

We have deployed our “TeleScope” system in a campus
network emulating an ISP access network. A guest SSID was
created and runs in parallel with the regular University WiFi
network, giving us coverage of over 4000 wireless access
points across campus to which any user device can connect
using existing University login credentials. All wireless traffic
is delivered at Noviflow SDN switch (representing the bump-
in-the-wire switch). We run our own DHCP server with a /26
public-IP address block taken from our University, and default
all outgoing traffic into the campus backbone network. Our
controller (Ryu augmented with our TeleScope application)
runs on a VM in our laboratory cloud environment.

We connected four user devices across our university cam-
pus, including two laptops, an Android phone and an iPhone.
For our first set of experiments, we created a scenario with
concurrent access to validate our solution: one laptop is
playing a movie from Netflix (listed at the bottom row in
Fig. [B] with an IP address of 129.94.5.88 and shown by pink
line in Fig. E[), and more than a minute later the user of other
laptop is watching “The World” program on iView (listed at
the second last row in Fig. [8| with an IP address of 129.94.5.90
and shown by green line in Fig.[), and a while later the iPhone
and the Android phone are accessing videos on Facebook
and YouTube respectively (listed on top two rows in Fig. [3).
Note that one laptop is also running a non-video traffic in the
background (captured by black line on top of video lines in
Fig. [).

Fig. [3] shows the abstract information of the most recent
video flows that are classified by the TeleScope, including

TeleScope

GE 28

e e = T}

NoviSwitch 1248

I e S5/1/2

M,

L —
SPIRENT

Fig. 5. Performance evaluation set-up

the identity (i.e. tag) of content providers (e.g. Netflix or
Facebook), IP addresses of client/server, total volume in Mega
Byte, estimated bitrate in Mbps and the duration of each video
stream. The last three columns of this tab are updated every
2 seconds. We also note that the TeleScope starts reporting
of bitrate only 60 seconds after commencement of each video
flow, since streaming video applications typically transfer a
large amount of content during their initial buffering period
(e.g. the first spike in the load of Netflix stream in Fig.). As
it is seen in Fig. [3] (the top two rows), the rate of YouTube and
Facebook video streams have not yet reported, as their duration
(19 and 41 seconds) is less than a minute. The estimated bitrate
is computed using an exponential moving average.

Fig. @] depicts a real-time state of total network load (black
line) as well as aggregated load across each video tag (e.g.
pink line for Netflix) in a 5-minute window. This allows the
network administrator to have an abstract measure of real-time
load contribution from each video provider in their network.

Our web interface also shows the total number of video
streams per each tag at real-time and the quality (resolution)
at which each Netflix video is being played (not included
here due to space constraints). We observed that Netflix
video streams maintain two concurrent TCP sessions. It cycles
through these as the movie plays, making new ones when it
closes off old ones.

The Netflix has provided public information of average
hourly data usage for different video quality. We have used
this reference to identify the resolution of each Netflix video
based on its estimated bitrate. This provides the network
administrator with a distribution of video quality across the
network. The administrator may feed these information into
a policy enforcement tool to shape the traffic profile (e.g.
limiting the rate of UHD video streams during peak hours to
allocate network resources among all users in a fair manner).

VI. SCALING PERFORMANCE EVALUATION

The prior section has shown the usability of our video
telemetry tool; in this section we evaluate the efficacy of
our system by stressing it with a large number of emulated
flows using a traffic generator. We use the Spirent TestCenter
[21], which is a high-precision commercial-grade hardware
traffic generator with sophisticated capabilities for configuring
traffic profiles, synchronising traffic on multiple ports, and
accumulating statistics based on pattern filters. Our Spirent
main chassis SPT-11U (firmware v4.24.1026) is equipped with
a 12-port GE HyperMetric test module. We connected two

Network Load

Download Bitrate (Mbps)
—

B 4 1

3 2
Minutes Ago

mTotal = NFLX =YouTube = Facebook = Spirent

Fig. 6. Network load (11200 flows arrive at the rate of 140 fps)
Flow Statistics
oo //

7,000

6,000
5,000
4,000

Number of Streams

3,000

.

B a

s 2 1
Minutes Ago

= NFLX = YouTube = Facebook = Spirent

Fig. 7. Flow statistics (11200 flows arrive at the rate of 140 fps)

Gigabit ports of the Spirent to two ports of the NoviSwitch ,
as depicted in Fig. B] In our experiment, port GE5/1/1 of the
Spirent was representative of video servers and Gigabit port
26 on the NoviSwitch was typically the ingress port, while
port 28 was the egress feeding back to the Spirent. Therefore,
port GES/1/2 of the Spirent was representative of clients.

We have written a TCL script to automate the process of
traffic emulation. Each group of transmitters and receivers was
allocated a distinct /28 public-IP address block, meaning 14
pairs of transceivers. Each pair of transceivers established 10
parallel stream blocks and each stream block operated on a
separate layer-4 port number. This generated 140 concurrent
flows per second. Further, the port number of each stream
block kept circulating using a modifier of range 80 per second,
resulting 11200 flows in total. Each flow was sending traffic
at a constant rate (CBR) which was uniformly distributed
between [800, 1200] Kbps (representative of a 360p video).
The emulation was run for 300 sec.

Fig [6] shows the network load at 2s intervals. The user
interface of our Telescope shows (by purple line) a steady-state
load of 136.81 Mbps, very close to the rate of 137.29Mbps
reported by the Spirent statistics (i.e. an error of less than
0.5%). We note that the throughput of mirrored traffic (shown
by yellow line) peaks at 130.17 Mbps and falls to zero
gradually in 81 seconds. This is not surprising, because our
approach only needs the first packet of each new video flow
to be sent to the traffic analyser for inspection of its headers,
which then a reactive rule is inserted to stop the packet
mirroring. The mirror load is directly impacted by the number
of concurrent video flows, their rate of arrival and also the
speed of header processing in the traffic analyser. If the traffic
analyser does not process the first packet of a new flow faster

Network Load

H a 3 2
Minutes Ago
= Total = NFLX = YouTube = Facebook = Spirent

Fig. 8. Network load (31920 flows arrive at the rate of 280 fps)

Total load | Total load | Total volume | Total volume
(offered) (measured) (offered) (measured)
274.55 Mbps | 273.56 Mbps | 6.25 GB 6.22 GB
Mirror load | Mirror Bytes Mirror duration
(peak) (total)
271.96 Mbps | 4.04 GB 230 sec

TABLE I

SCALING RESULTS

than the arrival of subsequent packets on that flow, then more
packets get mirrored (i.e. more cost of processing). Upon
insertion of the reactive rule, no packet from that flow is
mirrored and our application thereafter uses byte-counts to
monitor flow activity without inspecting packet contents.

At the end of our experiment, the Spirent statistics revealed
that 4.48 GB of data were transferred. Our TeleScope ap-
plication also, measured total 4.46 GB (across 11200 flows)
of which 0.68 GB were mirrored. This translates into a high
accuracy of 99.55% in measuring the Spirent traffic for this
experiment. Moreover, we note that total volume of mirrored
traffic accounts for less than 16% of total volume of data-
plane. Note that this volume of mirror traffic does not increase,
if our experiment lasts longer. This mean that the processing
cost is dramatically reduced over a larger time-frame.

Fig [7] shows the number of flows (i.e. representative of
video streams) detected by our TeleScope. It can be seen that
our telemetry tool performs in a responsive manner and the
number of flows rises linearly with the slope of 140 flow-per-
second, corroborating with the rate of traffic offered by the
traffic generator. It takes 80 seconds for the traffic generator
to cover the whole range of port modifier and henceforth no
new flow is generated.

Impact of Scalability: We now quantify the performance
of the TeleScope by increasing the number of total flows as
well as the arrival rate of flows. Since there is a limit of total
32000 flows per each physical port of our traffic generator, we
therefore increase the range of port modifier to 114 and double
the number of stream blocks (i.e. 20). This setting offers 280
flows-per-second to the TeleScope and generates 31920 flows
in total, offering over 270 Mbps of network load. Fig. [8| shows
the network load and Table || depicts the result of various
measurements.

The total load and volume of the Spirent traffic are measured
at a perfect accuracy of 99.64% and 99.52% respectively. Due
to heavy rate of flow arrivals, the mirror load has a longer

duration (230 seconds) that results a large volume (4.04 GB),
since it requires more processing power of the traffic analyser
to inspect headers and classify traffic.

VII. CONCLUSIONS

Managing video traffic for ISPs is a critical yet challenging
problem. This paper has examined the use of SDN to clas-
sify and measure video streams at flow-level granularity. We
have shown that our telemetry tool is effective in detecting
video flows, without sacrificing the accuracy or incurring
high costs of processing. We have validated our solution
in a campus network with real video traffic. We have also
evaluated the scalability of our system using hardware-based
traffic generator. Our results show that flow-based telemetry
can achieve most of the benefits of packet-based monitoring,
but at dramatically reduced processing costs.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology, 20152020,”
Cisco Systems Inc., Tech. Rep., June 2016.

[2] T-Y. Huang et al, “A buffer-based approach to rate adaptation: Evidence
from a large video streaming service,” in Proc. of ACM SIGCOMM,
Chicago, Illinois, USA, Aug. 2014.

[3] J. Case et al, “Simple Network Management Protocol (SNMP),” Internet
Engineering Task Force, RFC 1157, May 1990.

[4] B. Claise, “Cisco systems netflow services export version 9,” Internet
Engineering Task Force, RFC 3954, Octoer 2004.

[5] “sFlow consortium,” http://sflow.org/.

[6] “Network performance analysis,” Cisco Systems, Tech. Rep., 2005.

[7] A. Dainotti et al, “Issues and future directions in traffic classification,”
IEEE Network, vol. 26, no. 1, pp. 35-40, January 2012.

[8] S. Valenti et al, “Datatraffic monitoring and analysis,” E. Biersack,
C. Callegari, and M. Matijasevic, Eds. Berlin, Heidelberg: Springer-
Verlag, 2013, ch. Reviewing Traffic Classification, pp. 123-147.

[9]1 T. Bujlow, V. Carela-Espaol, and P. Barlet-Ros, “Independent compari-

son of popular DPI tools for traffic classification,” Computer Networks,

vol. 76, pp. 75 — 89, 2015.

M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park, N. Feam-

ster, and Y.-Q. Song, “Flowqos: Qos for the rest of us,” in Proc. of ACM

HotSDN, Chicago, Illinois, USA, Aug. 2014.

N. Namdev and S. A. Sanjay Silkari, “Recent advancement in machine

learning based internet traffic classification,” Procedia Computer Sci-

ence, vol. 60, pp. 784 — 791, 2015.

B. Ng, M. Hayes, and W. Seah, “Developing a traffic classification

platform for enterprise networks with sdn: Experiences & lessons

learned,” in Proc. IFIP Networking, Toulouse, France, May 2015.

L. He, C. Xu, and Y. Luo, “vtc: Machine learning based traffic

classification as a virtual network function,” in Proc. ACM Workshop

on SDN-NFVSec, New York, NY, USA, Mar. 2016.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement

with OpenSketch,” in Proc. of NSDI, Berkeley, CA, USA, April 2013.

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A

low cost network monitoring framework for software defined networks,”

in Proc. of IEEE NOMS, May 2014.

C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.

Madhyastha, “FlowSense: Monitoring network utilization with zero

measurement cost,” in Proc. of Springer PAM, March 2013.

N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennet-

mon: Network monitoring in openflow software-defined networks,” in

IEEENOMS, Krakow, Poland, May 2014.

P. H. Isolani, J. A. Wickboldt, C. B. Both, J. Rochol, and L. Z. Granville,

“Interactive monitoring, visualization, and configuration of openflow-

based sdn,” in Proc. of IFIP/IEEE IM, May 2015.

L. Hendriks et al, “Assessing the quality of flow measurements from

openflow devices,” in Proc. of Traffic Monitoring and Analysis (TMA),

Louvain La Neuve, Belgium, April 2016.

“Bro project,” https://www.bro.org/.

“Spirent traffic generator,” http://www.spirent.com/.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

http://sflow.org/
https://www.bro.org/
http://www.spirent.com/

	Introduction
	Related Work
	System Design and Architecture
	Architectural Choices and Trade-Offs
	Operational Scenario
	Traffic Analyser
	Network Rules Management
	Telemetry Algorithm and APIs

	Prototype Implementation
	Validation in Campus WiFi Network
	Scaling Performance Evaluation
	Conclusions
	References

