
Loud and Interactive Paper Prototyping in
Requirements Elicitation: What is it Good for?
Zahra Shakeri Hossein Abad, Sania Moazzam, Christina Lo, Tianhan Lan, Elis Frroku, Heejun Kim

Department of Computer Science, University of Calgary, Canada
Email: {zshakeri, sania.moazzam1, scclo, tianhan.lan, elis.frroku, heejun.kim}@ucalgary.ca

Abstract—Requirements Engineering is a multidisciplinary
and a human-centered process, therefore, the artifacts produced
from RE are always error-prone. The most significant of these er-
rors are missing or misunderstanding requirements. Information
loss in RE could result in omitted logic in the software, which
will be onerous to correct at the later stages of development.
In this paper, we demonstrate and investigate how interactive
and Loud Paper Prototyping (LPP) can be integrated to collect
stakeholders’ needs and expectations than interactive prototyping
or face-to-face meetings alone. To this end, we conducted a case
study of (1) 31 mobile application (App) development teams
who applied either of interactive or loud prototyping and (2)
19 mobile App development teams who applied only the face-
to-face meetings. From this study, we found that while using
Silent Paper Prototyping (SPP) rather than No Paper Prototyping
(NPP) is a more efficient technique to capture Non-Functional
Requirements (NFRs), User Interface (UI) requirements, and
existing requirements, LPP is more applicable to manage NFRs,
UI requirements, as well as adding new requirements and
removing/modifying the existing requirements. We also found
that among LPP and SPP, LPP is more efficient to capture and
influence Functional Requirements (FRs).

Index Terms—Requirements elicitation, Natural language pro-
cessing, Paper prototyping, Wizard of OZ

I. INTRODUCTION AND MOTIVATION

Getting constant customer feedback is key to developing
great software products. It allows software developers to
identify ways to improve products to satisfy current customers,
as well as to avoid making undesirable or unpopular changes
that could drive customers away [1]. Compared to traditional
software, the process of requirements capturing of mobile
applications (Apps) is more challenging as mobile Apps need
a high-level of user interaction and require an intelligent and
intuitive UI design. While there are well-known techniques
for exploring and managing requirements change during a
development life-cycle (e.g. as in [2]–[5]), the process of elic-
iting, evolving, and managing mobile Apps’ requirements is
still a challenging task for App developers and challenges the
research community to re-evaluate the existing RE practices
when dealing with mobile App development.

In this paper, we introduce and analyze a variation of the
Wizard of Oz (WOz) technique, called LPP by which clients
think aloud when interacting with a paper prototype— a tech-
nique to capture users’ intentions, challenges, and concerns
when working with the system [6]. The WOz technique,
as stated by Malin Wik [7], is a low fidelity prototyping
technique to simulate the requirements of a system and to

give an impression of how the user can interact with the
system when these requirements are actually implemented.
The main motivation for using this technique as a means
of studying the impact of LPP in this paper is that it can
elicit requirements that are less likely to be gathered by other
requirements elicitation techniques [8].

Moreover, to further analyze the application of LPP in
mobile App requirements’ elicitation and management, in
this paper, we develop a comparison between this technique
and several variations of silent paper prototyping such as
traditional WOz, sketching, and storyboard. Also, we present
a comparison between LPP and elicitation meetings alone,
without paper prototyping. To achieve these goals, we defined
the following main Research Questions (RQs):

RQ1- How does paper prototyping help in capturing mobile
App requirements?
RQ2- Does LPP affect the type of extracted requirements
during requirements elicitation?

To answer these RQs, we conducted a case study on 183
participants who worked in groups of 2-4 over the last three
years, broken down into (i) 31 mobile App development
teams who applied either of interactive or loud prototyping
techniques, and (ii) 19 mobile App development teams who
employed only the face-to-face meetings for exploring and
managing their Apps’ requirements. From this study, we found
that while using SPP compared to NPP is more efficient to
capture NFRs, UI, and existing requirements, LPP is more
applicable to influence NFRs and UI requirements as well as
adding new requirements and removing/modifying the existing
requirements. We also found that among LPP and SPP, LPP
is more efficient to capture and influence FRs.

The rest of this paper is structured as follow: Section II de-
tails related research on capturing and managing requirements
of mobile Apps as well as the application of paper prototyping
in requirements elicitation. Moreover, this section provides an
overview of the prototyping techniques reviewed in this paper,
which is followed by our research methodology (Section III).
The results of our both studies are reported and interpreted in
Sections IV and V, respectively. We listed the threats to the
validity of our results in Section VI and finally conclude the
paper with a brief remark on future research in Section VII.

[Preprint version] 2018 IEEE 26th International Requirements Engineering Conference Workshops (REW’18)

ar
X

iv
:1

80
7.

07
66

2v
1

 [
cs

.S
E

]
 1

9
Ju

l 2
01

8

II. RELATED WORK AND PRELIMINARIES

A. Related Work

This section outlines related research on capturing and
managing requirements using paper prototyping techniques.

Vijayan and Raju [9] conducted several case studies using
student projects as data sets to examine the effectiveness
of using the paper prototyping method for requirements’
elicitation task. They showed that errors in the system are
attributed mostly to poor communication between the user and
the analysts. To resolve this, they proposed a new approach
of using paper prototyping for requirements elicitation. In a
similar study, to quicken the requirements elicitation process,
Schneider [10] developed a fast feedback technique, applying
the By-Product Approach by using a custom-made tool that
allows the interviewer to discuss use cases and simultaneously
draw an interactive UI mock-up for the stakeholders. This
allowed him/her to extract requirements that would have
otherwise taken several sessions of several hour-long meetings,
in a two-hour long session.

In a recent study, Abad et al. [8] conducted a case study
on 13 mobile App development teams that used WOz for
early-stage requirements elicitation. Following the results of
this study, the WOz technique proved specifically helpful in
making the UI and usability of the app better, giving the teams
a better understanding of what they had missed in regards to
NFRs. Moreover, the authors performed manual and automatic
data analysis on 40 similar apps on Google Play to compare
the results with the WOz technique. They found that user
reviews are a powerful tool to understand FRs, but they come
at a cost. WOz proved more helpful and more cost effective
when it came to NFRs. Likewise, Sefelin [11] carried out
experiments to investigate the differences in usability and pref-
erence in paper-based low fidelity prototypes and computer-
based prototypes. These experiments were conducted on a
group of subjects using two systems, each with two prototypes:
one paper-based, the other computer-based. The subjects were
asked to perform tasks using a randomly selected prototype,
whilst thinking aloud. Afterward, they were led to critique the
systems and fill out a questionnaire regarding their preference.
The results concluded that the critique was not affected by
the type of prototype used. Although, the subjects did have
a preference for the computer-based system as it made them
feel less observed, and it did not cause unnecessary work for
the facilitator.

Svanaes [12] conducted a day-long workshop inviting users
to develop the functionalities of a mobile system through a
process of scenario-building, role-playing, and low fidelity
prototyping. This process attempted to limit the influence of
facilitators and developers at a minimum. The results indicated
that allowing the users to construct solutions according to their
own real-life scenarios by restricting the low fidelity prototype
to that of their desired mobile system (a paper-based prototype
of a tablet device), and minimizing the influence of facilitators
and developers (experts in the field), the users developed
creative approaches to finding the solution, rather than the

correct approach already accepted in the field. Manio’s [13]
analysis of the types of prototypes, their functionalities in
industrial, and commercial contexts found a general process
for prototyping composed of a formula of steps. The process
itself consists of seven phases, executed iteratively in a loop.
Studies were conducted using a system analyst and session
participants, with a combination of prototypes, and use cases,
with the aim of capturing the software requirements. Following
the results of these studies, requirements elicitation through
prototyping was helpful in eliciting requirements from the
customers, adding increased knowledge of the requirements,
and developing a mutual understanding between the system
analysts and the participants.

While the existing research provided valuable insights on
the application of paper prototyping for requirements capturing
and management, we could not find any study that investigated
the application of loud WOz (i.e. LPP) and its comparison
with other variations of paper prototyping in the context of
RE. Moreover, the comprehensiveness of our exploratory and
comparative study (i.e. running the study on 50 mobile app
development teams) makes it different from other investiga-
tions.

B. Paper Prototyping

Three paper prototyping techniques were used by our teams
to create a low fidelity prototype of their application. These
techniques focus on the functional design of the application in
the form of layout and button placement, and they omit any
other visual details such as color, font, and images. Both of the
teams using LPP and SPP were required to use all three paper
prototyping techniques. The first two techniques, sketching,
and storyboard, were performed identically in LPP and SPP
whereas the third technique, WOz, was performed differently
depending on which prototyping techniques the teams used.
In this section, we detail the techniques used to design and
develop our studies.

1) Sketching: The sketching technique focuses on brain-
storming different ideas for the UI of the App through simple
pencil and paper sketches. It is important to only use pencil
and paper for this step so that it forces the team to concentrate
on the functionality of each element rather than the potential
visual aspects of the final product [10]. In our study, teams
were told to sketch five individual overview snapshots of
their Apps’ UI, each representing a different idea of the
layout. Afterward, the teams were told to choose a single
snapshot out of their five overview snapshots based on the
functionality of their designs. They were then told to sketch
another five snapshots to elaborate on their chosen design. The
final sketches were submitted with labels under each sketch
and a summary of why the final layout was chosen (see Figure
1a as an example of the sketching task).

2) Storyboard: The purpose of the storyboard is to gather
information about the interactions of a software and its behav-
ior. It is defined by Mannio [13] as interactive screen displays
of system behaviors that can be used for simulating man-
machine behaviors. The teams are told to sketch a series of

(a) Sketching

(b) Storyboard
(c) Loud Wizard Of OZ

Fig. 1: The paper prototyping techniques reviewed in this paper

snapshots of their Apps’ UI, the series representing a flowchart
of what the UI would look like as a user interacts with it when
performing a certain task. Each snapshot shows a current state
of the UI, as well as the user interaction that leads to the next
snapshot. For example, an arrow pointing to an icon would
represent that the user is tapping on the icon. Similar to the
sketching technique, the final sketches are labeled and a brief
explanation of the steps of the task performed is included in
the submission (see Figure 1b).

3) Wizard of Oz: WOz tests the usability of the design
layout and detects any inaccurate user preference assumptions
made during earlier design stages [14] by allowing the client
to test the UI through interacting with a paper prototype as a
user. A working paper model of the App is made by sketching
a series of snapshots of the UI onto different sheets of paper.
These snapshots map out what the UI would look like as a
user performs a series of tasks. The model is then animated
by a team member or facilitator by moving and replacing
the sheets of paper as the user, who is the client, interacts
with the App. The client is asked to perform a series of tasks
with the paper model without any or very little knowledge of
how the App was designed. To implement LPP, in the third
iteration of this study, the client was asked to think aloud
when interacting with the App, so that the team is aware of
the client’s finger motions, the client’s thoughts as they are
navigating the system, as well as whether or not the client
is struggling to complete the task. Likewise, in the first and
second iterations, the client is only asked to interact with the
App, without giving any comment during the interaction time.
Moreover, a video was taken of the entire interaction between
the client and the App. The video and the clients comments
were used to further analyze the approach. Figure 1c shows an
example of LPP, which allows the team to communicate with
the client better by allowing the client to see what the system
would look like, and how interactions between the client and
the system would be like.

III. METHODOLOGY

To achieve our study goals and to answer our RQs we
designed and implemented a case study of (i) teams using

LPP, (ii) teams using SPP, and (iii) teams using the face-to-
face meetings alone, without interactive paper prototyping.

A. Tasks and Data Collection

The data for implementing our case study was gathered
during a three-week study in three different years (2016-
2018) from 50 mobile App development teams, totaling 183
students during the beginning stages of the Android applica-
tion development. The teams were provided with two weeks
of instruction on RE and low fidelity prototyping. In the
following two weeks, the mobile App members from each
team applied their knowledge accrued during the instruction
phase to the requirements collection phase. Requirements were
gathered from the initial client 1 descriptions and meetings
between the clients and the development team (which serves as
a baseline for comparison with the prototyping techniques used
in this paper). Subsequently, the development teams employed
WOz to confirm all requirements were collected from the
client and were understood correctly by the team. WOz was
carried out through the interaction between the client, the
development team, and the low fidelity model prototype. Any
changes or additions made to the requirements were submitted
to the research team as responses.

Moreover, to organize the process of our data collection,
we created three data collection forms, in which the following
data points were captured for each team under study: (1) the
type of the paper prototyping - loud or silent (2) the type
of the influenced requirements - FR, NFR, or UI (3) the
impact of the prototyping technique on the existing/potential
requirements - add, remove, or modify. The collected data,
using these data extraction forms, were used to address RQ2
(i.e. to run statistical tests, Section IV-B). Also, to reduce the
data collection bias, the recorded data for each form has been
reviewed by at least two authors of the paper.

B. Data Analysis and Preparation

Collected data were analyzed and interpreted by applying
the following methods.

1To implement this study we recruited two categories of clients, including
undergraduate software engineering students and professional software devel-
opers from industry.

1) Statistical Analysis: To test for the impact of LPP and
the differences between this technique and SPP as well as
NPP (RQ2), we use the non-parametric Kruskal-Wallis test,
as we could not confirm the normality of the results of our
collected data for RQ2 (using Q-Q plots [15]). To determine
the statistical significance we use the p-values and report
as significant, differences at 95% confidence interval, which
we use to compare the influence of paper prototyping on
requirements capturing and management in above-mentioned
techniques.

2) Open Coding: Open coding is an iterative process of
manually analyzing qualitative data [16], which requires dis-
tinguishing and grouping interesting and similar text together.
To implement this process, and to coalesce all of the refer-
ences, we used the NVivo [17] tool, a qualitative analysis
software package to code and analyze qualitative data files,
obtained from 50 mobile App teams. The data files were
distinguished into three groups: LPP, SPP, and NPP. In our
first meeting, we discussed the general topics of the files we
had extracted and what possible nodes we would expect to
see in our data. The question we were trying to answer was:
How does paper prototyping help in capturing mobile App
requirements?, defining our two main nodes to be FRs and
NFRs. For the first iteration, the three authors of the paper
coded the data files within these two nodes and kept adding
subcategories as they analyzed the files. During the iterative
process of open coding, we found usability and learnability to
be integral parts of the NFR category, and UI and interaction
to be very well defined in our data files, hence we added them
under the usability node. Since there were many instances
of ‘requirements modifying’, in subsequent meetings it was
decided to add ‘modify’ as a node. Similarly, ‘add’, ‘remove’
and ‘improvement’ were also added to our codings. After
three iterations and several nodal adjustments later, we finally
generated a hierarchy of concepts represented in a Treemap
[18] visualization (Figure 2).

3) Natural Language Processing: Natural Language Pro-
cessing (NLP) is the analyzing of human language with a
computer program, to derive and form understanding with-
out human supervision. For our analysis, we used the NLP
algorithm Latent Dirichlet Allocation (LDA) to analyze 31
text files (obtained in data collection, from 31 mobile App
development teams who applied either of interactive or loud
prototyping techniques). This algorithm analyzed the dataset
by modeling the text into a number of topics (i.e. k). The
value of k was an initial value defined by us as k = 3, 4, 5
(to model the dataset into 3, 4, and 5 topics). However, we
later determine the k value that is best suited for modeling
our dataset by analyzing the coherency of the resulting topics
formed by each of the three k values (Section IV-A-2). A topic,
as defined in the LDA approach, is a probability distribution
over a vocabulary [19], which required the topicmodels
package in R for the correct implementation of the algorithm.
Furthermore, the Gibbs sampling option was used with the
LDA algorithm because it acquires higher accuracy than the
variational algorithm [20].

In order to analyze our dataset with the LDA algorithm,
we first prepared our data by combining and stripping the
dataset into one large group of unlabeled text. To do this, we
performed the following formatting steps to the dataset:

1) Conversion to Lowercase: We started our preprocessing
by transforming the text to lower case to remove case-
sensitivity and streamline the following stop-word re-
moval processes.

2) Removal of Non-English Vocabulary Text: Non-English
vocabulary text such as HTML formatting and tags, punc-
tuation, and digits, were removed. This was done through
using regular expression to isolate and remove HTML
tags (“< .∗? >”) and any non-alphabetical character
(“[ˆa-z,A-Z]”).

3) Removal of Stop-words: Stop-words, which are com-
monly used words that have no real meaning of their
own such as a, the, that, were removed. This was done
by using the default set of stop-words for the English
language included in the package tm maps for R.

4) Removal of Whitespace: Any excessive whitespace such
as double spaces, tabs, and newlines were removed and
replaced with a single space.

5) Manual Transformation: Certain words that are com-
monly written in both the form of one word and two
words were combined to form a single word. For exam-
ple, non-functional became nonfunctional. In addition to
this, words that are different but have the same meaning
in the context of requirements elicitation were replaced
with the same word (e.g. “client” became “user”).

6) Pre-Stem Removal of Additional Words: Additional words
were removed from the dataset, such as words that are
commonly used by students but provide no meaning to
the overall topic model. This process was iterative, and
we would make alterations to the list of insignificant
words every time we ran the code and reviewed the
results. These words tend to be component-based such
as application, system, and video, but they would not
provide insight into the requirement elicitation process if
placed in a topic. Stop-words that were not caught by
the default package were also removed during this stage.
Additional word removal was manually performed by a
programmer by listing the words that were insignificant
and using the word removal function in the package
tm maps for R.

7) Stemming: Stemming is a process of removing the suf-
fixes attached to words to reduce them to their originating
word for example, interaction, interacts, and interacting
would all become interact. This allowed the algorithm to
analyze a word with many suffix variations as a single
word.

8) Post-stem Removal of Additional Words: Any words that
should have been removed by previous code yet still
appear in the dataset were manually removed at this stage.

With the dataset processed, the LDA algorithm was imple-
mented within the parameters of the Gibbs sampling option,

FRs
14 (28%)

Ti
m
el
in
es
s

4 0
(2
8%
)

Lo
w
R
ec
al
lP
er
fo
rm
an
ce

44
(3
1%
)

Memory Load
25 (18%)

R
em
ov
e

2
(4
%
)

Reconfiguration
7 (5%)

In
st
an
tI
nt
er
ru
pt
io
n

16
(1
1%
)

Fo
cu
s
C
ha
ng
e

16
(1
1%
)

Completeness
2 (1%)

Indecisive
14 (10%)

Productivity
11 (8%)

Usability
18 (36%)

Accuracy
2 (1%)

Task Type
8 (6%)

Source
7 (5%)

Improvement
18 (36%)

Add
10 (20%)

Modify
7 (14%)

In
te
ra
ct
io
n

16
(3
2%
)

UI
23 (46%)
Improvement
19 (38%)

NFRs
25 (50%)

Le
ar
na
bi
lit
y

5
(1
0%
)

N
av
ig
ar
io
n

5
(1
0%
)

Add
10 (20%)

Modify
25 (50%)

Fig. 2: The results of the manual open coding process to answer RQ1—the
application of paper prototyping in requirements elicitation.

the dataset, and the k values. The algorithm was executed three
times, once for each k value.

IV. RESULTS

This section reports the key findings of our study in two
parts: the application of paper prototyping in RE (RQ1), and
the comparison between LPP and other approaches such as
SPP, and NPP (RQ2).

A. RQ1-The Application of Paper Prototyping in Requirements
Elicitation

To investigate the application of paper prototyping tech-
niques, the teams in our study were asked How does paper
prototyping help in capturing mobile App requirements?. In
the rest of this section, we discuss the results of applying
the manual open coding and automatic data analysis on our
collected dataset.

1) Manual Open Coding: Through the iterative process
of open coding, the results were categorized based on their
similarities and internal relationships. We grouped the main
characteristics that show how paper prototyping helps require-
ments elicitation as below:

a) Functional Requirements: 14 (28%) teams explicitly
stated that prototyping helped revise/clarify FRs of their
projects. As illustrated in Figure 2, we further organized our
codings of FRs on their similarities, and identified four main
characteristics the teams talked about when they mentioned
FRs:

ImprovementFR– 18 (36%) teams stated that paper proto-
typing notably helped clarify the projects’ initial requirements
giving them a better idea on how to implement those features.
One team of participants stated: It gave us the basic tools to
organize the sequence of actions that must be taken in carrying
out each requirement and the relationship between them.

AddFR– New requirements were added to 10 (20%) teams’
projects as a result of paper prototyping. Discussing the
prototypes with their clients gave the clients an insight to
the project and clarified/modified the client’s vision of the
project, which led some of them to add core functionalities
to the project, e.g. As a matter of fact, the customer suggested
two more features implement: a survival game mode (where a
player would solve as many math problems correctly in a row)
and the ability to change the background and theme colors of
the user interface was said by one of the teams.

ModifyFR– After reviewing a prototype, 7 (14%) teams’
clients revised the functionalities of the project as they now
had a better understanding of their product, as stated by one
of the teams under study: [...] For example, we emphasized
a constant, live stream of data, but our client explained that
we should only begin displaying data after pressing the record
button. Rather than averaging readings, the application should
function more like a counter over some time interval.

RemoveFR– Paper prototyping helped remove 2 (4%)
teams’ FRs which made the project more sensible and ef-
fective. One team stated: After constructing our prototypes
and discussing with our clients, we collectively reached the
decision to only implement the happiness feature.

b) Non-Functional Requirements: In addition to revis-
ing FRs, 25 (50%) of the groups stated paper prototyping
was incredibly helpful in capturing NFRs. Figure 2 shows
the different aspects prototyping helped to revise/clarify as
subcategories defined within NFR:

Usability– For 18 (36%) of the teams that participated in
our study, prototyping enhanced the usability aspects of their
product. A team noted: This helped clarify some details in
our NFRs, such as how important it is to have first-time user
instructions. During the Wizard of Oz phase, our client helped
us refine our non-functional requirement by suggesting a more
user-friendly interface when adding tasks. The interaction
between clients and 16 (32%) teams’ low fidelity prototypes
visually communicated the areas that needed improvement.
One of the responses we received was: Wizard of oz helped us
see how a new user will interact with our system while also
getting input from our client. Furthermore, 23 (46%) teams
talked about clarifications and 19 (38%) teams talked about
improvements made to the (UI) of the product, as a result of
prototyping.

Learnability and Navigation– For each of the learnability
and navigation categories, we received 5 (10%) responses that
indicated that prototyping helped improve a first-time user’s
navigation of the system, and their ability to learn/understand
the system’s behavior. One team wrote: From the sketches,
we concluded that in order to fulfill the requirement that the
layout of each screen will be clean and simple ensuring easy
navigation for users as well as making the App fast and easy
to learn.

ModifyNFR– Prototyping assisted 25 (50%) teams and their
clients in modifying the initial NFRs to make the product
more intuitive, interactive and user-friendly. The Wizard of Oz
technique helped us greatly as we saw a user using our app
and observed what mistakes we had made and what feature
could be made better. was recorded by one team.

AddNFR– 10 (20%) teams added new NFRs after clients
interacted with the low fidelity prototypes. One of the teams
stated: We didnt include back buttons initially to the game,
making it impossible to change difficulty in the middle of
the game or to head to the main menu. The prototyping
techniques helped team participants witness what lacked in
their product and helped make adjustments and improvements
to their systems.

TABLE I: RQ1- Topic Modeling Results (K represents the number of topics)

K=3

Topic #1 Topic #2 Topic #3

client function sketch
create help design
change nonfunctional technique
interact use make
like interface implement

(a)

K=4

Topic #1 Topic #2 Topic #3 Topic #4

client function sketch nonfunctional
client help design screen
change technique use visual
example interact like button
nonfunctional interface menu log

(b)

K=5

Topic #1 Topic #2 Topic #3 Topic #4 Topic #5

help client function design sketch
use create interface change make
feature nonfunctional technique nonfunctional like
screen order need plan interact
button base implement detail decide

(c)

2) Automatic Text Analysis: Regarding the results of our
automatic data analysis, Table I displays the results of the NLP
topic modeling for k = 3, 4, 5 in which every topic contains
five words that should form a clear underlying concept. From
evaluating the words and constructing the topics, we noted that
the words in Topic #4 of k = 4 and Topic #1 of k = 5 did not
form a clear underlying concept. Furthermore, Topic #2 and
Topic #4 of k = 5 contained a similar underlying concept of
adaptability. From this analysis, we determined that exploring
three topic models (k = 3) resulted in the best representation
of our dataset. The three topics revealed in the topic modeling
results are:

1) Requirements Change — (client, create, change, inter-
act, like): our first clue in determining this category is
the frequency of the words change and create in this
topic followed by interact. In the context of mobile
App development, seemed like comments on creating or
changing the requirements of the App received during the
interaction with the prototype.

2) Usability— (function, help, nonfunctional, use, interface):
this category represents the usefulness of the proposed UI
for using/interacting with FRs and NFRs of the App.

3) Visual Presentation— (sketch, design, technique, make,
implement): in essence, this category models the require-
ments related to the visual appearance of the Apps, as
sketch and design were the most frequent terms occurred
in this topic.

B. RQ2-Loud vs. Silent Paper Prototyping

To answer this RQ, we posed a null hypothesis to explore
the impact of loud paper prototyping on FR/NFRs, UI require-
ments as well as added, removed, and modified requirements
of a system. We formulated this hypothesis as below:

H0= The loud paper prototyping technique does not
impact the requirements capturing process.

To test this hypothesis, we used the dataset collected
manually, using extraction forms (Section III-B). Following
the results of the Kruskal-Wallis tests presented in Table II,
LPP makes a significant difference in regards to influencing
the FRs of the system than SPP (p-value <0.05). Looking
at Figure 3a, for the projects under study, LPP has been
more influential on managing FRs than SPP, as stated by one
of our participant teams: [...] The application of LPP (i.e.
loud WOz) proved to be fruitful in exposing details in the

TABLE II: RQ2- Comparison between various techniques of requirements
elicitation. Loud Paper Prototyping (LPP), Silent Paper Prototyping (SPP),
No Paper Prototyping (NPP), Paper Prototyping (PP), Functional Requirement
(FR), Non-Functional Requirement (NFR), User Interface (UI).

FR NFR UI Add Remove Modify
LPP-SPP 0.01 ** 0.6 0.1 0.3 0.2
LPP-NPP 0.7 0.001 0.0001 0.0001 0.01 0.01
SPP-NPP 0.02 0.001 0.002 0.001 0.0002 5e-5
PP-NPP 0.2 0.01 0.001 0.8 0.7 0.001
**all observations are in the same group

non-functional requirements that we needed to rethink. For
instance, we had not originally considered what would happen
for an incomplete interval when a user presses the send log
button. During the interaction of our client with the system,
we determined that the log would prompt the user to fill in
a task if they chose to end their working day and 15 minutes
had elapsed since the last interval.

This change allows the log to be more flexible for the user by
not locking them into waiting for the interval to end. There was
one non-functional requirement that became apparent from
this interaction. The client realized that they wanted the user to
be able to set a standard workday so that the App if forgotten
at the end of the day, would automatically end the log at the
specified time so that it would not run on.

Regarding the comparison between LPP and NPP, the results
of our statistical analysis show that there is a significant
difference between both the approaches in terms of their
influence on NFRs, UI, as well as added, removed, and
modified requirements. (Table II). As illustrated in Figure 3b-
f, in all cases there is a significant difference between LPP
and NPP, LPP being more influential during the requirements
capturing and management process.

Interestingly, in cases that there is a significant difference
between SPP and NPP, NPP outperforms SPP in influencing
FRs, adding new requirements, and removing the existing
requirements (Figures 3g,j,k). Another point of interest is that
SPP is more efficient to influence NFRs, UI and existing re-
quirements of a system (Figures 3h,i,l). A possible explanation
of this is that clients are more likely to have thoughts about
the functionalities of their system (i.e. their motivation for
soliciting its creation), as opposed to ways to judge how the
system should operate.

V. LESSONS LEARNED

From the NLP results, we found it interesting that the topic
Requirements Change contains the word client. This suggests
that flexibility from LPP is not experienced solely by the
developing team but also by the clients. Since the clients are

●0.00

0.25

0.50

0.75

1.00

Loud
NoPaper

Type

Af
fe

ct
ed

 U
I R

eq
ui

re
m

en
ts

0.00

0.25

0.50

0.75

1.00

Loud
Silent

Type

Af
fe

ct
ed

 F
R

s

0.00

0.25

0.50

0.75

1.00

Loud
NoPaper

Type
N

um
be

r o
f a

ffe
ct

ed
 N

FR
s

● ●

0.00

0.25

0.50

0.75

1.00

Loud
NoPaper

Type

R
em

ov
ed

 R
eq

ui
re

m
en

ts

0.00

0.25

0.50

0.75

1.00

Loud
NoPaper

Type

Ad
de

d
R

eq
ui

re
m

en
ts

0.00

0.25

0.50

0.75

1.00

NoPaper
Silent

Type

N
um

be
r o

f a
ffe

ct
ed

 F
R

s

●●0.00

0.25

0.50

0.75

1.00

Loud
NoPaper

Type

M
od

ifi
ed

 R
eq

ui
re

m
en

ts

●●0.00

0.25

0.50

0.75

1.00

NoPaper
Silent

Type

Af
fe

ct
ed

 U
I R

eq
ui

re
m

en
ts

0.00

0.25

0.50

0.75

1.00

NoPaper
Silent

Type

N
um

be
r o

f a
ffe

ct
ed

 N
FR

s

0.00

0.25

0.50

0.75

1.00

NoPaper
Silent

Type

M
od

ifi
ed

 R
eq

ui
re

m
en

ts

●

0.00

0.25

0.50

0.75

1.00

NoPaper
Silent

Type

R
em

ov
ed

 R
eq

ui
re

m
en

ts

0.00

0.25

0.50

0.75

1.00

NoPaper
Silent

Type
Ad

de
d

R
eq

ui
re

m
en

ts

●●●0.00

0.25

0.50

0.75

1.00

NoPaper PP

Type

Af
fe

ct
ed

 U
I R

eq
ui

re
m

en
ts

0.00

0.25

0.50

0.75

1.00

NoPaper PP

Type

Af
fe

ct
ed

 N
FR

s

●●●●●●●0.00

0.25

0.50

0.75

1.00

NoPaper PP

Type

M
od

ifi
ed

 R
eq

ui
re

m
en

ts

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o)

Fig. 3: RQ2—95% confidence interval of sample means for the influence of different types of paper prototyping in capturing and managing mobile Apps’
requirements.

suggesting changes based on the interaction with the UI, there
is a higher chance that these changes are related to the NFRs
of the systems. The open coding results showed that 50% of
the teams talked about NFRs while only 28% mentioned FRs
in their data. Thus, the NLP and open coding results both
suggest that LPP helps modify NFRs over FRs.

Another interesting result found through open coding was
that out of the teams that used LPP, twenty-five teams modified
NFRs while only seven modified FRs; two teams removed
FRs, and no teams removed NFRs. This can be attributed to
the clients’ interactions with the systems using LPP resulting
in the clients’ realizations of how different non-functional
aspects could be improved by the teams. The teams then make
modifications to the NFRs of their systems whereas the overall
functionalities stayed the same. Contrasting to this, with SPP
for example, sketches helped clarify and remove FRs as the
teams prioritized the requirements, removed what was not
necessary, and understood what was needed - as they gained a
better idea of their systems. From this analysis we determined
that by using LPP, clients tend to suggest more changes to
NFRs than FRs, leading teams to more frequently change their
NFRs rather than removing them; and more frequently remove
FRs rather than changing them.

However, the topic visual presentation from the NLP results
and the words within the topic suggest that by using LPP,
teams found it easier to design and implement their systems.
The topic usability also supports this as it contains the words
interface, and both functional and non-functional suggesting
that designing an interface through LPP helped teams with
their FRs and NFRs alike. From these results, we determined
that even though clients’ interactions with the systems through
using LPP mainly results in feedback for NFRs, the act
of making prototypes using LPP helps teams clarify and
implement the FRs of their systems.

While most of our teams found interactive prototyping (SPP
and LPP) more useful for communicating the requirements
with their clients, there were teams who found the storyboard
technique very useful for revising their existing requirements:
We found that the storyboard also helped us tweak our non-

functional requirements more easily because we had to trace
through our interactions with the system. We were able to
recognize what was good and what was not. A prominent
example of this came about when we were trying to decide how
the user would add, edit, and remove tasks. We had originally
considered just having a separate screen that had buttons to
modify the task elements. After tracing through, we noticed
that they felt rather dated and elected for a more updated
approach that involved either clicking the task to edit, pressing
a symbol (plus sign) to add and holding down the task to show
a button to delete it.

Among the techniques reviewed in this paper, the major-
ity of our teams found LPP the most useful approach for
managing mobile Apps’ requirements. This was most likely
due to the ability of this approach to interacting with the
proposed system directly (enhanced with clients’ feedback
when thinking aloud during the interaction) as opposed to just
looking at a sketch or talking about the existing and potential
requirements of the system.

VI. THREATS TO VALIDITY

We followed and adapted the case study guidelines in
software engineering provided by Kitchenham et al. [21] and
Easterbrook et al. [22] to mitigate the limitations of case study
and empirical research. However, there are a number of threats
to the validity of the results presented above.

In answering RQ1 concerning the application of paper
prototyping in requirements capturing and management, the
methodologies of qualitative analysis as provided for open
coding and automatic data analysis were adhered to with as
much rigor as the circumstances of the study would allow.
For example, to mitigate the effects of potential confounding
factors (e.g. the implementation of each of prototyping tech-
niques, and developer experience), we recruited undergraduate
students as subjects of our study and provided them with video
instruction and well-illustrated field guides about the paper
prototyping techniques under study. However, the context in
which the development teams were working poses a threat to
the results of our study. The development teams who partici-
pated in our study were composed of software engineering stu-

dents without industry practitioners in most cases. Moreover,
this was the first time these students experienced requirements
capturing and requirement engineering, in general. To mitigate
this risk, all participants were provided with two weeks of
instruction on RE processes and techniques, and low fidelity
prototyping.

Moreover, the sample size poses a potential threat (183
participants broken down into 50 teams). While the number
of participants in this study is within the parameters generally
accepted in qualitative analysis [23], it is not clear that these
numbers will have resulted in participant saturation; the point
at which the inclusion of additional participants increases the
size of the data but produces no significant changes in the
results. Finally, a recent study by Abad et al. [24] indicates
that LDA performs poorly when attempting to extract topics
from short texts. It along with the limitations of our manual
transformation task during the implementation of the LDA
approach follow that the validity of the results of RQ1 might
be threatened. However, since the themes were narrowed
down to responses by the teams, there is not much concern
over the details of each class as this limitation does not
significantly impact our results. Furthermore, 50 app responses
were manually analyzed to validate the results of the automatic
NLP (i.e. LDA approach).

VII. CONCLUSION AND IMPLICATIONS

In researching how prototyping helps requirements elici-
tation and if loud and interactive paper prototyping affects
the type of requirements gathered, in this paper, we used
statistical analysis, open coding, and NLP to analyze data
from 50 mobile App development teams with the total of 183
participants. This study showed three main results: (1) teams
that used LPP clarified/modified their requirements more than
the SPP teams, (2) the NLP and open coding results both
suggest that LPP helps modify NFRs over FRs, and (3) Among
the techniques reviewed in this paper, the majority of our teams
found LPP the most useful approach for managing mobile
Apps requirements. However, there are still some reasons to
use SPP, such as:

• When you are measuring learnability time, thinking aloud
slows interactions significantly.

• When there is a risk that clients/users will not speak aloud
until they have valid thoughts about the product.

• When facilitators of the study are not experienced in the
context and they can easily change user behavior during
their interaction with the product.

In the future, we will aim to study if LPP and SPP
result in better end-products than NPP. This can be done
by deploying two case studies on the data; documenting the
process of product development; using questionnaires, and
then performing statistical analysis on the data collected from
the deployed Apps. Moreover, we aim to design and develop
a tool to capture clients’ thought during the interaction with
the system, using the loud thinking approach and incorporate
this information into the requirements specification artifact.

REFERENCES

[1] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2013, pp. 1276–1284.

[2] Z. S. H. Abad, M. H. Sadi, and R. Ramsin, “Towards Tool Support
for Situational Engineering of Agile Methodologies,” in Proceedings
of the 17th IEEE Asia Pacific Software Engineering Conference, 2010,
pp. 326–335.

[3] Z. S. H. Abad, A. Alipour, and R. Ramsin, “Enhancing tool support
for situational engineering of agile methodologies in eclipse.,” in SERA
(selected papers), Springer, 2012, pp. 141–152.

[4] N. A. Ernst and G. C. Murphy, “Case studies in just-in-time require-
ments analysis,” in Empirical Requirements Engineering (EmpiRE),
2012 IEEE Second International Workshop on, IEEE, 2012, pp. 25–32.

[5] C. Rolland, C. Salinesi, and A. Etien, “Eliciting gaps in requirements
change,” Requirements Engineering, vol. 9, no. 1, pp. 1–15, 2004.

[6] J. Nielsen, T. Clemmensen, and C. Yssing, “Getting access to what
goes on in people’s heads?: Reflections on the think-aloud technique,”
in Proceedings of the Second Nordic Conference on Human-computer
Interaction, ser. NordiCHI ’02, ACM, 2002, pp. 101–110.

[7] M. Wik, Using the wizard-of-oz technique in requirements engineering
processes: A trial in a tourism context, 2015.

[8] Z. S. H. Abad, S. D. Sims, A. Cheema, M. B. Nasir, and P. Haris-
inghani, “Learn More, Pay Less! Lessons Learned from Applying the
Wizard-of-Oz Technique for Exploring Mobile App Requirements,” in
2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW), IEEE, 2017, pp. 132–138.

[9] J. Vijayan and G Raju, “Requirements elicitation using paper proto-
type,” in International Conference on Advanced Software Engineering
and Its Applications, Springer, 2010, pp. 30–37.

[10] K. Schneider, “Generating fast feedback in requirements elicitation,”
in International Working Conference on Requirements Engineering:
Foundation for Software Quality, Springer, 2007, pp. 160–174.

[11] R. Sefelin, M. Tscheligi, and V. Giller, “Paper prototyping-what is it
good for?: A comparison of paper-and computer-based low-fidelity
prototyping,” in CHI’03 extended abstracts on Human factors in
computing systems, ACM, 2003, pp. 778–779.

[12] D. Svanaes and G. Seland, “Putting the users center stage: Role playing
and low-fi prototyping enable end users to design mobile systems,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems, ACM, 2004, pp. 479–486.

[13] M. Mannio and U. Nikula, “Requirements elicitation using a combina-
tion of prototypes and scenarios,” in WER, Citeseer, 2001, pp. 283–296.

[14] S. Dow et al, “Wizard of oz support throughout an iterative design
process,” IEEE Pervasive Computing, vol. 4, no. 4, pp. 18–26, 2005.

[15] M. B. Wilk and R. Gnanadesikan, “Probability plotting methods for
the analysis for the analysis of data,” Biometrika, pp. 1–17, 1968.

[16] A. Strauss and J. M. Corbin, Basics of qualitative research: Grounded
theory procedures and techniques. Sage Publications, Inc, 1990.

[17] G. Gibbs, Qualitative data analysis: Explorations with nvivo (under-
standing social research). Buckingham: Open University Press, 2002.

[18] B. Johnson, “Treeviz: Treemap visualization of hierarchically struc-
tured information,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM, 1992, pp. 369–370.

[19] D. Blei, L. Carin, and D. Dunson, “Probabilistic topic models,” IEEE
Signal Processing Magazine, vol. 27, pp. 55–65, 2010.

[20] P. Ian et al, “Fast collapsed gibbs sampling for latent dirichlet al-
location,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’08,
ACM, 2008, pp. 569–577.

[21] B. Kitchenham et al, “Preliminary guidelines for empirical research
in software engineering,” IEEE Transactions on software engineering,
vol. 28, no. 8, pp. 721–734, 2002.

[22] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to ad-
vanced empirical software engineering, Springer, 2008, pp. 285–311.

[23] M Patton, “Qualitative evaluation and research methods (pp. 169-186),”
Beverly Hills: Sage, 1990.

[24] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K.
Schneider, “What works better? a study of classifying requirements,”
in Proceedings of the 25th IEEE International Conference on Require-
ments Engineering (RE’17), 2017.

	I Introduction and Motivation
	II Related Work and Preliminaries
	II-A Related Work
	II-B Paper Prototyping
	II-B1 Sketching
	II-B2 Storyboard
	II-B3 Wizard of Oz

	III Methodology
	III-A Tasks and Data Collection
	III-B Data Analysis and Preparation
	III-B1 Statistical Analysis
	III-B2 Open Coding
	III-B3 Natural Language Processing

	IV Results
	IV-A RQ1-The Application of Paper Prototyping in Requirements Elicitation
	IV-A1 Manual Open Coding
	IV-A2 Automatic Text Analysis

	IV-B RQ2-Loud vs. Silent Paper Prototyping

	V Lessons Learned
	VI Threats to Validity
	VII Conclusion and Implications

