W CORA =

g/ﬁ%

Title

Understanding developer security archetypes

Authors

Ryan, Ita;Roedig, Utz;Stol, Klaas-Jan

Publication date

2021-06

Original Citation

Ryan, I., Roedig, U. and Stol, K. J. (2021) ‘Understanding
Developer Security Archetypes’, 2021 IEEE/ACM 2nd International
Workshop on Engineering and Cybersecurity of Critical Systems
(EnCyCriS), Madrid, Spain, 3-4 June 2021, pp. 37-40. doi: 10.1109/
EnCyCriS52570.2021.00013

Type of publication

Conference item

Link to publisher’s
version

https://ieeexplore.ieee.org/document/9476058 - 10.1109/
EnCyCriS52570.2021.00013

Rights

For the purpose of Open Access, the authors have applied a CC
BY public copyright licence to this Author Accepted Manuscript;
Copyright published version: © 2021, the Authors. - https://
creativecommons.org/licenses/by/4.0/

Download date

2024-04-24 09:32:04

[tem downloaded
from

https://hdl.handle.net/10468/11563

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh



https://hdl.handle.net/10468/11563

Understanding Developer Security Archetypes

Ita Ryan®®, Utz Roedig®®

< and Klaas-Jan Stol»P4d

“School of Computer Science and Information Technology, University College Cork
bScience Foundation Ireland Centre for Research Training in Advanced Networks for Sustainable Societies
¢ CONNECT—the Science Foundation Ireland Research Centre for Future Networks and Communications
dLero—the Science Foundation Ireland Software Research Centre
Cork, Ireland
ita.ryan@cs.ucc.ie, u.roedig@cs.ucc.ie, klaas-jan.stol@lero.ie

Abstract—As software systems penetrate our everyday lives,
security has risen to be a key concern. Despite decades of research
leading to new tools and practices for writing secure code,
achieving security as a key attribute remains highly challenging.
We observe that much of the literature considers developers to be
homogeneous and interchangeable. The differing circumstances
of developers that might play a role in the writing of secure code
have not been clearly defined. In this position paper we introduce
the concept of developer security archetypes. Specifically, we
suggest two key factors: developers’ personal interest in security,
and the support that developers receive from their environ-
ment. Together, these two dimensions define four archetypes
which can be uniquely characterized. By distinguishing developer
archetypes, we seek to better understand how developers perceive
security-related issues in systems development, as well as how to
better support them.

Index Terms—developer centred security, archetype, developer
security, software security, developer.

I. INTRODUCTION

In recent years there has been a focus on how the developer
can be centred in discussions of software security. Acar et al.
[1] argued that developers cannot be expected to be experts
in secure coding. They suggested applying the lessons learned
from twenty years of research on usable security to the
context in which developers write code. Developer Centred
Security (DCS) has emerged as a term for the study of how
developers can be encouraged and facilitated to write secure
code [2]. For the purposes of this paper we use the classic
definition of “software security” from McGraw: “the idea of
engineering software so that it continues to function correctly
under malicious attack” [3]. We define a developer as a writer
of software code for use by others.

We argue that developers are not homogenous and inter-
changeable, and operate at different levels of enthusiasm
and expertise when it comes to security. Moreover, they
operate in multiple different environments, from security-aware
organisations and open source teams to very small single-
developer enterprises. We posit that developers can thus be
thought of as existing along a spectrum in two dimensions:
their personal interest in security and secure coding, and the
support that is available for secure coding in their environment.
To truly put developers at centre-stage, we must examine the
role of these two factors on their security stance. We maintain
that this interplay between developers’ interest in security and

developers’ environment affects what interventions are of use
to individual developers.

In this position paper, we introduce a two-dimensional
typology that defines four developer security archetypes. By
defining these archetypes, we seek to extend our understanding
of developer centred security, the interventions that are available
to developers to write secure code, and which activities might
support developers in this task. When considering such support
activities, we can reflect on which developer archetype they
primarily assist, and whether we can broaden or tweak them
to assist others. We argue that the archetype most in need
of support, which we call Optimists, should be specifically
considered when new interventions are devised. We maintain
that centring the Optimists will enhance security for all
developers.

This paper proceeds as follows. In the next section we
introduce the two factors which we argue play a key role in
how developers approach security and secure coding. These
form the two dimensions, which define the four developer
security archetypes, which we discuss in Sec. III. We discuss
the implications of these archetypes in Sec. IV.

II. THE ROLE OF ENVIRONMENT AND PERSONAL
MOTIVATION

There is a considerable body of research on developers and
software security that discusses the role that the developer’s
environment plays in their secure coding practices. Haney et al.
[4] conducted an interview study with individuals representing
companies who use cryptography in their products. They
found that these security-mature organisations had a security
mindset, with a strong security culture and deep security
expertise. Assal and Chiasson [5] conducted a survey study
focusing on the human factors of software security. Using
factor analysis, they found that “company-wide engagement”
and “personal strategies” were the two main factors influencing
participants’ software security strategies. Pieczul et al. [6]
discussed the developer demographics that should be considered
when designing developer studies. They included “developer
skill and experience” and “team, structure, culture and policies”
as key demographic factors. Danilova et al. [7] considered how
a company’s emphasis on security influences or dictates its
developers’ security activities. Morales et al. [8] looked at how
the cohesiveness of the development team is vital for security.



Rauf et al. [9] discussed developers as social beings and the
resulting impact on their security choices. How they relate
to other developers and to their context are seen as crucial
influences on their security behaviour. The authors advocated
further study of how context influences the security posture of
solo developers such as app developers.

Developer motivation to code securely is also widely studied.

In a qualitative usability study, Naiakshina et al. [10] primed
ten of the 20 participating students to code securely. They found
that the ten participants who were not primed made no attempt
to write secure code. Primed participants did better, especially
when mandated to use an API with security helper classes. In
a follow-up study using freelance developers, Naiakshina et
al. [11] again found that specifying security as a requirement

was the main influence on the security of the resulting code.

Assal and Chiasson [5] found that identifying with security
importance is the most motivating factor for software security,
followed by workplace environment and perceived negative
consequences. Xiao et al. [12] looked at why security tools
spread. They found that the largest influence is co-worker
recommendations. Although they did not focus on developer
motivation, they did find that an attack on a developer’s software
can raise the developer’s security awareness; this factor is also
mentioned by Assal and Chiasson [13]. Haney et al. [4] found
that maturity and experience are common characteristics of
developers in companies with a strong security culture.

III. THE DEVELOPER SECURITY ARCHETYPES

Developer interest in and environmental support for secure
coding, when placed on abscissa and ordinate axes, can be
used to create a two-dimensional typology that defines four
developer archetypes (see Fig. 1). The archetypes bring different
developer circumstances into sharp focus. It is easier to assess
the potential role of a proposed technique or tool when the

target cohort or cohorts can be clearly identified and described.
We now position and describe the four developer archetypes.

We emphasise that these are archetypes, and in reality the

G Pragmatists | Champions
) .

g Unmotivated nghly

E Motivated
8 Highly Highly

; Resourced Resourced
o

]

§ Optimists Heroes
W ) B Highly

";: Unmotivate Motivated
& No No

g* Resources Resources
]

Personal Security Interest —=—

Fig. 1. The four developer security archetypes. The archetypes bring different
developer influences with regard to secure coding into focus. The developer’s
tendency to use secure coding practices increases as we travel upwards and
right along the axes.

extent to which a developer is positioned along the two
dimensions will vary. The purpose of these archetypes is not
to perfectly characterize each developer, but rather to extend
our understanding of different types of developers in relation
to attitudes to security and secure coding.

A. Pragmatists

We adopt the term Pragmatists to describe developers
who have no personal interest in security, but are provided
with security-related training and tools in a collaborative
environment. Although their focus is on other aspects of the
work, they will follow secure coding processes if these are
mandated and not too inconvenient. Xiao et al. [12], in a study
of secure development tool adoption, noted that all developers
in their study who were mandated to use security tools did use
them. However, since Pragmatists have no personal interest
in security and secure coding, they may attempt to bypass
inconvenient secure coding guidelines. For example, Ashenden
et al. [14] described a developer telling their company’s security
team that they “are like a rock in a stream, we just flow around
you.” Tomas et al. [15] also found occasional conflict, with
one developer laughing about security culture “propaganda”.

B. Champions

Champions are developers with an interest in security who
are working in environments in which they are supported
and resourced. The term “Champions” is widely used both
in industry [16] and in academia [2] to describe developers
with a special interest in security in the corporate environment.
Security teams, which are notoriously short-staffed, often liaise
with Champions and leverage their security expertise [17].
Haney et al. [4], in an interview study of experienced developers
working in organisations that develop cryptographic products,
encountered a population of developers many of whom were
Champions. The researchers described individuals who were
highly committed to security and communicated strong security
values to the rest of the organisation.

C. Optimists

The “optimistic bias,” which causes people to believe that
misfortune will not happen to them, was used by Assal and
Chiasson [13] as a possible explanation for cavalier developer
attitudes to code security. In this spirit, we adopt the term
Optimists to describe developers who have little or no interest
in coding securely and are not supported or encouraged to do
so within their environment. They are optimists because they
believe that their code is probably fine, or someone else is
taking care of security [18], or their software is too insignificant
to be attacked, or there is nothing worth stealing in the system,
or they will be gone by the time there is a breach [2], [13],
[19], [20]. Optimists abound in secure development literature.
While investigating the propagation of insecure code snippets
from Stack Overflow, Bai et al. [21] interviewed 15 software
developers about insecurities they had found in the developers’
GitHub projects. Post-interview, only two of the developers
fixed their projects. Of the remaining 13, one deleted their



project, one deleted their GitHub account, and the remaining
developers ignored the vulnerabilities. Palombo et al. [20] were
surprised by developers’ reaction to a serious security flaw
that potentially enabled remote code execution. Developers
downplayed the issue, deciding not to fix it to avoid causing
problems elsewhere in the software. Their organisation did
not appear to assign any time or resources to security, or to
prioritise security in any practical way.

D. Heroes

Assal and Chiasson [13] identified developer “heroes” who
personally prioritise security even though they are working in
environments where security is not prioritised. If working in a
collaborative environment, they may provide the only security
checks within a company or team. Our Hero archetype also en-
compasses solo developers such as app developers who take the
time to familiarise themselves with the security requirements
for the environments they are coding in. A developer who is
highly motivated to code securely is more likely to research,
discover, and implement security techniques and tools, even
when not supported to do so in their environment [12]. Heroes
may find themselves almost in conflict with their employers
when trying to improve the security of a code base. Security
researchers Palombo et al. [20] experienced this dynamic when
embedded with a development team that received no security
support. Their suggested security fixes were rejected until they
carefully calibrated them to the code base to ensure minimal
impact on the time and attention of the development team.

IV. DISCUSSION

We now discuss implications of our typology, which helps
to differentiate among different types of developers in relation
to security-related attitudes.

Champions are widely regarded in industry as essential to the
smooth working of the Software Security Groups that oversee
secure coding in large organisations. These groups liaise with
Champions on development teams to promote secure coding
techniques within the teams [2] [22]. An initial analysis of the
four archetypes might suggest that the solution to the problem
of insecure code is to turn all developers into Champions.
To achieve this, it would be necessary not only to educate
all developers in secure coding techniques, but to engage
their interest so that they use the techniques. Furthermore, all
organisations and open source teams would have to embrace and
prioritise the need for secure software development. Otherwise,
Optimists would merely be converted to Heroes, who still lack
much of the support needed to code securely.

Achieving these changes is a worthy objective, but until it
is realised we must accept that all four developer archetypes
exist and they need different types of support to help them to
code securely. The existence of the four archetypes leads us
to the following research questions.

A. Developer Motivation

What causes developers to move from left to right, indicating
an increase in security motivation? This area comprises devel-
oper motivators such as training and experience. Witschey et al.

[23] have found that information from peers can have an impact.
Assal and Chiasson [5] found that the top six motivations
towards software security are self-driven motivations such
as caring about the user, with financial rewards considered
least motivating. While drive (arguably) cannot be taught,
understanding the implications of poor security scored highly.
This suggests that activities such as Weir et al.’s security
interventions [24] should have a motivating effect. Weir et al.
devised a lightweight series of interventions to motivate teams
to develop securely. Activities include incentivisation meetings
with teams to introduce core security practices. Other security
practices are introduced on an ad-hoc basis if appropriate to
the discussion. Follow-up workshops help to copper-fasten the
ideas discussed within the teams, assisting with motivation and
keeping security firmly in sight.

The “Motivating Jenny” (www.motivatingjenny.org) project
explores the reasons why developers do not consistently and
routinely use security methods and tools. The project seeks to
find ways to engage and motivate developers to code securely. It
uses several different media [25] and ethnographic studies [26]
to examine how developers discuss and engage with security.
“Motivating Jenny” researchers have devised a workshop format
to help developers to grapple with security topics [27]. Their
work focuses on leveraging developers’ values and professional
pride to attract them to secure coding. The “Motivating Jenny”
project, Weir’s work and similar projects aim to interest and
educate developers in security, moving them from the left to
the right of our typology.

A complementary question is whether there are circum-
stances that cause developers to regress, moving from right to
left? If so, how can these be avoided?

B. Organisational Motivation

What causes organisations, and indeed open source teams, to
move upwards, indicating an increase in security motivation?
Customer engagement, industry standards and legislation are
frequently cited [4] [8]. Are there other motivators? Conversely,
are there circumstances which cause organisations or teams to
move downwards, lessening their focus on security? If so, how
can these be avoided? Organisations will rarely declare their
lack of interest in security, making unmotivated organisations
difficult to study.

C. Supporting the Optimists

DCS research often focuses on interventions and tools
for developers who are highly resourced in a security-aware
environment, highly motivated to code securely, or both. We
argue that special thought must be given to how to support the
Optimist, who has not (yet) developed an interest in security
and does not benefit from a collaborative security environment.
Although it is tempting to plan to train them all, the high
numbers of new entrants to software development [28] and the
low barriers to entry [29] make it a Sisyphean task. Furthermore,
Optimists with an interest in security become Heroes, still
under-resourced for secure coding. Given that there will always
be Optimists, how can they best be supported?


www.motivatingjenny.org

V. CONCLUSION

In this position paper we introduced four developer security
archetypes, organized along the two axes of personal interest
in software security and environmental support for software
security. Defining these four archetypes sheds light on a blind
spot in the current literature on developer centred security, and
can help broaden our understanding of issues surrounding
software developers and security. Whereas prior literature
has started to recognize human factors such as developer
motivation, this paper contributes a systematic conceptualisation
of developers in relation to secure software development.
Summarising, the Pragmatist is uninterested in security, but
will often use security tools provided in their environment. The
Champion is a security enthusiast operating in an environment
where security is emphasised. Heroes work in a low-security
environment, but their own interest in and drive towards
security should help them to secure their code. The Optimist
is uninterested in security and codes in an environment where
security is not considered. Optimists are entirely dependent on
the security behaviour of the tools they use to make their code
secure.

We argue that our typology helps to clarify issues around
secure software development. Individual developers may move
between these four archetypes, whether via training, other
motivators or a change of role or employer. However, the four
archetypes will continue to be populated for the foreseeable
future. Interventions and tools aiming to enhance secure coding
should be tailored to the appropriate archetypes. Solutions that
treat developers as a homogeneous group are likely to lose the
opportunity to address as many developers as possible.

ACKNOWLEDGMENT

This publication was financially supported by Science
Foundation Ireland under Grant numbers 18/CRT/6222,
13/RC/2077_P2, 13/RC/2094_P2, and 15/SIRG/3293. For the
purpose of Open Access, the authors have applied a CC-BY
public copyright licence to any Author Accepted Manuscript
version arising from this submission.

REFERENCES
[1

—

Y. Acar, S. Fahl, and M. L. Mazurek, “You are not your developer, either:
A research agenda for usable security and privacy research beyond end
users,” in IEEE Cybersecurity Development (SecDev), 2016, p. 3-8.
[2] M. Tahaei and K. Vaniea, “A survey on developer-centred security,” in
1IEEE European Symposium on Security and Privacy Workshops, 2019.
[3]1 G. McGraw, “Software security,” IEEE Security and Privacy, vol. 2,
no. 5, p. 80-83, 2004.
J. Haney, M. Theofanos, Y. Acar, and S. Spickard Prettyman, “‘We
make it a big deal in the company’: Security mindsets in organizations
that develop cryptographic products,” in Proceedings of the Fourteenth
Symposium on Usable Privacy and Security, 2018, p. 357-373.
H. Assal and S. Chiasson, “‘Think secure from the beginning’: A survey
with software developers,” in CHI Conference on Human Factors in
Computing Systems, 2019.
O. Pieczul, S. Foley, and M. E. Zurko, “Developer-centered security and
the symmetry of ignorance,” in Workshop on New Security Paradigms,
2017, p. 46-56.
[7]1 A. Danilova, A. Naiakshina, and M. Smith, “One size does not fit all: a
grounded theory and online survey study of developer preferences for
security warning types,” in Proc. 42nd ICSE, 2020.

[4

=

[5

=

[6

=

[8] J. A. Morales, T. P. Scanlon, A. Volkmann, J. Yankel, and H. Yasar,
“Security impacts of sub-optimal devsecops implementations in a highly
regulated environment,” in 15th International Conference on Availability,
Reliability and Security, ser. ARES 20, 2020.

[9] 1. Rauf, D. van der Linden, M. Levine, J. Towse, B. Nuseibeh, and

A. Rashid, “Security but not for security’s sake: The impact of social

considerations on app developers’ choices,” in 42nd International

Conference on Software Engineering Workshops, 2020.

A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,

and M. Smith, “Why do developers get password storage wrong? a

qualitative usability study,” in ACM SIGSAC Conference on Computer

and Communications Security, 2017.

A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and M. Smith,

““If you want, I can store the encrypted password’: A password-storage

field study with freelance developers,” in Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems, 2019.

S. Xiao, J. Witschey, and E. Murphy-Hill, “Social influences on secure

development tool adoption: Why security tools spread,” in Proc. 17th

CSCW, 2014.

H. Assal and S. Chiasson, “Security in the software development lifecycle,”

in 14th USENIX Conference on Usable Privacy and Security, 2018.

D. Ashenden and D. Lawrence, “Security dialogues: Building better

relationships between security and business,” IEEE Security Privacy,

vol. 14, no. 3, pp. 82-87, 2016.

N. Tomas, J. Li, and H. Huang, “An empirical study on culture,

automation, measurement, and sharing of devsecops,” in International

Conference on Cyber Security and Protection of Digital Services (Cyber

Security), 2019.

M. W. Sammy Migues, John Steven, “BSIMM,” https://www.bsimm.com/,

2020, [Online; accessed 17-December-2020].

T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during

application development: An application security expert perspective,” in

CHI Conference on Human Factors in Computing Systems, 2018.

I. A. Tondel, M. G. Jaatun, and D. S. Cruzes, “IT security is from Mars,

software security is from Venus,” IEEE Security Privacy, vol. 18, no. 4,

p. 48-54, Jul 2020.

[19] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security

errors?” in 2011 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 2011, p. 161-164.

H. Palombo, A. Z. Tabari, D. Lende, J. Ligatti, and X. Ou, “An

ethnographic understanding of software (in)security and a co-creation

model to improve secure software development,” in /6thSymposium on

Usable Privacy and Security, 2020.

[21] W. Bai, O. Akgul, and M. L. Mazurek, “A qualitative investigation

of insecure code propagation from online forums,” in 2019 IEEE

Cybersecurity Development (SecDev), 2019, p. 34-48.

T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during

application development: an application security expert perspective,” in

CHI Conference on Human Factors in Computing Systems, 2018.

[23] J. Witschey, S. Xiao, and E. Murphy-Hill, “Technical and personal factors

influencing developers’ adoption of security tools,” in ACM Workshop

on Security Information Workers. ACM Press, 2014, p. 23-26.

C. Weir, 1. Becker, J. Noble, L. Blair, A. Sasse, and A. Rashid,

“Interventions for software security: creating a lightweight program of

assurance techniques for developers,” in Proc. 41st ICSE (SEIP), 2019.

T. Lopez, T. Tun, A. Bandara, M. Levine, B. Nuseibeh, and H. Sharp,

“An anatomy of security conversations in stack overflow,” in 41st ICSE

(SEIS), 2019.

[26] T. Lopez, H. Sharp, T. Tun, A. K. Bandara, M. Levine, and B. Nuseibeh,
“‘Hopefully we are mostly secure’: Views on secure code in professional
practice,” in 12th International Workshop on Cooperative and Human
Aspects of Software Engineering, 2019, p. 61-68.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[20]

[22]

[24]

[25]

[27] T. Lopez, H. Sharp, T. Tun, A. Bandara, M. Levine, and B. Nuseibeh,
“Talking about security with professional developers,” in CESSER-IP,
2019.

[28] DAXX, “How Many Software Developers Are in the US and
the World?” https://www.daxx.com/blog/development-trends/
number-software-developers-world, 2020, [Online; accessed 19-
January-2021].

[29] “Stack Overflow Developer Survey - Education,” https://insights.

stackoverflow.com/survey/2020#education, 2020, [Online; accessed 19-
January-2021].


https://www.bsimm.com/
https://www.daxx.com/blog/development-trends/number-software-developers-world
https://www.daxx.com/blog/development-trends/number-software-developers-world
https://insights.stackoverflow.com/survey/2020#education
https://insights.stackoverflow.com/survey/2020#education

	I Introduction
	II The Role of Environment and Personal Motivation
	III The Developer Security Archetypes
	III-A Pragmatists
	III-B Champions
	III-C Optimists
	III-D Heroes

	IV Discussion
	IV-A Developer Motivation
	IV-B Organisational Motivation
	IV-C Supporting the Optimists

	V Conclusion
	References

