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Abstract—We propose the subsidiarity and weak 

coupling principles for developing the sixth generation 

(6G) self-organizing wireless networks. The principles are 

common in social sciences and control theory, respectively. 

This proposal leads to organizing the network as a 

hierarchy of interacting rational agents with vertical and 

horizontal weak coupling. The central agent provides a 

performance goal and constraints to the lower level agents 

that operate almost autonomously in this multi-agent 

system. The system has various favorable properties, 

including stability, reliability, and efficiency. Present self-

organizing networks are usually distributed without any 

centralized controller. The lack of a common externally 

given goal may lead to low performance, staggering 

behavior, or even chaotic situations. In communications, 

each transmitter can be interpreted as a rational lower 

level agent. A principle resembling subsidiarity, the 

locality principle, is used, for example, in cellular 

automata, systolic arrays, and edge computing. 

Subsidiarity is also a solution for the tragedy of the 

commons where common resources are overused because 

the costs are divided equally among the users, often with 

some significant delay. We also provide a historical review 

that shows each idea’s origin because different disciplines 

use different terminology for similar concepts. 

Understanding the origins can reduce fragmentation and 

enhance scientific progress. 

Keywords—hierarchy; modularity; subsidiarity; weakly coupled 

systems; autonomy; self-organizing communication networks; 

multi-agent systems; interacting agents; arbitrator; leader; tragedy 

of the commons 

I.  INTRODUCTION 

New approaches are needed to implement the sixth 
generation (6G) self-organizing wireless networks. As these 
networks will have tight system requirements, they will be 
complex, but at the same time, they must be stable and efficient 
[1]. The requirements cannot be met by improving silicon 

electronics’ energy efficiency and miniaturization [2]. The 
reason is that we are close to the fundamental limits of nature, 
including the Szilard-Landauer limit and the Heisenberg limit 
[3]. Quantum computing provides an alternative, but presently 
only using either cryogenic temperatures or extremely high 
pressures. Hence, quantum computing is not energy efficient 
and cannot, at least in the near future, meet the energy 
efficiency requirements of mobile wireless communications. 

We propose the use of subsidiarity and weak coupling 
principles to meet the requirements of self-organizing wireless 
networks. We selected self-organizing networks as the starting 
point due to the rich set of features they offer for wireless 
networks. Self-organizing systems are at the highest level in 
the hierarchy of technical systems and, therefore, the most 
complex and least mature [4]. They are usually distributed 
without any centralized control [5], [6]. However, welfare 
economics and game theory suggest that the optimum can only 
be found with strict conditions in a distributed system. In 
practice, some form of an arbitrator or leader is needed [7], [8]. 
Even in those ideal conditions, the distributed system tends to 
be unstable, and there is a trend towards inequity: a minority 
takes a majority of resources. This drift is called the Matthew 
principle [9]. Furthermore, the emergent macroscopic behavior 
is not easy to derive from microscopic behavior [10], and the 
global optimum is difficult to obtain with local interactions. 
Subsidiarity and weak coupling tackle these challenges. 

Our main contribution is to present a multidisciplinary 
review on subsidiarity and weak coupling and apply it to self-
organizing wireless networks. The review can help interested 
readers locate relevant research and apply the existing 
knowledge. The principles lead to organizing a system as a 
hierarchy of interacting rational agents Fig. 1). An agent is a 
feedback loop that consists of sensors, a decision block with a 
goal, and actuators that control the environment or process.  

We are not aware of similar research. Generally, self-
organizing systems are far from maturity [11]. In [12], the 
authors mention leaderless (decentralized or distributed) and 
leader-follow (centralized) multi-agent systems, but there is 
almost nothing about self-organization. In [13], the authors 
noticed that each mobile device is weakly coupled, but they did 
not further develop the idea.  

Subsidiarity and weak coupling are common in social 
sciences and control theory, respectively. In social sciences, 
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subsidiarity is recognized as an efficient way to implement a 
hierarchical system. In control theory, the dynamics of many 
real physical systems are characterized by the presence of weak 
coupling among subsystems [13]. Subsidiarity is “the principle 
that a central authority should have a subsidiary function, 
performing only those tasks which cannot be performed at a 
more local level” [14]. Weak coupling may refer to coupling 
between hierarchy levels or between subsystems or agents at 
the same hierarchy level. Thus, subsidiarity is a more 
prescriptive principle since it clearly refers to a hierarchy of 
interacting agents where the lower level agents operate almost 
autonomously below the central agent. We believe that the 
principles will be widely useful in the 6th generation (6G) 
wireless networks. The actual optimization of the decision 
block is described in various general books, for example [15]. 

The rest of the paper is organized as follows. In Section II, 
we summarize the fragmented history of subsidiarity and 
weakly coupled systems, often called loosely coupled systems. 
In Section III, we present a transmitter as a rational agent. In 
Section IV, we show how a self-organizing system can be 
implemented with a set of interacting agents with weak 
coupling following the subsidiarity principle. In Section V, we 
draw some conclusions. 

II. HISTORY OF SUBSIDIARITY, WEAKLY COUPLED 

SYSTEMS, AND SELF-ORGANIZATION 

The history of subsidiarity, weakly coupled systems, and 
self-organizing systems is presented in Table I. A system 
consists of subsystems that are mutually coupled to form a 
whole. Thus the subsystems cannot be completely decoupled or 
noninteracting; otherwise, they would be separate systems. The 
degree of coupling may be weakly coupled, tightly coupled, or 
fully coupled [16], [17]. For example, in human-built digital 
systems, weak coupling can be realized by exchanging 
information through files or message passing, tight coupling 
using a common memory, and full or interleaved coupling with 
function calls. A cognitive radio system (1999) using sensing is 
an example of weak coupling, and federated learning (2017) is 
an example of tight coupling. 

The coupling may be intentional in the form of information 
or unintentional in the form of interference. Thus, coupled 
subsystems are open systems that exchange matter, energy, or 
information with their environment. Information is not an 
independent quantity, but it is carried with matter or energy, 

such as in sound or radio waves. Communication is expensive 
in terms of energy, time, and bandwidth and hence should be 
minimized. The open system concept was introduced by Lotka 
(1925) [18]. Bertalanffy further developed the concept starting 
in 1932 [19].  

TABLE I HISTORY OF SUBSIDIARITY, WEAK COUPLING, AND SELF-
ORGANIZATION 

Year Event 

300s 

BCE 
Aristotle: subsidiarity 

1826 Gauss: RLS algorithm 

1833 Lloyd: tragedy of the commons 

1925 Lotka: open systems 

1931 Pius IX: subsidiarity 

1947 Ashby: self-organizing systems 

1947 Prigogine: start of complexity theory 

1961 Kleinrock: packet switching 

1962 Simon: hierarchy and modularity 

1965 Milne: weakly coupled systems 

1967 Falb and Wolovich: decoupling 

1968 Hardin: tragedy of the commons 

1973 Kahn: packet radio networks 

1974 Stevens: structured software design 

1975 Distributed artificial intelligence 

1977 Hewitt: intelligent agent 

1984 Widrow and Walach: orthogonalization 

1993 IEEE 802.11: ad hoc networks 

1996 Edge and cloud computing 

1999 Mitola: Cognitive radio systems 

2017 McMahan: Federated learning 

 

In biology, self-organization is called morphogenesis [20]. 
Ashby (1947) developed the term self-organization [21]. The 
first self-organizing communication networks were based on 
packet switching invented by Kleinrock (1961) [22]. Arpanet, 
as proposed in 1967, was the first network based on packet 
switching [22]. The Arpanet was renamed the Internet in 1983. 
Kahn developed packet radio networks starting from 1973 [23]. 
After these first steps, self-organizing communication networks 
became popular in the 1980s [24]. The IEEE 802.11 
subcommittee adopted the term ad hoc network in 1993, but 
the first ad hoc network was the packet radio network [25]. 

The subsidiarity principle is used in social sciences [26]. It 
leads to a hierarchical control system where the high level 
agents are weak. Most of the decisions are made locally by 
almost autonomous and almost isolated agents to avoid 
interference and delays that may create instability in the form 
of staggering behavior or even chaos. Subsidiarity targets 
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Fig. 1. A hierarchical multi-agent system using feedback 

loops. 



avoiding situations where everything depends on everything 
else. In general systems theory, the system separability 
principle tells us that system stability increases when the mean 
strength of interactions between subsystems decreases [27]. 
The principle became famous when Pope Pius IX selected it as 
one of the three main principles of the Catholic church in 1931. 
The US and EU constitutions are based on the subsidiarity 
principle. A principle resembling subsidiarity, the locality 
principle, is used, e.g., in cellular automata [28], systolic arrays 
[29], and edge computing. 

The tragedy of the commons was first described by Lloyd 
in 1833 [30]. Later discussions by various authors, including 
Hardin (1968) [31], made the concept widely known. The 
tragedy of the commons surfaces when many actors use a 
common resource or commons, but the costs are divided 
equally, often with a significant delay, thus resulting in an 
overuse of the commons. The common resource was originally 
common land, but it can be any resource, for example, water or 
air. Hardin suggested solutions to the tragedy. Meadows 
summarized the solutions as educate and exhort, privatize the 
commons (decentralized solution), and regulate the commons 
(centralized solution) [31]. Applying the subsidiarity principle 
leads to a combination of privatization and regulation, as 
discussed in [32] with different terminology. 

Simon (1962) applied near decomposability in physical, 
biological, and social systems [33]. His paper is usually 
considered the start of the theoretical work on the hierarchy 
concept [34]. Biological systems are nearly decomposable: 
they are hierarchical, modular, and weakly coupled both 
vertically from the whole system to subsystems and 
horizontally between subsystems. Milne (1965) published a 
paper on weakly coupled systems [35], which started a new 
research tradition resulting in a book in control theory [13]. 
Falb and Wolovic (1967) published a paper on the decoupling 
of multivariable control systems [36]. The original work by 
Simon, Milne, and Falb and Wolowich was done 
independently of each other. Therefore different authors often 
use different terminology.  

Widrow and Walach (1984) proposed, also independently 
of the earlier authors, orthogonalized least-mean square (LMS) 
algorithm to solve a problem caused by strong coupling. Here, 
interference between the received samples from, for example, a 
radio channel creates coupling and correlation, forming a set of 
mutually coupled feedback loops that slow down the standard 
LMS algorithm [37]. The idea of the orthogonalized LMS 
algorithm is similar to the one used in the recursive least-
squares (RLS) algorithm that was invented by Gauss (1826)  
and Plackett (1950) [38]. Orthogonalization refers to 
decoupling. The term loose coupling has been used in 
administrative organizations [39].  

Stevens, Myers, and Constantine (1974) proposed 
structured software design [40], originally developed by 
Constantine in the 1960s. Weakly coupled software modules 
improve reliability since an error cannot propagate easily. The 
idea is widely used in loosely coupled Internet services [41]. 

The idea of artificial intelligence was developed in 1956. 
Since the end of the 1970s, the focus has been on multi-agent 
systems [12], [42], [43]. A thermostat is an example of a 
simple agent. Sensors sense the state of the environment. The 
decision block makes decisions for the next actions to move the 
environment from the present state towards the desired goal 
state (goal-directed) or improved performance (maximization), 
usually iteratively using feedback [44], [45]. The actuators 
implement the decisions. The goal may include constraints. 
According to [45], the goal-directed and maximization 
principles are identical when there is only a single objective. 
The goal-directed principle works well in multiobjective 
optimization if the requirements are modest, but the 
maximization principle is a better approach. Other methods are 
described in [46]. Obviously, one does not often even know the 
desired state. In the maximization principle, some utility 
function is often used for scalarization.  

Multi-agent systems consist of a set of interacting agents. 
Artificial intelligence is often defined as a theory of rational 
agents. Intelligence is based on deductive reasoning, but 
rationality is a more general concept defined as the ability to 
reach externally given goals successfully with limited resources 
[47]. Rationality is often called intelligence [44]. Rationality 
cannot be based on deduction only; thus, many alternatives are 
based on pattern recognition. Some hybrid systems use a 
combination of deduction or hard computing and pattern 
recognition or soft computing [16], [48].  

In biology, complexity theory is essentially a theory of self-
organization, and it can be implemented with a set of 
interacting agents [49]. The theory was initiated by Prigogine 
in 1947 using the open system concept [50]. McKelvey 
summarized the theory with seven first principles in an 
unpublished report in 2004 and published them in [49].  

Communication networks should be efficient in terms of 
basic resources that we summarized in [4]. Research on 
network efficiency started from Milgram’s (1967) small-world 
concept [51], [52]. The concept is useful in wireless networks 
[53] as small-world networks have high global and local 
efficiencies [54]. Network efficiency emphasizes the 
importance of the small-world concept in communication 
networks [52]. Even the human brain forms a small world [55]. 

III. TRANSMITTER AS A RATIONAL AGENT 

In this section, the principles of the lower level agents in 
Fig. 1 are presented. The larger system, including the central 
agent, is discussed in the next section. A transmitter can be 
interpreted as a rational agent (Fig. 2). The transmitter receives 
part of the sensing information from the corresponding receiver 
through a feedback channel, usually in a reduced form. The 
agent makes decisions using the state of the channel estimated 
in the receiver. If, e.g., the receiver observes a frequency shift, 
it is corrected in the transmitter. The actuator transmits the 
signal in space, frequency, and time, and also selects the carrier 
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Fig. 2. Transmitter as a rational agent. The sensing 

information is provided by the receiver. 



phase. In the space domain, the actuator uses beamforming. In 
the amplitude, frequency, and time domains, it uses power, 
frequency, and timing control, respectively. Phase can be 
challenging to control in mobile communications. The phase 
can change rapidly due to multipath fading, and the loop delays 
may be considerable. When the transmitter and receiver are 
stationary, carrier phase control is a feasible approach.  

The transmitter agent’s primary aim is to avoid interference 
between different users when transmitting signals. Interference 
avoidance is possible if the signals are orthogonal [56]. The 
channel may attenuate, distort, and shift the transmitted signal 
in space, frequency, time, and carrier phase. Two signals are 
orthogonal if they are not overlapping in space, frequency, or 
time. Orthogonality is generally defined by using the signal 
space concept [57], [58]. The signals may be either coherently 
or noncoherently orthogonal. Coherently orthogonal signals are 
orthogonal only for a given phase shift. Noncoherently 
orthogonal signals are orthogonal with any phase shift, 
possibly generated by the channel.  

IV. SELF-ORGANIZATION WITH INTERACTING AGENTS 

We can draw several conclusions from the historical review 
in Section II. Similar ideas have appeared independently many 
times with different terminology, and the literature tends to be 
disconnected. We can really understand the historical progress 
and state of the art and offer a vision to the future only when 
we know the origin of each concept and term. Complex 
systems are invariably composed of large numbers of rational 
agents, as shown in [59]. To reduce complexity, the systems 
must be hierarchical [34]. Thus a hierarchical multi-agent 
system is a natural choice to implement self-organization [11], 
[12], [49]. Subsidiarity with its weak horizontal coupling is 
known to be an efficient way to implement hierarchy, 
especially in social sciences [60]. Local decisions are preferred 
to avoid significant delays and possible instability. Since the 
agents are based on feedback loops that may be open to 
interference from the environment, we prefer weak horizontal 
coupling systems to avoid chaotic situations. The strongest 
reason to consider subsidiarity and weak coupling is that they 
are used in biological systems that are known to be efficient. In 
fact, evolution would not have had enough time unless these 
principles would not have been used [33]. In engineering, the 
weakly coupled systems have been used in structured software 
design [40], Internet services [41], and control theory [13]. 
Modern network architectures such as Experiential Networked 
Intelligence (ENI) are based on feedback [61]. 

The hierarchy of technical systems includes automatic and 
autonomous systems [4]. Automatic systems or automata do 
not need any manual control but may require some external 
control signals, i.e., the automata may be controllable by an 
outside agent [45]. Automatic systems include control and 
adaptive systems [4]. An external control signal or goal can be 
given in the form of a set-point value or a reference signal, also 
called a training signal. A control system almost always needs 
a set-point value. In a thermostat, it is the desired temperature.  

Autonomous systems are automatic systems that do not 
need any external control, i.e., they are self-controlling. They 
still usually need a goal given by a human actor in the form of 

the desired state or performance to maximize [45]. The goal 
can only be provided by a human agent with free will, as no 
machine has such volition. Self-organizing systems are 
autonomous systems that can change their organization or 
structure. Most self-organizing systems developed so far have 
been distributed without centralized control, although the term 
self-organization only implies autonomy and does not exclude 
the use of centralized control. Lack of centralized control may 
lead to loss of optimality and even instability, which, in turn, 
can result in chaotic behavior. An externally given goal is one 
crucial way to obtain stability.  

Self-organization can be formed using a hierarchy of 
interacting agents (Fig. 3) [49]. In our example of a transmitter 
and a receiver, the central agent coordinates the lower level 
agents shown in Fig. 2. Fig. 3 includes two wireless links and 
their mutual interference. The central agent offers goals and 
constraints to the lower level agents to ration the use of the 
basic resources and guarantees equity. Such a network is self-
organizing since it can, e.g., route the signals through different 
lower level agents. The essential elements in self-organizing 
systems include hierarchy to reduce complexity and the degree 
of centralization to manage geographically distributed systems. 
Complexity can be reduced with different speeds as well as 
ranges and resolutions in amplitude, time, frequency, and space 
at different levels of hierarchy. At the lower levels, the speed is 
high, the range is restricted, and the resolution is high, and at 
the higher layers, the speed is slow, the range is broad, and the 
resolution is low [44], [62], [63], [64]. 

The three commonly known degrees of centralization are 
centralized control, decentralized control, and their 
intermediate form, distributed control [4]. In decentralized 
control, the agents are autonomous. In distributed control, the 
agents may cooperate at least with their nearest neighbors. 
Self-organizing systems are commonly based on distributed 
control. The subsidiarity principle determines another 
intermediate form used in social sciences. Subsidiarity is 
flexible because it offers all the three other degrees of 
centralization depending on the strength of the couplings. 

A problem involving mutually conflicting objectives must 
be solved using multiobjective optimization, also called joint 
optimization [15], [65]. Such objectives are usually related to 
resource efficiency. An example is energy efficiency (in bit/J). 
The desirable optimum is generally called the Pareto optimum, 
a useful concept when the objectives are mutually 
commensurate. With many objectives, the optimum is not 
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Fig. 3. Self-organizing communication network that is 

vertically and horizontally weakly coupled. 



unique but a set of optima, which are in general not equitable. 
It is well known from welfare economics [7] and game theory 
[8] that a system based on autonomous agents or players tends 
to drift towards undesirable and often suboptimal states which 
do not offer equity. Furthermore, different basic resources are 
incommensurate, and therefore there is no other way to solve 
the problem than to use an evolutionary approach using the law 
of supply and demand [9].  

The Pareto optimum is challenging to find. Optimization 
problems, in general, have exponential complexity with respect 
to the size of the problem and therefore are mathematically 
intractable, and some heuristic methods must be used [15]. 
Welfare economics shows that a free market based on 
privatization [31] provides Pareto optimal solutions only in 
strict conditions that are in general not valid [7]. For example, 
the market must be perfectly competitive, and all the market 
participants must have perfect information. Simon’s bounded 
rationality principle explains this: the subsystems generally 
have limited knowledge of the overall situation [31]. In the 
game theory, a game tends to converge to a Nash equilibrium, 
which is not in general Pareto optimal [8]. In fact, a game 
suffers from the Matthew principle where some monopolies 
appear. Equity is not a scientific but ethical question, which 
does not mean that it would be less important. If the players 
cooperate, they work as a single player, and the Pareto 
optimum can be found [65]. The use of an arbitrator can 
improve the situation in an ordinary game. The arbitrator is a 
central agent that can send private or public signals to the 
players, thus coordinating them. Such arbitration naturally 
leads us to the subsidiarity principle. An arbitrator may also be 
formed by several human actors that make agreements about 
regulation or rationing. A good example is the International 
Telecommunication Union - Radiocommunication Sector 
(ITU-R) that regulates radio frequencies and satellite orbits. 
We may conclude that subsidiarity has a good theoretical basis 
in many disciplines. 

V. CONCLUSION 

We have proposed subsidiarity and weak coupling for future 

self-organizing and other autonomous networks such as 6G 

networks to improve the optimality of these systems and solve 

the tragedy of the commons. The locality principle resembles 

subsidiarity. Since different disciplines are using different 

terminology for similar concepts, we provided a historical 

review that shows each idea’s origin. Understanding the 

origins can reduce the fragmentation of science and enhance 

faster development. The subsidiarity principle exists in various 

forms in many disciplines but is not used in self-organizing 

communication networks, which are usually distributed 

networks. A system applying these principles consists of a 

hierarchy of interacting agents that are weakly or loosely 

coupled. The lower-level agents operate almost autonomously 

(vertical weak coupling) and have only minor interaction with 

each other (horizontal weak coupling). In communications, 

transmitters are agents. Weak centralized control is needed to 

provide a common goal, constraints, and equity with minimal 

control. Systems based on subsidiarity have many positive 

properties, including stability, reliability, and efficiency, thus 

reducing complexity. Stability is improved because of weak 

interactions between various agents and small delays due to 

mostly local decisions. Scalability is not as good as in 

decentralized and distributed systems, but this problem can be 

solved using hierarchy and negotiating agents. The system can 

converge fast to an optimal solution. Subsidiarity and weak 

coupling provide a good framework for optimization though 

the actual optimization and related protocols were out of this 

paper’s scope. The selection of the performance goals and 

related constraints is an important problem for the future. 

Results from various disciplines are available, including multi-

agent systems, control theory, and robotics. Modularity 

combined with weak coupling produces a flexible, 

comprehensible, and reliable system since errors cannot easily 

propagate. The network must also follow the well-known 

small-world principles to obtain high network efficiency in 

addition to high resource efficiency. The problem with the 

incommensurability of the basic resources can be solved only 

with an evolutionary method using the law of supply and 

demand.  
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