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Abstract—6G networks require a flexible infrastructure to
dynamically provide ubiquitous network coverage. Mobile Access
Points (MAP) deployment is a promising solution. In this paper,
we formulate the joint 3D MAP deployment and user association
problem over a dynamic network under interference and mobility
constraints. First, we propose an iterative algorithm to optimize
the deployment of MAPs. Our solution efficiently and quickly
determines the number, position and configuration of MAPs for
highly dynamic scenarios. MAPs provide appropriate Quality
of Service (QoS) connectivity to mobile ground user in mm-
wave or sub-6GHz bands and find their optimal positions in
a 3D grid. Each MAP also implies an energy cost (e.g. for
travel) to be minimized. Once all MAPs deployed, a deep multi-
agent reinforcement learning algorithm is proposed to associate
multiple users to multiple MAPs under interference constraint.
Each user acts as an independent agent that operates in a fully
distributed architecture and maximizes the network sum-rate.

I. INTRODUCTION

The sixth-generation (6G) of wireless networks aims to
dynamically and efficiently extend the communication en-
vironment to enable access to all people, information, and
goods, anywhere and anytime, in an ultra-real-time experience.
This requires the design and development of mechanisms for
the dynamic coverage and connectivity extension through the
exploitation of innovative devices (e.g., drones, robots, cars).
These innovative devices can act in the network as Mobile
Access Points to cover areas that are difficult to access, where
the infrastructure is only needed for a limited and short time,
or where the regular network infrastructure has been dam-
aged. This flexible infrastructure [1] brings several challenges:
dynamic three-dimensional (3D) MAPs deployment and their
trajectory adaptation, line-of-sight management, and dynami-
cal network management and configuration (e.g., associating
multiple users with multiple access points).

The problem of MAP placement attracts particular attention
in the literature. It is a challenging problem, involving complex
path-planning, as well as radio resource optimization and
network management. The optimal solution of such a problem
usually gives rise to the following problems: i) how many
MAPs to deploy, and ii) how and where to deploy them with
respect to the network dynamics. In this context, a genetic
algorithm is proposed in [2] for network coverage extension.
In [3], the authors designed a framework for drone place-
ment under user mobility constraints. Authors in [4] adopts
a two-phase approach, iteratively optimizing the number of
Unmanned Aerial Vehicles (UAVs) to deploy and adjusting
their positions with respect to (w.r.t.) user equipment’s(UE)
locations. A similar approach is proposed in [5] based on graph
theory taking into account backhaul constraint. However, none

of these solutions jointly consider the dynamic of user traffic
request, their mobility, and their association with MAPs during
optimization, which is the focus of our paper. To address
this problem, authors in [6] proposed a reinforcement learning
algorithm that continuously learns and adapts the placement of
a MAP w.r.t. users mobility in order to maximize the network
sum-rate. In [7], the authors jointly optimize the coverage ex-
tension, together with UAV trajectory and spectrum allocation,
but without mobility. However, all of these approaches are ap-
plied to a single UAV and have failed to generalize to multiple
MAPs, which is a difficult problem. Specifically, a key task
in MAP placement optimization is to dynamically determine
the optimal UE association with multiple MAPs. Inefficient
user association can severely affect network spectral efficiency
and UEs’ perceived QoS. Unfortunately this problem cannot
be reduced to connecting users to the nearest Base Station
(BS) due to co-channel interference and unfavorable channels
conditions, which impact network performance. To address
this issue, a machine learning algorithm and a contract theory
algorithm are proposed in [8] to solve the MAP placement
problem while guaranteeing user QoS. However, this work
does not consider mobility. In [9], the authors proposed dual
connectivity management where users can be connected with
the ground BS and MAPs simultaneously using a genetic
algorithm to optimize network sum-rate. In [10], the authors
proposed a joint optimization of 3D MAP placement and user
association but for a single UAV. Similarly, [11] found the
MAP position, user association, and backhaul configuration
using a clustering algorithm. However, these solutions do
not consider user mobility, highly impacting the interference
network profile. In our previous work [12], we proposed a
Deep Multi-Agent Reinforcement Learning (MARL) based
user association algorithm, which jointly considers co-channel
interference and network traffic dynamics. Moreover the solu-
tion can handle a variable number of users and their mobility.
In solution proposed in this work, each user acts as an
independent agent operating in a fully distributed architecture
and making autonomous decisions. We propose a two-phase
approach, which first optimizes the number and placement of
MAPs to minimize the associated deployment cost. We achieve
this first step with a scalable iterative Monte Carlo based
algorithm, which jointly optimizes the number and position of
deployed MAPs. Next, in the second step, we optimize the user
association to provide access to UEs in both sub-6GHz and and
mm-wave band and to guarantee the UEs’ QoS requirement.
Our proposed solution jointly considers inter- and intra-cell
interference, user mobility, and user traffic request during the
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optimization. As a result, the proposed solution adapts well
by design to dynamic networks with mobility, dynamic traffic,
and varying number of UEs.

The remainder of the paper is organized as follows. Section
II presents the system model and formulates the addressed
problem. Then, Section III describes the proposed solution,
whereas Section IV provides numerical results, demonstrating
the performance of our proposed algorithm. Finally, Section
V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink network where K MAPs, (e.g.,
UAVs), are jointly deployed with a Macro Base Station (MBS)
to provide ubiquitous coverage to P UEs. We define A the
set of APs and U = {u0, u1, ..., uP−1} the set of UEs. We
assume that each UE i ∈ U is equipped with two antennas
and can communicate at sub-6GHz and mm-wave frequencies
with the MBS and MAPs, respectively. In this network, we
focus on the optimization of MAP locations jointly with
Radio Resource Management (RRM). In this context, let
li,k = {xi,k, yi,k, zi,k} denote k-th possible location of the
MAP i represented as a coordinate in 3D dimensional space as
represented in Fig. 1. We denote with Li = {li,k}k=0,...,Li−1
the set of all possible locations of MAP i, and let L = ∪i∈ALi
denote the set of all possible MAPs locations, which can be
determined a priori using path-planning or defined as the set
of possible safe locations of MAPs e.g., in urban area. We
define `i,k as the binary variable which equals 1 if the MAP
i is effectively deployed on its k-th location and 0 otherwise.
Moving a MAP from one location to another incurs a certain
cost either in terms of energy consumption, network operation
or renting. We consider this aspect by defining ci(k, p) as the
cost associated to moving a MAP i from location k ∈ Li(t)
to location p ∈ Li(t+ 1):

ci(k, p) = ei(k, p)Ec + ci,0, (1)

where Ec is the cost of a unit of energy, ei(k, p) is the energy
consumed by MAP i to move from k to p, which is a function
of the distance [13], and ci,0 is a fixed cost due to, e.g., the
renting of MAP i. Hence, we can define the total cost C(t)
incurred by the deployment of all MAPs as follows:

C(t) =
∑
i∈A

∑
k∈Li(t)

∑
p∈Li(t+1)

ci(k, p)`i,k(t)`i,p(t+ 1)

︸ ︷︷ ︸
Ci(t)

. (2)

Such a cost function may also vary depending on the number
of targeted UEs, which will be served by the MAP. Therefore,
our first objective focuses on determining the optimal subset
D ⊂ L of MAPs locations that minimize C(t) by jointly
minimizing the number of deployed MAPs and optimizing
their deployment w.r.t. UEs’ QoS. Accordingly, our second
objective focuses on the user association problem. This is
because the optimal assignment of UEs to APs improves the
network spectral efficiency and the perceived QoS of UEs
[12]. Hence, let us denote with xi,j(t) the binary association
variable, which equals 1 if UE j is associated with AP i ∈ A

Fig. 1. Cell architecture and 3D cell configuration

at time t, and 0 otherwise. We assume that all APs perform
beam training in advance, so that they are able to set up an
appropriate beam when a connection is established between
AP i and UE j. We denote with Ri,j(t) the corresponding
communication rate, which is given by the Shannon capacity:

Ri,j(t) = Bi,j log2(1 + SINRi,j(t)), (3)

where Bi,j is the bandwidth allocated by AP i to UE j and
SINRi,j the signal-to-interference-plus-noise ratio between
AP i and UE j, which comprises intra-cell and inter-cell
interference of both grounded and mobile APs. Then, given the
data demand of UE j, Dj(t), we define its QoS’s satisfaction
κj(t) ∈ [0, 1] as follows:

κj(t) =
∑
i∈A

xi,j(t)min

(
1,
Ri,j(t)

Dj(t)

)
. (4)

Accordingly, we say that the QoS is fully satisfied when
κj(t) = 1. Finally, to account with fairness in the association,
we define the total network utility function as:

Rα(t) =
∑
i∈A

∑
j∈U

xi,jUα (min (Dj(t), Ri,j(t))) , (5)

where Uα(·) is the α-fair utility function given in [14] as:

Uα(x) =

{
(1− α)−1x1−α, ∀α ≥ 0 and α 6= 1,
log(x), if α = 1.

(6)

B. Channel Model
The channel model varies according to several factors such

as the radio environment (i.e. suburban, urban, dense urban,
high rise building), the communication band (i.e. sub-6GHz
and mm-wave), and the type of communication (i.e. ground-
to-ground or ground-to-air). In general, the channel path loss
PLT for any communication link can be defined on the basis
of the Line of Sight (LoS) conditions as follows:

PLT = pPLLos + (1− p)PLNLos, (7)

where p is the LoS probability, PLLos, and PLNLos are the
LoS and NLoS path loss respectively.
Air/ground sub-6GHz path-loss. Following [15], we define
the LoS probability as a function of the elevation angle θ :

p(θ) = c(θ − θ0)d, (8)

where θ0 = 15◦ is the lowest possible angle and c, d are
environmental parameters, and we compute the frequency-
dependent path loss model as a function of the link type
l ∈ {Los,NLos}:



PLl = 20log10(d) + 20log10(f)− 27.55 + χσl . (9)

Here, d the distance between the transmitter and the receiver,
f is the carrier frequency in MHz, and χσl is the shadowing
coefficient, which follows a normal distribution with a mean µl
and a standard deviation σl, whose values are given in [15].
Air/ground mm-wave path-loss. Here, we define the LoS
probability as a function of the height of the transmitter (ht)
and receiver (hr) and some environmental parameters [16]:

p(d) =

max(0,γ(d))∏
n=0

1− e

(
−
γ(d)max(ht,hr)−(n+1

2
)(|ht−hr|)2

2ε2γ(d)2

)
. (10)

In (10), γ(d) represents the average number of buildings
crossing the link between the transmitter and the receiver
separated by a distance d. Hence, the distance-dependent path
loss model is [17]:

PLl = αl + 10βllog10(d) + χσl ; l ∈ {Los,NLos}, (11)

where, αl, βl depend on the radio environment.
Ground/ground sub-6GHz or mm-wave path-loss. Here, the
path loss model can be defined without considering the LoS
probability [18]:

PLT (d) = 10αlog10(d) + β + 10γlog10(f) + χσ. (12)

Where d is the distance between the transmitter and the
receiver, f the carrier frequency and χσ the shadowing effect.

C. Formulation of MAP Deployment Problem
After the above definitions, we formulate the MAP deploy-

ment problem to minimize the total deployment cost as:

minimize
xi,j ,`i,k

1

T

T−1∑
t=0

C(t) (P1)

s.t. xi,j(t), `i,k(t) ∈ {0, 1}, ∀i, j, k, t (C1)
Ci(t) ≤ Cmax, ∀i ∈ A\{0} (C2)∑
j∈U

xi,j(t) ≤ Ni, ∀i, t, (C3)∑
i∈A

xi,j(t) = 1, ∀j, t, (C4)

κj(t) ≥ Qj , ∀j, t, (C5)∑
k∈Li(t)

`i,k(t) ≤ 1, ∀t, i ∈ A\{0}, (C6)

∑
i∈A\{0}

∑
k∈Li(t)

`i,k(t) ≤ Kmax, ∀t, (C7)

The constraint (C1) defines xi,j and `i,k as binary variables.
The constraint (C2) ensures that the deployment cost of a MAP
is lower than the maximum cost Cmax. The constraints (C3)
and (C4) ensure that each AP i serves at most Ni UEs and
that each UE is associated to exactly one AP. The constraint
(C5) guarantees the QoS satisfaction of each UE. Finally, the
constraints (C6)-(C7) guarantees that a MAP is deployed to
at most one location at a time and that the total number of
deployed MAP does not exceed Kmax. It is worth noting that

Fig. 2. Proposed solution architecture

Problem (P1) is non-convex and NP-hard, thus difficult to
solve with classical optimizations techniques.

III. PROPOSED SOLUTION

Our proposed solution for deploying MAPs jointly considers
the deployment cost, UEs’ mobility, co-channel interference,
and traffic request dynamic. One key challenge is that the
optimal MAP deployment strategy strongly depends on UEs’
traffic requests and the co-channel interference that will be
generated, which is not known until UEs are fully associated.
At the same time, the optimal association of UEs also depends
on the MAP deployment. This ping-pong effect makes the
problem very complex and difficult to solve. To limit such a
complexity, we first define a 3D grid of positions for MAPs.
The discretization of the 3D space gives a finite number of
solutions for the problem P1. However, the search space of
possible solutions remains large, prohibiting any exhaustive
search approach. Thus, we design SIMBA, a Scalable Iterative
Monte-Carlo Based Algorithm, with low-complexity, which
explores the search space to find (sub)-optimal solutions as
illustrated in in Fig. 2. SIMBA, first performs Monte-Carlo
explorations of MAPs deployment strategies and then exploits
the best solution by adopting a standard user association
algorithm based on maximum Signal-to-noise-ratio (MAX-
SNR) to find the sub-optimal MAP deployment with low com-
plexity. Next, based on SIMBA output, we apply our previously
proposed MARL framework to train a user association, which
in contrast to the MAX-SNR algorithm, considers co-channel
interference. We show that this approach is able to compensate
the sub-optimality of SIMBA.

A. SIMBA: Scalable Iterative Monte-Carlo Based Algorithm
This section describes SIMBA, a low-complexity iterative

algorithm (see Algorithm 1), which finds near-optimal MAPs
deployment solution (in terms of deployment cost and UEs’
QoS satisfaction). SIMBA alternates a Monte-Carlo explo-
ration and exploitation phases. During an exploration, SIMBA
randomly samples a set Mk of k locations on which MAPs
are deployed. Each time it deploys a MAP i on a location p,
it updates a score associated to this location. Let score(i)p (t)
be such a score:

score(i)p (t) =
1

|Ui|
∑
j∈Ui

κj(t), (13)

where Ui is the number of UEs served by MAP i. As we
consider interference and mobility, the score of a position is
computed based on UEs’ perceived QoS. Thus, higher the
score, better the QoS of UEs served by a MAP deployed at
that position. In the exploitation phase, a MAP is deployed
at the location with the highest score. This location is no
longer sampled until a solution of P1 has been found. Then



we iterate over T episodes at the end of which we select
the best solution of MAPs deployment D. Eventually, given
D, we learn the optimal user association using a multi-agent
reinforcement learning based approach.

Algorithm 1: SIMBA MAP Deployment Algorithm
Input: Define the set of MAPs possible locations L

and the number of Monte-Carlo iterations M .
Initialize the score of locations: scorep = 0, ∀p ∈ L.
Initialize the set of deployed MAP locations D = ∅.
Set Cmin =∞ and k = Kmax (max. number of UAVs)
for t = 1, . . . , T do

Initialize an empty set of locations Dt = ∅.
for s = 1 . . .Kmax do

Step 1: Monte-Carlo exploration
for m = 1, . . . ,M do

Randomly sample k locations Mk(m) ∼ L.
Deploy a UAV to location p, ∀p ∈Mk(m).
Perform user association procedure1.
for p ∈Mk(m) do

Compute the score of p using Eq. (13).
Update scorep of location p.

end
end
Step 2: Monte-Carlo exploitation
Store location i = argmaxi{scorei} in Dt.
Deploy UAVs into the locations in Dt.
Compute C(t), and κj(t), ∀j.
if (C1)-(C7) are guaranteed then

Break.
else

Remove i from L and set k = k − 1.
end

end
Step 3: Test Monte-Carlo solution
if C(t) < Cmin then

Cmin = C(t)
Save current deployment D = Dt

end
end
Output: D set of locations of deployed MAPs
1Note: Here, we adopt the MAX-SNR algorithm to limit complexity.

B. User Association
In this section, we describe the proposed MARL algorithm

for user association. In the proposed framework, we model
each UE as an agent, which cooperatively learns with its team-
mates a common user association policy through interaction
with the shared radio environment. To this end, agents learn
to map their local and global observations oj(t) of the radio
environment to actions aj(t) corresponding to connection
requests towards MAPs. Following our previous work [19], let
olj(t) = {Rα(t),RSSj(t),AoAj(t), Raj(t),j(t), Dj(t)} denote
the local observation, which comprises the received signal
strength RSSj , and the associated angle of arrival AoA w.r.t
to all MAPs. Here, Raj(t),j(t) represents UE j’s perceived
rate and Dj(t) the UE j data demand. Moreover let ogj (t) =

{(xk(t), yk(t), zk(t), ak(t − 1)), ∀k ∈ Nj(t)} denote the
global observations of UE j, where (xk(t), yk(t), zk(t)) is
the location of its k-th neighbors, ak(t − 1) is the connec-
tion request in previous time slot, and Nj(t) denotes the
UE neighborhood. This global observations represent UE j
perception of its surrounding environment. The goal of the
learning procedure is to define the user association policy
πw, with learnable weights w, which outputs the association
probability vector pj(t) = π(oj(t)) ∈ R|A| that maximizes
the sum of γ-discounted rewards over a time horizon Te:

Gj(t) =

Te∑
τ=t+1

γτ−t−1Rα(τ), (14)

where γ is the discount factor such that 0 < γ < 1. Finally,
we construct the policy πw using an actor-critic module,
which is optimized via proximal policy optimization [19]. In
particular, our proposed solution is specifically conceived to
handle dynamic networks with varying number and position
of UEs.

C. Complexity Analysis

As we discretize the 3D-space, a naive algorithm may
find the optimal solution of problem P1 using an exhaustive
search. This algorithm has a complexity of O(C), where

C =
∑Kmax

i=0

(
|L|
i

)
is the number of possible combinations

of locations. In the worse case scenario where Kmax ≥ |L|
2 ,

we have C ≥ 2|L|−1. Note that each combination is not
guaranteed to solve P1, which also requires solving the user
association, leading to a prohibitive solution with very high
complexity. In contrast, SIMBA has a complexity of approx-
imately O(TMKmax), which scales linearly with T and the
number of Monte-Carlo iterations M that we can conveniently
choose to find (sub)-optimal solutions in a reasonable time.

IV. NUMERICAL RESULTS

Here, we assess the performance of our proposed MAP
deployment method on dynamic scenarios at different scales.
The first scenario, named SmallScale, is a small scale deploy-
ment of 10 UEs randomly and 4 MAPs moving through 12
positions at 3 different altitudes (i.e. 15, 35 and 50 m) in a
100 m by 100 m area. In this scenario, we can easily compare
our method with brute force mechanism, named Exhaustive,
without too high computational time. The MediumScale sce-
nario is made with 40 UEs and 10 MAPs moving through 27
positions at 3 altitudes in a 200 m by 200 m area. The UEs are
deployed with uniform probability and move randomly over
the cell. The UEs’ traffic follows a Poisson distribution bit/s
and simulates dynamic rate demand. Both scenarios include
a baseline random algorithm, named Random, where the
deployment decision and the chosen location follow a uniform
law U(0, 1). Thus each UAV chooses a random location and
when a better combination is found, the solution is updated.

Concerning MAPs, each UAV has a coverage range defined
by the aperture angle of its antenna to ground UEs and its
altitude. At most K = 10 UAVs can de deployed and each
UAV can connect to at most Ni = 10 UEs. We fix the rent



TABLE I
SIMULATION PARAMETERS

Scenario Parameters Small Scale Medium Scale
Cell size 100× 100 m 200× 200 m

Number of UEs 10 40

Number of positions 4× 3 = 12 9× 3 = 27

UE Mobility Random Walk
Avg. traffic demand Dj(t) 200 Mbps

Channel Parameters MBS BS/UAV
Carrier Frequency fc 2 GHz 28 GHz

Bandwidth 10 MHz 500 MHz

Thermal Noise N0 −174 dBm/ Hz

Shadowing power σ2 9 dB 12 dB

Transmit Power 46 dBm 20 dBm

Antenna Gain 17 dBi Directive [19]
UAV Aperture 120 deg

Altitude [10, 35, 50] m

cost ci,0 = c0 = 1, ∀i, so that we can omit it from the
optimization in Eq. (1). Table I gives an overview of the
simulation parameters.

A. Drone Deployment
We set M = 10 and T = 100 in SIMBA and average the

results over 30 Monte-Carlo simulations. We conveniently fix
the QoS’s target of (C5) to Qj = 100% for SmallScale and
Qj = 85% for MediumScale due to limited radio resources.
We first assess the deployment cost of our proposed solution
compared to the two benchmarks as shown in Fig. 3. Our
algorithm converges faster than a naive random approach to
a close optimal-solution. In a high mobility context, it is
important to obtain a flexible algorithm that finds a solution
faster than the network changes.

Moreover, our algorithm guarantees not to deploy more
drones than needed, which may imply a high cost. Meanwhile,
as shown in Fig. 4.a, our solution ensures and guarantees the
targeted QoS for UEs in both small and medium scale scenar-
ios with less MAPs compared to a naive approach as illustrate
4.b. Finally, as we added more potential locations for UAVs
in MediumScale scenario, our solution is better at identifying
the best combinations than a random naive approach and faster
than an exhaustive solution, thus, guaranteeing a near-optimal
solution with 4.22 UAVs deployed in average.

B. User Association
To train the user association policy, we use the MARL

framework described in section III-B. All simulation results
are plotted for a learning rate µ = 10−4 and a discount
factor γ = 0.6. The MARL agents are trained for Te = 3000
episodes. Agents are trained with α = 1 for the α-fair utility
function, meaning that the agents are trained on a fair sum-
rate setting. Note that all the hyperparameters were determined
empirically. We perform several deployments and trainings
with increasing number of MAPs and compare the proposed
solution to the MAX-SNR-based approach for MediumScale
scenario. Here, results are averaged over 300 simulations with

Fig. 3. MAP deployment cost for each method and for both scenarios as a
function of the number of iterations.

Fig. 4. (a) Average percentage of UEs with satisfied QoS and (b) average
number of UAVs deployed for both scenarios and for each method.

T = 150 iterations. Fig. 5 shows the impact of increasing the
number of UAVs on the network performance. We observe
that, for a number of deployed UAVs greater than tree, our
proposed approach increases the log network sum-rate by
1.5%, implying a network sum-rate enhancement by nearly
30% compared to MAX-SNR algorithm. Moreover, for the
given scenario, Fig. 5 illustrates the trade-off between drone
deployment and UE QoS. With more than 4 UAVs deployed,
the log sum-rate barely varies. This result confirms that when
interference is taken into account, increasing the number of
access points does not necessarily implies better UE’s QoS at
the risk of increasing the deployment cost.

Next, in the MediumScale scenario, we increase the user
density λ(UEs/m2) to show the effectiveness of our solution
in this complex setting. Fig. 6 compares the average handover
frequency and the network log sum-rate as a function of
user density λ. The increase of λ ultimately increases the
number of handovers frequency for the MAX-SNR algorithm
as multiple UEs compete for the same resources. In contrast,



Fig. 5. Average network log sum-rate and average percentage of UEs
with QoS satisfaction as a function of the number of deployed UAVs for
MediumScale scenario for both UE association algorithms.

Fig. 6. Average network log sum-rate and average handover frequency as a
function of the user density.

our proposed solution guarantees stable performance due to
its capability to to balance the network load, especially in
dense deployment scenarios. As shown in Fig. 6, our proposed
solution improves the log network sum-rate by 4%, which
implies an increase in network sum-rate by 60% compared to
a MAX-SNR algorithm, in particular for dense deployment
scenario (e.g. λ = 9× 10−3UEs/ m2).

V. CONCLUSION

In this paper, we proposed an algorithm to solve the joint
problem of MAP deployment and user association while
taking into account UE mobility, UE demand and network
interference. The algorithm finds the MAP positions in a
3D space and optimizes the user association for a given
network configuration. The proposed algorithm is the first step
for more complex scenarios. We will consider path planning

optimization to exploit MAP connectivity while moving within
the network, include the backhaul constraint and optimization
and extend our study to more realistic configurations with
aerial and ground base stations.
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