
Title Robust and Resilient Federated Learning for Securing Future Networks

Authors(s) Siriwardhana, Yushan, Porambage, Pawani, Liyanage, Madhusanka, Ylianttila, Mika

Publication date 2022-06-10

Publication information Siriwardhana, Yushan, Pawani Porambage, Madhusanka Liyanage, and Mika Ylianttila. “Robust 

and Resilient Federated Learning for Securing Future Networks.” IEEE, 2022.

Publisher IEEE

Item record/more 

information

http://hdl.handle.net/10197/13091

Publisher's statement © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 

for all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.

Publisher's version (DOI) 10.1109/eucnc/6gsummit54941.2022.9815812

Downloaded 2023-04-07T10:52:29Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Robust+and+Resilient+Federated+Learni...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F13091


Robust and Resilient Federated Learning for Securing Future
Networks

Yushan Siriwardhana∗, Pawani Porambage∗, Madhusanka Liyanage†∗, Mika Ylianttila∗,
∗Centre for Wireless Communications, University of Oulu, Finland. email: {firstname.lastname}@oulu.fi

†School of Computer Science, University College Dublin, Ireland. email: madhusanka@ucd.ie

Abstract—Machine Learning (ML) and Artificial Intelligence
(AI) techniques are widely adopted in the telecommunication
industry, especially to automate beyond 5G networks. Federated
Learning (FL) recently emerged as a distributed ML approach
that enables localized model training to keep data decentralized
to ensure data privacy. In this paper, we identify the applicabil-
ity of FL for securing future networks and its limitations due to
the vulnerability to poisoning attacks. First, we investigate the
shortcomings of state-of-the-art security algorithms for FL and
perform an attack to circumvent FoolsGold algorithm, which
is known as one of the most promising defense techniques
currently available. The attack is launched with the addition
of intelligent noise at the poisonous model updates. Then we
propose a more sophisticated defense strategy, a threshold-based
clustering mechanism to complement FoolsGold. Moreover, we
provide a comprehensive analysis of the impact of the attack
scenario and the performance of the defense mechanism.

Index Terms—Federated Learning, Poisoning Attacks, De-
fense Mechanism, Label Flipping

I. INTRODUCTION

Artificial intelligence (AI) and Machine Learning (ML)
play vital roles in future mobile networks concerning many
aspects such as intelligent wireless communications, big data
analytics [1], optimization of network architectures, protocols
and operations [2], intelligent attack detection, mitigation,
and prevention. The typical setting in ML considers a central-
ized learning phase using a centralized dataset collected from
multiple distributed agents. However, the centralized nature
in the conventional ML has specific issues in terms of lack
of privacy and inefficient utilization of network bandwidth.
Since the real-world data is usually decentralized across
many entities, it is challenging to collect data continuously
to process at one central server. As the networks bring
intelligence towards the edge of the network, running the
ML algorithms at the edge is also required. This requires
data collection from multiple sources and increases the need
for having distributed ML algorithms over centralized ones
more than ever.

The complexity of 5G and 6G wireless networks is im-
mense due to billions of connected devices, interconnec-
tion of a vast number of heterogeneous networks including
hyper-connected clouds, and the realization of novel appli-
cations [3]. The difficulty of operation and management of
complex next generation networks motivates the automation
of networks. One such initiative that leverages future net-
works is the Zero-touch Network and Service Management
(ZSM) proposed by European Telecommunications Standards
Institute (ETSI) [4]. Deployment of AI/ML techniques is
mandatory to enable automation and the distributed nature of

future networks calls for a distributed implantation of AI/ML
techniques. Federated Learning (FL) is a decentralized ML
technique that can be easily adopted in future networks.

The end devices (i.e., workers) in FL can be vastly
distributed and they participate in a learning process with a
centralized entity (i.e., parameter server) by training a model
shared by the centralized entity. The workers train the shared
model locally using the local data and transmit the trained
model back to the parameter server. The parameter server
combines the received models and shares the aggregated
model back to the workers in an iterative manner. The
local data regime ensures data privacy and communication
efficiency.

FL environment is inherently insecure due to the poisonous
model parameters supplied to the centralized server [5].
Since the parameter server cannot guarantee that the workers
provide accurate local models, defense mechanisms are a
must for robust FL before applying FL techniques for 5G and
future 6G networks. The server must have robust techniques
to distinguish poisonous and honest users and learn only from
honest users. This is challenging as the parameter server does
not possess any validation data in a practical scenario.

Our work improves the robustness of FL in the presence of
noisy adversaries. We explore the limitations of the state-of-
the-art robust algorithm FoolsGold [6], perform an intelligent
noise attack using coordinated adversaries to circumvent its
defense. We demonstrate the relation between the noise level
and the attack success. We also propose a modified, more
sophisticated threshold-based clustering defense algorithm
to complement FoolsGold. We show that our algorithm
performs better in the presence of noisy adversaries and
provides a similar performance as FoolsGold when there are
no adversaries. The remainder of the paper is organized as
follows: Section II presents the related work on robust FL
for 5G and beyond networks. Section III describes the threat
model and the attack methodology. Section IV evaluates the
success of the attack. Section V describes the novel defense
mechanism we propose. Finally, Section VI concludes the
paper with the future research directions.

II. RELATED WORK

FL provides vital solutions to achieve ubiquitous AI in
6G [7]. The use of FL for the next-generation networked
industrial systems [8], ultra-reliable low-latency vehicular
communications [9] presents the significance of FL for future
networks. AI act as an enabling technology that improves
ZSM performance [10]. Despite being an enabler for ZSM,



AI introduces new limitations and risks that need to be
addressed to make ZSM a reality [11].

FL systems are vulnerable to model poisoning attacks [5]
because the end users possess the data. Byzantine-Robust
FL proposes solutions for the model poisoning attacks on
FL systems. Krum [12], Bulyan [13], trimmed mean [14] and
median [14] algorithms distinguish poisonous users and elim-
inate them from the learning process. These algorithms op-
erate under the principle of “adversaries deviate the learning
process from a common goal”, and discard highly dissimilar
model updates. However, Krum, Bulyan, and trimmed mean
require an estimation of the number of adversaries in the
system, thus, limiting their practical applications. The median
algorithm is easily vulnerable to increasing attacker count.
Moreover, all these algorithms are vulnerable to targeted
attacks [5]. FoolsGold algorithm [6] achieves substantially
improved performance over the existing algorithms without
relying on the expected number of adversaries or a validation
dataset at the server. It considers that the adversaries have a
common goal to deviate from the learning process. Hence,
they collectively act similarly. The algorithm uses update
similarity as a key parameter to distinguish poisonous updates
and performs better with many adversaries. However, it has
poor performance with a small number of adversaries in the
system, vulnerable to intelligent and dynamic noise attacks.

III. THREAT MODEL AND ATTACK

A. System model

The system model consists of a central server and a
decentralized set of nodes as in a general FL system. The
adversary is an entity with the intention of performing a
targeted poisoning attack on the FL system. The adversary
controls C poisonous nodes (attackers) that perform the label
flipping attack. Honest nodes do not perform label flipping
attacks and provide accurate local model updates to the
central server. The total number of nodes in the system is
n. The adversary does not know the count of honest nodes
in the system but fully controls the C poisonous nodes
and performs coordinated attacks. The adversary knows that
the central server is equipped with FoolsGold algorithm,
which introduces robustness against poisoning attacks on FL
systems. Figure 1 depicts various components of the system
model.

Honest Participants
Adversary Controlled

Domain

Central Server

W1 ... Wc+1 ... WnPoisonous
Nodes

Honest
Nodes

Poisoned
Local

Models

Accurate
Local

Models

Flipped
Data

Real
Data

Robust
Algorithm

(FoolsGold)

Central
Model

Wc

Fig. 1: System model of poisoning attacks for FL

We exploit the weaknesses of the existing FoolsGold
design and perform a coordinated, targeted model poisoning
attack to circumvent its defense. We use the same ML
model used in the original paper [6], a single layer fully-
connected softmax for classification. We use MNIST digit
classifier dataset [15] for two reasons. First, the original
paper uses MNIST dataset to illustrate the performance of the
FoolsGold design. Second, MNIST dataset is widely used for
performance evaluation of ML algorithms in general. As we
are demonstrating an attack against a robust FL algorithm,
using MNIST provides a good benchmark for future research.
We use the following assumptions about the FL system to
perform the attack.

1) The adversaries know that the FoolsGold algorithm
is implemented at the parameter server to distinguish
poisonous updates.

2) The training data contains a set of features that are not
vital for the accuracy of the model training.

3) The adversary controls a sufficient number of
users/nodes of the system to launch a coordinated
attack, known as the poisonous nodes.

B. Intelligent noise attack

The first step of the attack is flipping the labels of a chosen
class. We call the original class the source class and the
flipped class as the target class. We denote this attack as
(source→target) attack. For example, an attack that flips the
labels of class 1 to class 7 is called (1→7) attack. We do
not flip the labels of other classes to make sure the server
has less probability of detecting the attack, as other classes
behave normally. As FoolsGold algorithm primarily depends
on the Cosine Similarity (CS) of the received gradient
updates as depicted in equation 1, we intelligently introduce
random noise to the gradient updates at poisonous nodes. The
poisonous nodes train the local models with the label flipped
data to obtain a poisonous gradient update. Then they add
the noise to the poisonous gradient update before sending
them to the central server. A noise vector specifically replaces
a part of a given poisonous gradient update to introduce
extra dissimilarity among other noisy poisonous gradient
updates. We explain the algorithm for the intelligent noise
addition later in Section III-B. Only the gradient updates
corresponding to the less important features of the model
are replaced with noise, while the vital features required for
model training are kept as they are. This ensures that the
noise does not reduce the effectiveness of the attack. The
Cosine Similarity (CS) between two gradient updates A and
B can be expressed as follows,

Cosine Similarity (A,B) =
A · B

∥A∥∥B∥
(1)

Addition of the intelligent noise: As the adversary has
access to the data of all the poisonous nodes, he possesses
prior knowledge on which gradient updates are vital for at-
tack and which gradient updates can be populated with noise.
Therefore, after the local model training is completed, the
adversary replaces x amount of gradient values in the local



model updates. These gradient values are less significant to
the model training. As an example, the ones corresponding
to the black pixels of the edges of MNIST dataset images.

First, we separate the poisonous nodes into groups of
four. The reason to create groups of four poisonous nodes
is to have a minimal similarity among group members while
having substantial amount for coordination within the group.
We generate a noise vector N1 comprising x features, using
standard normal distribution. We generate the second noise
vector N2 orthogonal to N1. We also create the negatives of
those vectors, −N1 and −N2. The cosine similarity among
these four vectors are CS(N1, N2) = 0, CS(−N1,−N2) =
0, CS(N1,−N1) = −1 and CS(N2,−N2) = −1. We then
multiply each of these four vectors by a scalar called Noise
Intensity (I). The scalar multiplication does not affect the
cosine similarity. Noise intensity provides dominance for the
noise values over the other gradient values in a trained model
once inserted. Noise intensity (Ii) for a given poisonous
node i is the multiplication of two parameters as shown
in equation 2, the mean of the absolute values of gradient
update Mi of a poisonous node and an integer value called
Noise Scale (N ). By varying N , we can obtain different Ii
for a given poisonous node i at different instances. Since
Ii depends on Mi, a higher N makes sure the dominance
of noise over the other gradient values generated after local
training.

Ii = N.Mi (2)

We then replace specifically selected gradient values of
poisonous node 1 in a given group by the values inside I.N1.
We repeat the same process for the other three poisonous
nodes using the noisy vectors I.N2, −I.N1 and −I.N2

respectively. The noise values have a higher effect on the
cosine similarity due to I , even though the full gradient
vectors are not orthogonal or negative to each other. The
domination of noise makes sure that the cosine similarity is
kept at a lower value. This way, the four users of a given
group have minimum cosine similarity. We repeat the same
procedure for all the remaining groups. Algorithm 1 depicts
the process for intelligent noise addition. A different strategy
is to form the groups of two or more than four poisonous
nodes, which we do not discuss in this paper and consider
as future work.

As N increases, the FoolsGold algorithm decides that
the poisonous nodes exert a highly dissimilar behavior. This
causes the honest users to have a higher cosine similarity than
the poisonous nodes, reducing their impact on the next global
model update. A significantly higher value for noise intensity
makes the system learn only from the poisonous nodes as
they have an extreme dissimilarity. It makes the system learn
faster, only using the poisonous nodes, and causes the Test
Accuracy (TA) of attacked class to decline faster.

IV. EVALUATION OF THE ATTACK

We input MNIST digit classification dataset to evaluate
the effectiveness of the attack [15]. We consider IID data

Algorithm 1: Attack FoolsGold with Intelligent
Noise

Data: Local SGD update ∆i of each attacker i,
Attacker count C, Noise intensity I , Indexes
of gradient values to be replaced

Result: Noisy gradient vectors of attackers
Attacker groups = C÷4;
for Each attacker group do

Create noise vector N1;
Generate N2 such that N1⊥N2;
Generate −N1 and −N2;
Create I.N1, I.N2, −I.N1, −I.N2;
Replace the selected values of ∆j of attacker j
with noise values from I.N1, I.N2, −I.N1,
−I.N2;

end

distribution at each node and analyze different data distri-
butions in the future work. Since the focus is on targeted
poisoning attacks, we perform a (1→7) attack as in the
original paper [6]. For the attack analysis of this paper, we
keep the total number of users (n) at 40 and consider the
number of poisonous nodes (C) as 4, 8, 12, 16 and 20. We
replace 10% of the gradient values of the gradient update
with noise, corresponding to the less important features for
the model training. Figure 2 depicts the test accuracy of
FoolsGold algorithm in the presence of a (1→7) label flipping
attack without noise (with C = 12), which we use for the
performance comparison of attack with intelligent noise. We
obtained similar results for other C values also, even though
they are not shown. The algorithm is robust against the label
flipping attack as the test accuracy of the source class (class
1) is not affected by the attack. We use two measurements
to determine the effects of the attack.

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

T
e
s
t 
A

c
c
u
ra

c
y

Avg.

Class 0

Class 1

Class 5

Class 7

Fig. 2: FoolsGold test accuracy during a label flipping attack
with C = 12

1) The test accuracy of the source class at the conver-
gence. This determines whether the attack is successful
or not.

2) The number of iterations taken for test accuracy of
source class to become zero. This determines the
magnitude of the attack.



A. Evaluating the success of the attack

A successful attack causes the test accuracy of the source
class to decline and to ultimately reach zero. Test accuracy
converges to a value close to 1 in a failed attack. We measure
the effectiveness of our noise attack using the attack success
probability (Patt), which is the ratio between the successful
attacks count to total attack attempts. Patt for varying N
from 0 to 150 is depicted in Figure 3 for different C values
we consider. Each reported data point is the average of 20
experiments. For a fixed C, at lower N values, the attack fails
while the attack becomes successful when N is increasing.
For further increased N values, Patt reaches 1 and remains
as it is. Figure 3 also shows that, as C increases (denoted by
different lines) Patt reaches 1 at a significantly lower N . At
higher C values, a small increase in N causes larger increases
in Patt and it quickly reaches 1. Figure 3 also shows that
the gap between different C lines keeps increasing while C
in increasing. It means, at higher C values, increasing the
attacker count by 4 has a greater effect on Patt than at lower
higher C values. For example, the increase the attackers from
16 to 20 has a higher effect than increasing the attackers from
4 to 8, even though in both cases the increased attacker count
is 4.

0 50 100 150

Noise Scale (N)

0

0.2

0.4

0.6

0.8

1

A
tt

a
c
k
 S

u
c
c
e

s
s
 P

ro
b
a

b
ili

ty

C = 4

C = 8

C = 12

C = 16

C = 20

Fig. 3: Attack success probability against noise scale

Test accuracy of a successful (1→7) attack with C = 12
for a selected suitable N (N=100) is depicted in Figure 4. As
the system learns, the test accuracy of the source class (class
1) reaches 0. There is a noticeable reduction in target class
(class 7) test accuracy also. The test accuracy of other classes
remain similar to Figure 2, which means those classes are not
affected. Average accuracy also shows a decrease compared
with Figure 2 mainly due to zero class 1 test accuracy. Figure
5 shows the test accuracy of two attacks with C = 12, one
with N = 100 and the other with N = 10. The increase of
N leads to the attack’s success.

B. Evaluating the magnitude of the attack

We analyze the magnitude of the attack when C = 12
for the N values that result in Patt> 0.5. We calculate the
average number of iterations taken for the test accuracy to
reach 0. Attack success with fewer iterations means that the
attack has a higher impact. Table I shows that when N is
high, the system starts to predict the source class incorrectly
with fewer iterations.

V. DEFENDING AGAINST NOISY ADVERSARIES

We propose implementing a defense technique at the
central server to prevent intelligent noise attacks from co-

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

T
e
s
t 
A

c
c
u
ra

c
y

Avg.

Class 0

Class 1

Class 5

Class 7

Fig. 4: TA of a successful attack with C = 12 and N = 100

0 50 100 150 200 250 300 350 400 450 500

Iteration

0

0.2

0.4

0.6

0.8

1

T
e

s
t 
A

c
c
u
ra

c
y
 o

f 
C

la
s
s
 1

N = 10

N = 100

Fig. 5: TA of class 1 for different noise scales with C = 12

ordinated attackers. To the best of our knowledge, the de-
fense strategy against noise attacks is to use a weighing
mechanism at the central server, considering the importance
of model parameters. The weighing mechanism assigns a
higher weight for indicative features and a lower weight
for non-indicative features at the model aggregation. The
weighing mechanism reduces the noise added to the non-
indicative features. However, the adversary may also add
noise to the indicative features, limiting the performance of
the weighing mechanism. It is worth noting that the adversary
compromises attack effectiveness to a certain extent by
adding noise to the indicative features. Also, to learn the
indicative features, the central server must have access to a
certain amount of data. Due to these limitations, we propose
implementing a novel threshold-based mechanism to identify
the noisy updates.

A. Defense mechanism

The defense mechanism operates on the principle that the
magnitude of the noise values is significantly higher than the
other gradient values due to N . As shown in Figure 3, higher
N results in a better Patt. Then, the mean of magnitude of the
gradient updates from poisonous nodes is significantly higher
than the mean of the honest participant’s gradient updates. As
N increases, this difference should become more dominant
such that the server can cluster the gradient updates into two
groups, noisy updates, and honest updates.

The intuition of the defense mechanism is, for higher
values of N , it should use the clustering mechanism to
differentiate the noisy and honest updates. In contrast, for
lower values of N , it should use the FoolsGold algorithm.
The defense mechanism operates as follows. The central
server separates the gradient updates from all the users into



TABLE I: Average no. of iterations needed against N

N 80 85 90 95 100 105 110
Iterations 168.3 140.7 114.8 83.1 53.0 43.6 35.8

two clusters based on the mean of magnitudes of all gradient
values of a gradient update. Then the server calculates the
ratio (R) between the mean values of gradient updates of the
two clusters. We always take the ratio between the higher
mean value over the lower mean value, therefore R≥1.
Suppose R is sufficiently high. In that case, there are two
distinct clusters, and the higher mean value corresponds to
the adversary group. Then they can be eliminated in the next
global model update. If R is low, a clear separation is not
visible, and FoolsGold will be used to defend. The defense
mechanism uses a threshold (K) to decide whether to use
the cluster-based separation or use FoolsGold at the central
server.

B. Analysis of defense results

We implement this defense mechanism and conduct simu-
lations for the range of N that has the Patt> 0.5. We keep C
fixed at 12 for this analysis and consider other cases in future
work. Table II shows the defense success probability (Pdef )
for different K under different N values. Pdef is the ratio
between the number of successful defenses to total defense
attempts. Once the defense mechanism is implemented, if the
test accuracy of the source class converges towards 1, it is a
successful defense. If the test accuracy declines and reaches
zero, then it is a failed defense. Each reported data point is
the average of 20 experiments.

TABLE II: Defense probability against N and K

N
K

1-1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
120 1.0 1.0 0.95 0.85 0.6 0.1 0.05 0.0 0.0
115 1.0 1.0 0.9 0.7 0.25 0.1 0.1 0.0 0.0
110 1.0 1.0 0.7 0.55 0.15 0.15 0.0 0.0 0.0
105 1.0 1.0 0.65 0.3 0.05 0.05 0.0 0.0 0.0
100 1.0 1.0 0.6 0.4 0.15 0.05 0.05 0.0 0.0
95 1.0 1.0 0.75 0.4 0.25 0.25 0.15 0.15 0.0
90 1.0 0.9 0.9 0.55 0.2 0.2 0.2 0.2 0.15
85 1.0 1.0 0.95 0.65 0.6 0.65 0.6 0.5 0.2
80 1.0 1.0 0.95 0.8 0.8 0.85 0.75 0.65 0.2

1.0 0.5 - 1.0 0.0 - 0.5 0.0

First, consider the row corresponding to N=120. For
1≤K≤1.5 the defense mechanism always performs with
Pdef=1. As K increases, Pdef declines, which means the
performance of the defense mechanism is decreasing. This
is because, for a given N , R is a constant, and if the defense
mechanism sets a higher K, then the algorithm chooses
FoolsGold as the algorithm at the central server. However, it
is shown in Figure 3 that at this range of N values, FoolsGold
fails. Therefore, if N is high, the defense mechanism must
make sure to differentiate the poisonous nodes using the
clustering method by setting K≤R. As R is proportional
to N , when N is further reduced (for example N=105), the
threshold also should be further reduced to achieve better
Pdef values.

As N reduces further, the behavior changes. Because
at lower N , FoolsGold starts to demonstrate robustness as
shown in Figure 3. Even though R is a lower value at this
range of N , it is not mandatory to set K≤R. Even if K is set
to a higher value than R, FoolsGold algorithm’s mechanism
distinguishes the noisy gradient updates. For example, at N
= 10, which is not shown in the Table II, it does not matter
if K is set to a very high value because FoolsGold algorithm
performs better at this range of N .

A notable factor here at this range of N is, setting a far
low K would force the system to use clustering. As there
are no two distinct groups for lower N , the system may
penalize certain honest users and consider certain adversaries
to calculate the model update of the next iteration. Therefore
K should be a dynamic value for each iteration. Setting a
dynamic value for K will be considered in future work.

C. Performance comparison with FoolsGold

Based on K, the defense mechanism classifies users as
either poisonous or honest. We test the effectiveness of our
defense mechanism under three scenarios for the range of
K that produces Pdef=1, which is 1≤K≤1.5. First, for a
system without poisonous nodes, second, for a system where
poisonous nodes perform a label flipping attack, and third, a
system with intelligent noise attack. We compare our defense
mechanism with FoolsGold [6], considering the test accuracy
and the number of iterations needed to converge. The analysis
aims to check whether our algorithm achieves a similar
performance as FoolsGold.

1) A system with no attackers: Results of the comparison
are outlined in Table III. Each reported data point is an
average of 20 experiments. Our defense mechanisms achieve
similar test accuracy in a similar number of iterations.

TABLE III: Evaluation for a system with no poisonous nodes

K
Test Accuracy of Class 1 Avg. Iterations Needed

FoolsGold Our Algorithm FoolsGold Our Algorithm
1.1

0.947

0.951

55.4

68.3
1.2 0.943 59.2
1.3 0.949 58.9
1.4 0.947 57.8
1.5 0.945 54.6
1.6 0.943 59.1

2) For a label flipping attack: As outlined in Table IV,
our defense mechanism performs similarly to FoolsGold in
many cases. But for lower K, our defense mechanism takes
more iterations. This may be due to switching between the
clustering-based defense and FoiolsGold due to lower R.

TABLE IV: Evaluation for a label flipping attack

K
Test Accuracy of Class 1 Avg. Iterations Needed

FoolsGold Our Algorithm FoolsGold Our Algorithm
1.1

0.947

0.941

67.65

107.4
1.2 0.941 93.8
1.3 0.927 78.8
1.4 0.939 71.9
1.5 0.945 63.0
1.6 0.941 59.1



3) For a label flipping attack with noise: For 80≤N≤120,
our algorithm achieves similar test accuracy compared with
scenario 1 and 2. FoolsGold either fails or achieves poor
results in terms of both the test accuracy (Table V) and the
number of iterations needed (Table VI) to converge. Patt is
also depicted alongside the results.

TABLE V: Test accuracy during a label flipping + noise
attack

N
Our Algorithm (K) FoolsGold

1.1 1.2 1.3 1.4 1.5 Acc. Patt

120 0.949 0.944 0.928 0.949 0.949 0.0 100%
115 0.948 0.947 0.948 0.940 0.946 0.0 100%
110 0.947 0.947 0.941 0.941 0.947 0.0 100%
105 0.942 0.949 0.939 0.942 0.945 0.0 100%
100 0.946 0.946 0.945 0.940 0.950 0.0 100%
95 0.947 0.947 0.949 0.944 0.947 0.0 100%
90 0.941 0.944 0.943 0.945 0.948 0.894 95%
85 0.940 0.944 0.957 0.948 0.952 0.903 80%
80 0.946 0.948 0.944 0.942 0.946 0.899 65%

TABLE VI: Average number of iterations needed during a
label flipping + noise attack

N
Our Algorithm (K) FoolsGold

1.1 1.2 1.3 1.4 1.5 Iterations Patt

120 94.8 78.5 84.5 81.8 74.9 – 100%
115 77.7 83.2 69.1 71.6 71.9 – 100%
110 78.2 73.9 72.3 74.7 79.5 – 100%
105 67.4 71.4 61.8 70.2 72.3 – 100%
100 60.0 72.6 61 65.2 65.6 – 100%
95 83.5 71.2 68.1 65.7 79.4 – 100%
90 70.9 71.1 71 71.7 81.2 95.5 95%
85 70.8 71.4 68.1 76.3 77.2 110.8 80%
80 86.45 83.3 71.6 82.1 72 119.1 65%

VI. CONCLUSIONS

The applicability of AI and ML techniques is immense in
5G and 6G networks, especially with future network automa-
tion. Federated Learning (FL), a distributed machine learning
technique, shows great potential as the networks become
more distributed in the future. Hence, vulnerabilities of FL
should be explored, and techniques should be introduced
to enhance the robustness of FL against attacks, before its
deployment in real networks. In this paper, we perform a
poisoning attack with intelligent noise to circumvent the
defense of the FoolsGold algorithm designed to enhance the
robustness of FL. We evaluate the success probability and
the magnitude of our attack and demonstrate the effective-
ness of the attack. We also propose a sophisticated defense
mechanism that uses a threshold-based clustering mechanism
to compliment the FoolsGold algorithm. We also evaluate
the performance of the novel defense mechanism, compare
it with FoolsGold, and show that our defense mechanism
performs better under intelligent noise attacks.

As future work, we will consider different grouping strate-
gies for attackers to create more efficient attacks. Moreover,
we will analyze the relationship between the number of
attackers and the noise scale to optimize the attack further.
In addition to that, we will also consider more dynamic

noise insertion strategies. On the defense side, we will
investigate the possibility of dynamic shareholding to add
more sophisticated defense in the presence of more optimized
poisoning attacks.

ACKNOWLEDGEMENT

This work is supported by Academy of Finland in 6Gen-
esis Flagship (grant no. 318927) project. The research lead-
ing to these results partly received funding from European
Union’s Horizon 2020 research and innovation programme
under grant agreement no 871808 (5G PPP project INSPIRE-
5Gplus) and 101021808 (H2020 SPATIAL project). The
paper reflects only the authors’ views. The Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “AI
and 6G Security: Opportunities and Challenges,” 2021 IEEE Joint
European Conference on Networks and Communications (EuCNC) 6G
Summit, 2021, pp. 1–6, 2019.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang,
“The Roadmap to 6G: AI Empowered Wireless Networks,” IEEE
Communications Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[3] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G Networks: Use Cases and Technologies,” IEEE Commu-
nications Magazine, vol. 58, no. 3, pp. 55–61, 2020.

[4] ETSI, “Zero-touch Network and Service Management (ZSM),” ETSI
GS ZSM 002 - Reference Architecture, Aug 2019.

[5] M. Fang, X. Cao, J. Jia, and N. Gong, “Local Model Poisoning Attacks
to Byzantine-robust Federated Learning,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 1605–1622.

[6] C. Fung, C. J. Yoon, and I. Beschastnikh, “The Limitations of Feder-
ated Learning in Sybil Settings,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), 2020.

[7] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato,
“Federated Learning for 6G Communications: Challenges, Methods,
and Future directions,” China Communications, vol. 17, no. 9, pp.
105–118, 2020.

[8] S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri,
“Opportunities of Federated Learning in Connected, Cooperative,
and Automated Industrial Systems,” IEEE Communications Magazine,
vol. 59, no. 2, pp. 16–21, 2021.

[9] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed
Federated Learning for Ultra-reliable Low-latency Vehicular Commu-
nications,” IEEE Transactions on Communications, vol. 68, no. 2, pp.
1146–1159, 2019.

[10] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz, and A. F. Skarmeta,
“Machine Learning-based Zero-touch Network and Service Manage-
ment: A survey,” Digital Communications and Networks, 2021.

[11] C. Benzaid and T. Taleb, “AI-Driven Zero Touch Network and Service
Management in 5G and Beyond: Challenges and Research Directions,”
IEEE Network, vol. 34, no. 2, pp. 186–194, 2020.

[12] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
Learning with Adversaries: Byzantine tolerant Gradient Descent,” in
Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, 2017, pp. 118–128.

[13] R. Guerraoui, S. Rouault et al., “The Hidden Vulnerability of Dis-
tributed Learning in Byzantium,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3521–3530.

[14] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust Dis-
tributed Learning: Towards Optimal Statistical Rates,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.


