1804.09642v1 [cs.NI] 25 Apr 2018

arxXiv

This article has been accepted for publication in the European Conference on Networks and Communications (EuCNC), 2018.

The Creation Phase in Network Slicing: From a
Service Order to an Operative Network Slice

Jose Ordonez-Lucena*t, Oscar Adamuz-Hinojosa*T, Pablo Ameigeiras*T, Pablo Mufioz*t, Juan J. Ramos-Mufioz*T,
Jestis Folgueira Chavarria!, Diego Lopez?
*Research Center on Information and Communication Technologies, University of Granada.
TDepartment of Signal Theory, Telematics and Communications, University of Granada.
! Telefonica T+D-Global CTO.
Email: {jordonez, oadamuz, pameigeiras, pabloml, jjramos}@ugr.es"‘Jr {jesus.folgueira, diego.r.lopez}@telefonica.comi

Abstract—Network slicing is considered a key mechanism to
serve the multitude of tenants (e.g. vertical industries) targeted
by forthcoming 5G systems in a flexible and cost-efficient manner.
In this paper, we present a SDN/NFV architecture with multi-
tenancy support. This architecture enables a network slice
provider to deploy network slice instances for multiple tenants
on-the-fly, and simultaneously provision them with isolation
guarantees. Following the Network Slice as-a-Service delivery
model, a tenant may access a Service Catalog, selecting the
slice that best fits its needs and ordering its deployment. This
work provides a detailed view on the stages that a network
slice provider must follow to deploy the ordered network slice
instance, accommodating it into a multi-domain infrastructure,
and putting it operative for tenant’s consumption. These stages
address critical issues identified in the literature, including (i) the
mapping from high-level service requirements to network func-
tions and infrastructure requirements, (ii) the admission control,
and (iii) the specific information a network slice descriptor should
have. With the proposed architecture and the recommended set
of stages, network slice providers can deploy (and later operate)
slice instances with great agility, flexibility, and full automation.

Index Terms—Network Slicing, SDN, NFYV, Service Catalog,
Slice Instance Creation.

I. INTRODUCTION

The ongoing digital transformation is geared towards the in-
tegration of vertical industries into an ecosystem boosting tech-
nical and business innovation. This may bring a multitude of
new vertical-driven use cases and application scenarios, with
very distinct requirements. Current research efforts focus on
finding ways to accommodate them on the same infrastructure
in a flexible, agile, and cost-efficient manner. Network slicing
will be key for this end. Leveraging network softwarization
technologies such as Software Defined Networking (SDN) and
Network Functions Virtualization (NFV), network slicing aims
to logically split an infrastructure into a set of self-contained
programmable network instances, each customized to only
serve the particular needs of a given use case. The shared
and multi-domain nature of the infrastructure on top of which
these Network Slice (NSL) instances run makes isolation a
capital requirement for network slicing.

Network slicing has brought the attention of the research
community. Many standardization bodies and Fora have ad-

dressed this concept, including NGMN, IETF, ONF, and 3GPP.
In [1], ETSI NFV provides an insight into the different views
that some of these organizations have about slicing, analyzing
how their visions match with the NFV constructs.

Network slicing is claimed to unlock new business oppor-
tunities, with flexible service delivery models. One of them is
Network Slicing as-a-Service [2]]. This service delivery model
enables an NSL provider (e.g. network operator) to deploy
customized NSL instances for their clients (e.g. verticals) on
request, and deliver them as a service. These clients, taking the
role of NSL tenants, may in turn use the purchased NSL in-
stances to deploy their business services for their own clients.
This empowers recursive business models (e.g. Business-to-
Business-to-X models), with multiple actors providing services
at different positions in the value chain.

In our previous work [3]], we proposed an SDN/NFV-based
architecture enabling operation of NSL instances with recur-
siveness, multi-tenancy and multi-domain support. Although
these issues have been addressed in architectural solutions
proposed in different 5G-PPP projects (e.g. 5G-Crosshaul,
5GNORMA, 5GEx, etc.), none of them consider the isolation
as the first criteria for architecture design. This have lead to so-
lutions that do not address all the isolation properties necessary
in slicing: performance, security, privacy, and management
isolation. Unlike those proposals, our solution satisfies each
of these isolation properties while being compliant with ETSI
NFV information model. For this end, two architectural en-
hancements are considered with respect to the NFV framework
[4]]: the decomposition of the NFV Orchestrator (NFVO) into
resource and network service orchestration blocks, and the
inclusion of a Tenant SDN Controller. The results derived from
this work have contributed in ongoing standardization efforts,
including those conducted by ETSI NFV [1] and IETF [J5].

The vision given in [3] focused on the run-time phase,
considering the NSL instances were operative and leased out
to their tenants. However, the creation phase was omitted. In
this phase, a tenant requests a NSL from a catalog, and orders
its instantiation. The creation phase brings new challenges, in-
cluding the translation of tenant-specific service requirements

(© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This article has been accepted for publication in the European Conference on Networks and Communications (EuCNC), 2018.

into network functions and infrastructure requirements, the
specification of an NSL descriptor, and the admission control.
These and other aspects have been identified in [6] as still open
issues in the context of network slicing. Addressing them is
thus essential to make a complete network slicing solution.

In this paper, we concentrate on the creation phase of net-
work slicing, complementing the run-time phase addressed in
our previous work. The main objective is to provide an insight
into the procedures and mechanisms required to make the
deployment of NSLs more flexible, agile, and automated from
the perspective of both the NSL provider and the tenant. To
incorporate these mechanisms and procedures, we extend our
SDN/NFV-based architecture with two new functional blocks:
the NSL Manager and the NSL Orchestrator. In the context of
this architecture, we identify the stages the NSL provider shall
follow for completing a catalog-driven NSL deployment. In
each stage, we specify the input/output information, the steps
involved, and the role that each functional block plays.

The remainder of this article is as follows. Section [
shows how the concept of ETSI NFV network service is
key to provide a resource-centric view of an NSL. Section
describes the slicing architecture, with focus on the new
functional blocks. Section [[V| provides a detailed view on the
creation phase, on a step-by-step basis. Finally, Section [V]
summarizes the main conclusions of this work.

II. NFV NETWORK SERVICES AND NETWORK SLICES

The concept of Network Service (NS) introduced by ETSI
NFV is key for network slicing. NSLs leverage the capabilities
offered by NSs to satisfy the network requirements of the use
cases they accommodate. From a resource-centric viewpoint,
an NSL instance may be composed of one or more NS
instances. Particularly, three scenarios can be considered:

(a) The NSL instance consists of an instance of a simple NS.

(b) The NSL instance consists of an instance of a composite
NS.

(c) The NSL instance consists of a concatenation of simple
and/or composite NS instances.

+H VNF

VNF VNF

VNF

VNF

Nested NS
Composite NS

Fig. 1. An example of a composite NS. This NS consists of two VNFs and
one simple NS.

A simple NS includes one or more Virtualized Network
Functions (VNFs), and virtual links providing connectivity
between them. In search of modularity and recursiveness, the
NFV framework provides the ability to include in the design
of an NS one or more nested NSs. The result is a composite
NS (see Fig. [I).

According to ETSI NFV, an NS instance is deployed from
an NS descriptor. An NS descriptor is a deployment template
used for creating and operating instances of an NS. The NS de-
scriptor provides a list of pointers to the VNF descriptors of the
constituent VNFs, and additional information on connectivity
between them. In case of a composite NS, the corresponding
NS descriptor also references the NS descriptor(s) of the
nested NS(s).

A key mechanism in the NS descriptor is NS flavoring.
NS flavoring enables customizing the deployment of an NS
instance, in terms of functionality and performance. As stated
in [7], an NS descriptor consists of one or more NS flavors,
each specifying a different deployment configuration for the
NS. Selecting an NS flavor within the NS descriptor enables
selecting the VNFs and virtual links to be deployed as part of
the NS, and hence the features to be activated for that NS.

A given NS flavor includes one or more NS Instantiation
Levels (NS-ILs), each specifying a possible option of instanti-
ating the NS using this flavor. An NS instance resulting from
a NS-IL can only include instances of those VNFs and virtual
links that have been declared in the flavor. The goal of a NS-IL
is to describe how to deploy each constituent VNF and virtual
link. To that end, an NSL-IL contains the following:

e For each VNF to be used for the NS instance, the NS-IL
specifies the number of instances to be deployed, their
resource levels (i.e. the level of resources to be allo-
cated for each instance), and their applicable affinity/anti-
affinity rules. Currently, the reliability requirements of a
VNF (e.g. the subset of instances to serve as backup,
if high availability hardware/software is required for any
instance, etc.) are not part of the NS-IL, although their
inclusion is expected for the NFV Release 3 [L1].

e For each virtual link to be used for the NS instance,
the NS-IL specifies transport reliability and the bitrate
requirements.

According to the mentioned ideas, a triplet (NS descriptor
ID, NS Flavor ID, NS-IL ID) provides a complete resource-
centric description of an NS instance. The second term indi-
cates the subset of VNFs and virtual links to be deployed for
the NS, and hence the functionality selected for the NS. The
third term specifies how instantiating each of those VNFs and
links, thus setting the level of performance of the NS.

As seen, NS flavoring is key for slicing, as it enables
selecting only the needed capabilities within an NS for a given
NSL. To provide a complete resource-centric description of an
NSL instance, it is required to specify which triplet is used to
instantiate each constituent NS. For this end, we introduce the
concept of NSL Instantiation Level (NSL-IL). The NSL-IL is
an information element that provides a (list of) pointer(s) to
the triplet(s) of the constituent NS instance(s). This means that
if an NSL instance have M NS instances - see (c) -, then the
NSL-IL will refer to the M triplets used for their instantiation.

III. NETWORK SLICING ARCHITECTURE

In this section, we describe a SDN/NFV based architecture
for network slicing that extends our previous proposal [3].

This article has been accepted for publication in the European Conference on Networks and Communications (EuCNC), 2018.

Note that this architecture focuses on the transport and core
network domains, omitting the RAN domain for simplicity.

As Fig. [2| shows, this architecture enables an NSL provider
to simultaneously operate multiple NSL instances. These in-
stances run on top of a common infrastructure that spans across
multiple administrative domains, each belonging to a different
infrastructure provider. This infrastructure, consisting of ge-
ographically distributed Points of Presence (PoPs) and Wide
Area Networks (WANSs) connecting them, enables multi-site
deployments. To manage the resources of the PoP(s) and/or
WAN(s) within its administrative domain, an infrastructure
provider leverages the capabilities of a Virtual Infrastructure
Manager (VIM) and/or WAN Infrastructure Manager (WIM),
respectively.

The NSL provider, taking the role of an infrastructure ten-
ant, rents the infrastructure resources owned by the underlying
infrastructure providers, and uses them to provision the NSL
instances. For this end, the NSL provider has a resource
orchestration functional block. The Resource Orchestrator uses
the finite set of resources that are at its disposal (the resources
supplied by the underlying VIMs/WIMs), and dispatches them
to the NSL instances in an optimal way. This optimization
means that all the NSL instances are simultaneously pro-
vided with the resources needed to satisfy their (potentially
diverging) requirements, while preserving their performance
isolation. The resource requirements of each NSL instance are
stated by its NSL-IL (see Section [II).

An NSL instance uses its assigned resources to run instances
of VNFs. These VNF instances are stitched together to build
up the required NS instance(s), following the specificities
given in the NSL-IL. At infrastructure level, note that VNF
instances are executed on virtualization containers (e.g., virtual
machines [VM], docker containers, unikernels, etc.). These
virtualization containers are deployed inside one or more PoPs,
according to the geolocation requirements of the VNFs.

NSL Orchestrator 1
1
1
1
1

. ana

.
.

NSL Instance #M
Catalogs .

NS Catalog

|

NSL Tenant #N

i

NSL Instance #1

[VNF chaining and §
configur: ¥

VNF life cycle
management
|t

Resource Orchestrator

NSL Provider Domain -
NSL Tenant #1
1 Domain

|
1
1
|
I
|
|
I
|
1
I
1 VNF Catalog
1
1
|
I
|
|
I
|
1
I
|
I

[wiM] [VIM]

||
HEE|

E

PoP #1

WAN #1

PoP #2

Infrastructure Provider #2
Domain

Infrastructure Provider #3
Domain

Fig. 2. SDN/NFV-based Network Slicing Architecture.

To preserve management isolation across NSL instances,
each instance has its own management plane. This plane

consists of four functional blocks: VNF Manager (VNFM),
NS Orchestrator, Tenant SDN Controller, and NSL Manager.

The VNFM(s) and the NS Orchestrator perform the required
life cycle operations (e.g. instantiation, scaling, termination,
etc.) over the instances of the VNFs and NS(s), respec-
tively. Since these operations involve modifying the amount
of resources to be allocated for those instances, an interplay
between these functional blocks and the Resource Orchestrator
is required. The Tenant SDN Controller performs VNF con-
figuration and chaining in a programmatic manner. On one
hand, this SDN Controller configures the VNF instances at
application level, taking the role of an Element Manager (EM)
[4]. On the other hand, it chains the VNF instances for NS
construction, leveraging the forwarding capabilities provided
by the data plane. Finally, the NSL Manager coordinates the
operations and management data from both the Tenant SDN
Controller and the NS Orchestrator, performing the fault, con-
figuration, accounting, performance, and security management
within the NSL instance. Additionally, it provides visibility
and management capability exposure to external blocks. In
this respect, note that the NSL Manager is of key importance
for a NSL tenant. Each tenant consumes its NSL instance,
and operates it at its convenience (within the limits agreed
with the NSL provider) through the NSL Manager. By way of
example, the tenant could use an SDN application in the NSL
manager to programmatically modify the VNF chaining rules
on-the-fly, according to its needs.

Beyond the domain of an NSL instance, the NSL provider
defines an NSL Orchestrator. This functional block plays a
key role in the creation phase and the run-time phase. In
the creation phase, it receives the order to deploy a NSL
instance for a tenant, checks the feasibility of the order, and
if feasible, triggers the instantiation of the NSL. For this end,
it interacts with the Resource Orchestrator, and accesses the
VNF and NS Catalogs. These catalogs contain VNF and NS
descriptors, exposing the capabilities of all the VNFs and NSs
that an NSL provider can select for the NSLs. At run-time, the
NSL Orchestrator performs policy-based inter-slice operations.
Particularly, it analyses the performance and fault management
data received from the operative NSL instances to manage
their Service Level Agreements. In case of Service Level
Agreement violations, then the NSL Orchestrator decides
which NSL instances need to be modified, and sends corrective
management actions (e.g. scaling, healing, etc) to their NSL
Managers.

The interplay among the functional blocks described so far
enables slicing. Abstraction is a key architectural principle for
this end. Having different abstraction levels across functional
blocks logically placed at different layers leads to a loosely
coupled architecture. Each functional block is only responsible
for a specific set of tasks, being they limited by the level of
information the functional block understands.

In our architecture, the VIM/WIM, the Resource Orchestra-
tor, and the NSL/NS Orchestrator operate at different layers,
and hence provide different abstraction levels. The Resource
Orchestrator maintains a PoP resource map derived from

This article has been accepted for publication in the European Conference on Networks and Communications (EuCNC), 2018.

the information provided by VIM(s) and WIM(s), includ-
ing data on geolocation, capabilitie§', and resource state.
The Resource Orchestrator abstracts this information to the
NSL/NS Orchestrator, providing a resource-agnostic view of
the set of reachable PoPs. This view only includes high-level
information on the locations and capabilities of those PoPs,
without any information on their resources, nor the VIM(s)
responsible for their management.

IV. NETWORK SLICE CREATION PHASE

Section [[M] focuses on the run-time phase of the network
slicing concept, considering that the NSL instances are oper-
ative and being consumed by their tenants. However, prior to
this phase, the creation phase occurs. This section concentrates
on the creation phase, providing a detailed view on the steps
the NSL provider must follow to instantiate a NSL according
to the specificities gathered in a catalog-driven service order.
For better understandability, these steps have been grouped
into five well-defined stages. These stages are described below.

A. Service ordering

The NSL provider defines a business-driven Service Cat-
alog that contains a finite set of service templates, each
describing a different service offering. These offerings include
NSLs optimized to serve a multitude of usage scenarios,
ranging from typical 5G services (e.g. eMBB, mMTC, and
uRLLC) to vertical-specific applications (e.g. smart factory,
remote surgery, connected cars, etc.). A service template is a
readymade document that contains all the information that is
required to drive the deployment of an NSL. In particular, it
contains (1) the NSL topology, expressed as an ordered chain
of technology-agnostic composable nodes, each providing
specific functionality; (2) the NSL network requirements, in-
cluding performance and functional requirements; (3) the NSL
temporal requirements; (4) the NSL geolocation requirements;
and (5) the NSL operational requirements. An example of a
service template is shown in Fig. [3]

To facilitate the customization and automate the service def-
inition, the NSL provider may suggest typical configurations
of certain attributes, allowing tenants to focus on the key areas
of the service template. The number and diversity of attributes
that can be specified (including their allowed value ranges) by
the tenant is up to the NSL provider’s policies.

To order an NSL, the tenant makes use of the self-ordering
APIs that the NSL provider exposes in a self-service Web
Portal. With these APIs, the tenant gains access to the Service
Catalog, from which it selects the service template that best
matches its needs. Then, the tenant specifies the desired values
for the attributes it can customize, according to the NSL
provider’s policies. The result is a catalog-driven NSL service
order that the NSL Orchestrator must process. This order
contains information mappable to RAN, transport, and core
network domains. For simplicity, we focus on the latter two.

IThe capabilities of a PoP depend on the PoP setup (e.g. setup for high
availability and fault resiliency, setup for high I/O processing, etc.)

| Fields | Attributes

NSL Topology

* Effective Throughput « Security: Confidentiality, integrity, ...
NSL Network * Latency * Coverage
Requirements * Reliability

* Mobility
* Number of devices o

* Time intervals to be active: From [dd/mm/yyyy] to [dd/mm/yyyy]

WELL Tarmmered * Time intervals to be inactive: From [dd/mm/yyyy] to [dd/mm/yyyy]

Requirements

NSL Geolocation
Requirements

* Location: City (Cities), Country

* Capability exposure for visibility and management: Only monitoring
/ monitoring + limited management / monitoring + full management

* Priority level

* KPI monitoring: metric presentation, reporting period, ...

* Accounting: online / offline

NSL Operational
Requirements

Fig. 3. Service template structure. The nodes included in the topology depend
on the use case the template is designed for (e.g. in an eMBB NSL, some
nodes could be a cache, the EPC user plane, and the EPC control plane).
Note that the value of some NSL requirements could be specified by the
tenant, according to the NSL provider’s policies. For typical values in different
vertical-driven use cases, please see [8].

B. Network Slice Resource Description

The goal of this stage is to give a resource-centric view of
the ordered NSL, expressed through an NSL-IL (see Section
). This NSL-IL may be used to decide if the ordered NSL
is feasible/infeasible from a resource viewpoint, and hence
accepted/rejected for deployment (see subsection [[V-C).

Upon receiving the service order, the NSL Orchestrator
extracts the content that is relevant from a resource viewpoint:
the NSL topology, and the NSL network requirements (i.e.
performance and functional requirements). Using this infor-
mation, the NSL Orchestrator constructs an NSL-IL for the
NSL instance. For this end, it performs three steps.

In the first step, the NSL Orchestrator uses the NSL
topology to identify which NS(s) need to be deployed for the
NSL, retrieving the corresponding NS descriptor(s) from the
NS Catalog. In the second step, the NSL Orchestrator selects
within each descriptor the deployment option that best matches
the features and the performance level required for the NSL. In
other words, it selects the triplet (NS descriptor ID, NS Flavor
ID, NS-IL ID) to be used to instantiate each NS. Finally, the
NSL Orchestrator constructs the NSL-IL by referencing the
selected triplet(s).

With the mentioned approach, the constructed NSL-IL
meets the specified network requirements of the NSL instance,
and hence is able to accommodate the target traffic load. From
here on out, we will refer to this NSL-IL as the target NSL-IL.
However, traffic fluctuations may occur throughout the lifetime
of the NSL instance, resulting in periods of time where the
traffic load is considerably lower than the target one. In this
kind of situations, the triplet(s) used for the target NSL-IL
may lead to a waste of resources. To solve this issue and take
advantage of multiplexing gains, the NSL Orchestrator could
make use of less resource-demanding triplets to accommodate
lower traffic loads, and construct optional NSL-ILs with them
(see Fig.[). The number of optional NSL-ILs and the triplet(s)

This article has been accepted for publication in the European Conference on Networks and Communications (EuCNC), 2018.

selected for each of them depend on the traffic fluctuations
expected for the NSL instance. To estimate these fluctuations,
the NSL Orchestrator may rely on traffic models that the NSL
provider has inferred from historical data.

A

Target _
traffic load

Traffic load

>
»

Time(h)

Fig. 4. Example of the traffic load expected for a given NSL instance during
a typical day. NSL-IL #4 is the target NSL-IL, and the rest are the optional
NSL-ILs. The entire set of NSL-ILs enables the NSL provider to adjust the
level of resources within the NSL instance at run-time, in such a way it
satisfies the desired performance, while making an efficient resource usage.

The target NSL-IL, along with the optional NSL-ILs, define
the complete set of NSL-ILs among which the NSL instance
can scale up/down during its entire life cycle.

C. Admission Control

The target NSL-IL specifies the resource requirements fit-
ting the tenant’s demands. Once derived, the NSL provider
can perform the admission control. The admission control
aims to check if the NSL provider can satisfy the resource,
geolocation, and temporal requirements of the ordered NSL.
For this end, the following information is needed:

(1) The resource requirements of the NSL instance. This
includes(a) the resources to be allocated for each VNF
instance and virtual link, (b) the affinity/anti-affinity rules
applicable between VNF instances, and (c) the reliability
requirements for each VNF instance and virtual link.

(2) The geographical region(s) where each VNF is needed.

(3) The time intervals when the NSL instance needs to be
active (operative).

(4) Information of the PoPs (and the WAN network(s) con-
necting them) to which the NSL provider is subscribed.

The information shown in (1)-(3) is available to the NSL
Orchestrator; indeed, (1) is part of the target NSL-IL, while
(2)-(3) are derived from the geolocation and temporal re-
quirements specified in the service order. The information
specified in (4) is available to the Resource Orchestrator, and
provided by the underlying VIM(s)/WIM(s). The fact that the
NSL Orchestrator and the Resource Orchestrator operate at
different abstraction levels means that they deal with different
level of information, and hence none of them is able to
perform the admission control at its own. The interplay of both
functional blocks is needed. Following this idea, the admission
control can be splitted into three steps. The NSL Orchestrator
performs the first two steps, being the latter carried out by the
Resource Orchestrator.

In the first step, the NSL Orchestrator calculates which
PoP(s) is (are) candidate to host each VNF instance. A PoP is

candidate for a VNF instance if the location and capabilities of
the PoP satisfy the geolocation and reliability requirements of
that instance. For this step, the NSL Orchestrator takes as in-
puts the information specified in (1¢) and (2), and the resource-
agnostic view provided by the Resource Orchestrator. As seen
in Section this view consists of high-level information of
the location and capabilities of the reachable PoPs.

In the second step, the NSL Orchestrator sends two kind
of data to the Resource Orchestrator. On one hand, data con-
cerning the NSL lifetime. For this end, the NSL Orchestrator
takes the information shown in (3), and passes it down to the
Resource Orchestrator. On the other hand, data concerning
the target NSL-IL to be accommodated. For that, the NSL
Orchestrator takes the resource requirements specified in (1),
along with the candidate PoPs calculated in the first step, and
passes then down to the Resource Orchestrator at VNF/virtual
link level. For each VNF instance, the NSL Orchestrator com-
municates the candidate PoP(s), and the requirements shown
in (la) and (1b). For each virtual link, the NSL Orchestrator
communicates the requirements specified in (la) and (1c).

In the third step, the Resource Orchestrator seeks feasible
solutions to deploy the target NSL-IL. A solution is feasible as
long as each VNF instance can be allocated in a candidate PoP
during the time interval(s) in which the NSL instance needs to
be active, while satisfying the VNF affinity/anti-affinity rules
and connectivity needs. For this step, the Resource Orches-
trator takes the data received from the NSL Orchestrator, and
compares it against the information specified in (4).

If there exists one feasible solution, the admission control is
successful. In this case, the Service Level Agreement between
the NSL provider and the tenant can be formalized; otherwise,
these two parties shall re-negotiate the content of the service
order.

D. Optimization and Resource Reservation

A successful admission control may derive multiple feasi-
ble solutions for the target NSL-IL (e.g. multiple PoPs can
accommodate a given VNF instance). However, only one of
them must be eventually selected for deployment. To solve
this issue, the Resource Orchestrator may run an algorithm
that calculates the optimal solution. Examples of optimality
criteria that could be used for this algorithm include minimize
resource usage, minimize energy consumption, etc.

Once the optimal solution is found, the Resource Orches-
trator may proceed with resource reservation. The Resource
Orchestrator sends resource reservation requests towards the
underlying VIM(s)/WIM(s). The hard and soft nature of this
reservation depends on the NSL provider’s policies, as well as
the nature of the use case the NSL instance will accommodate.

E. Network Slice Preparation

The NSL preparation is the last stage prior to put the
NSL operative. It consists of setting up all that is required
to manage the NSL instance throughout its entire life cycle,
from commissioning (instantiation, configuration, and activa-
tion) to decommissioning (de-activation and termination) [9].

This article has been accepted for publication in the European Conference on Networks and Communications (EuCNC), 2018.

This includes (1) preparing the network environment, and (2)
designing and on-boarding the NSL descriptor.

In the network environment preparation, the NSL Orches-
trator performs the following tasks:

« It negotiates with the Resource Orchestrator a priority
level for the NSL instance. Having different priority lev-
els allows the Resource Orchestrator to define a priority
order between the NSL instances in case they compete
for the same resources, or in case of resource scarcity.

o It prepares the management plane of the NSL in-
stance. First, the NSL Orchestrator instantiates the NSL
Manager, the Tenant SDN Controller, the NS Orchestra-
tor, and the VNFM(s). Then, it configures these functional
blocks in an appropriate manner, making them ready
for the run-time phase. By means of example, the NSL
Orchestrator configures the NSL Manager in such a way
it provides the tenant only with the visibility and the
management capabilities specified in the service order.

In parallel to the network environment preparation, the NSL
Orchestrator builds up the NSL descriptor. The NSL descriptor
is a deployment template used by the NSL Manager to operate
the NSL instance during its life cycle in an agile, automated
fashion. This descriptor includes the following parts:

o A set of policy-based workflows. These workflows en-
ables the NSL Manager to enforce the expected behavior
of the NSL instance during its life cycle, in a timely
manner. The NSL Manager translates the content of these
workflows into appropriate NS and VNF management
actions, and forwards them to the NS Orchestrator and to
the tenant SDN controller for their enforcement.

o The set of NSL-ILs available for use, constructed
in the Network Slice Resource Description phase (see
subsection [V-B). The NS Orchestrator use the triplets
referenced by these NSL-ILs to scale the NS instance(s)
at run-time, according to time-varying traffic demands.

o VNF configuration primitives at application level,
and VNF chaining management instructions. Both are
used by the Tenant SDN Controller to programmatically
configure and chain the VNF instance(s).

o Information about management data, used for perfor-
mance management (e.g. metrics to be monitored, metric
presentation, reporting period) and fault management
(e.g. alarms to be subscribed). Derived from the NSL
operational requirements specified in the service order,
the management data may be collected from the NS
Orchestrator and the Tenant SDN Controller, and used
for visibility/manageability purposes.

Note that the policy-based workflows contained in the NSL
descriptor enables the NSL. manager to automate all the life
cycle operations that are manually triggered from the OSS
in the ETSI NFV framework [10], making the NSL instance
a self-contained entity. The remaining content of the NSL
descriptor is used to feed these workflows (e.g. performance
metrics may be taken as inputs for the workflows targeted at
the NSL scaling operation).

V. CONCLUSIONS

An SDN/NFV-based network slicing architecture has been
presented in this work. This architecture addresses the two
phases considered for network slicing: the creation phase and
the run-time phase. This work focuses on the former.

We have provided detailed insight into the steps needed
to successfully complete catalog-driven NSL deployments.
These steps have been arranged into five stages: Service
Ordering, Network Slice Resource Description, Admission
Control, Optimization & Resource Reservation, and Network
Slice Preparation. In each of these stages, the input/output
information required, the steps involved, and the role of the
participant functional block(s) have been specified.

With the architecture and the ordered set of stages proposed
in this work, NSL providers are able to perform cost-efficient
deployments, in an agile, flexible, and automated manner.
The presence of a Service Catalog, with customizable service
offerings that brings flexibility in service definition, and the
interplay between the NSL Orchestrator and Resource Or-
chestrator are crucial for that end. Additionally, the correct
design of a NSL descriptor in the creation phase is key for
a successful operation in the run-time phase. This descriptor
makes the NSL instance a self-contained entity, enabling the
slice-specific management plane to operate the NSL instance
in a customized way, with great agility, and full automation.

ACKNOWLEDGMENT

This work is partially supported by the Spanish Ministry
of Economy and Competitiveness and the European Re-
gional Development Fund (Project TEC2016-76795-C6-4-R),
the Spanish Ministry of Education, Culture and Sport (FPU
Grant 16/03354), and the University of Granada, Andalusian
Regional Government and European Social Fund under Youth
Employment Program.

REFERENCES

[1] ETSI GS NFV-EVE 012, “Network Functions Virtualization (NFV);
Evolution and Ecosystem; Report on Network Slicing Support with ETSI
NFV Architecture Framework,” Dec. 2017.

[2] X. Zhou et al., “Network slicing as a service: enabling enterprises’ own
software-defined cellular networks,” IEEE Commun. Mag., vol. 54, no. 7,
pp. 146-153, 2016.

[3] J. Ordonez-Lucena et al., “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 80-87, 2017.

[4] ETSI GS NFV-MAN 001, “Network Functions Virtualization (NFV);
Management and Orchestration,” Dec. 2014.

[5] L. Geng et al., “Common Operation and Management on network Slices
(COMS) Architecture,” in Internet Engineering Task Force (IETF),
March 2018.

[6] X. Foukas et al., “Network Slicing in 5G: Survey and Challenges,” IEEE
Commun. Mag., vol. 55, no. 5, pp. 94-100, 2017.

[7] ETSI GS NFV-IFA 014, “Network Functions Virtualization (NFV);
Management and Orchestration; Network Service Templates Specifica-
tion,” Aug. 2017.

[8] Next Generation Mobile Networks (NGMN) Alliance, “Perspectives on
Vertical Industries and Implications for 5G,” Sept. 2016.

[9]1 3GPP TS 28.801 V.15.1.0, “Telecommunication management; Study on
management and orchestration of network slicing for next generation
network,” Jan. 2018.

[10] ETSI GS NFV-IFA 013, “Network Functions Virtualization (NFV)
Release 2; Management and Orchestration; Os-Ma-Nfvo reference point
- Interface and Information Model Specification,” Aug. 2017.

	I Introduction
	II NFV Network Services and Network Slices
	III Network Slicing Architecture
	IV Network Slice Creation Phase
	IV-A Service ordering
	IV-B Network Slice Resource Description
	IV-C Admission Control
	IV-D Optimization and Resource Reservation
	IV-E Network Slice Preparation

	V Conclusions
	References

